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ABSTRACT. The need to determine pseudoperipheral vertices arises from several graph-theoretical ap-
proaches for ordering sparse matrix equations. The results of two algorithms for finding such vertices,
namely, the George-Liu and Kaveh-Bondarabady algorithms, are evaluated in this work along with a vari-
ant of the Kaveh-Bondarabady algorithm. The results suggest that the well-know George-Liu algorithm
dominates the other two pseudoperipheral vertex finders mainly when considering the computational times
of the algorithms.

Keywords: sparse matrices, graph labeling, graph algorithm, Reverse Cuthill-McKee method, bandwidth
reduction, graph theory.

1 INTRODUCTION

Reordering a sparse matrix to reduce its bandwidth can accelerate many sparse matrix compu-
tations [7]. For example, several real-world scientific and engineering applications demand the
analysis and solution of large and complex problems defined by a set of linear equations in the
form Ax = b, where A = [ai j] is an n× n large-scale sparse matrix, x is the unknown n-vector
solution, and b is a known n-vector. In particular, an efficient solution using a direct method re-
quires to order the variables of the problem. Moreover, two other methods for solving these types
of linear equations, which have found wide use in finite element analysis, are the profile and
frontal solution schemes. These methods demand to process the equations in a proper order to
compute the solution efficiently. In finite element analysis, in the case of one degree-of-freedom
per node, performing a vertex reordering is equivalent to reorder the equations. Conducting a
vertex reordering is also equivalent to rearrange the equations in partial differential equations
finite-volume discretizations.
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In general, the use of a heuristic for matrix bandwidth reductions reduces the computational cost
of iterative solvers for the numerical solution of a sparse linear system of equations [5, 16, 17].
Specifically, the transfer of information to and from memory is related to the number of nonzero
coefficients in the lines of the matrix system A. If the nonzero coefficients in each line lie at the
same level of the memory hierarchy, then cache misses are reduced. These characteristics link
cache misses with the bandwidth of A.

This paper concentrates on the use of the Reverse Cuthill-McKee method (RCM) [11] for reduc-
ing the bandwidth of matrices. The George-Liu algorithm (GL) [10] is the state-of-the-practice
method for providing pseudoperipheral (see definitions below) vertices to the Reverse Cuthill-
McKee method. Thus, this matrix bandwidth method starting with a pseudoperipheral vertex
given by the George-Liu algorithm [10] is one of the best-known and widely used heuristics
for bandwidth reductions of matrices (see [3, 4, 9, 12, 14, 16, 17] and references therein). For in-
stance, the method is available on MATLAB [9, 12, 22] and GNU Octave [8, 9] as the function
symrcm1, and on Boost C++ Library [20]2. The method is identified as one of the most impor-
tant and amply used bandwidth reduction method because it reaches accurate approximations to
the solution at low execution times. However, it is well-known that the Reverse Cuthill-McKee
method is not trouble-free [3]. The choice of an initial pseudoperipheral vertex v profoundly in-
fluences the quality of the method. Thus, efforts should be continued to develop algorithms for
the identification of pseudoperipheral vertices so that the Reverse Cuthill-McKee method [11]
(and other graph-theoretical reordering heuristics) would be capable of producing solutions of
excellent quality.

This paper analizes experimentally the George-Liu [10] and Kaveh-Bondarabady [19] algorithms
for finding pseudoperipheral vertices along with a modified Kaveh-Bondarabady algorithm when
applied in conjunction with the Reverse Cuthill-McKee method [11] for bandwidth reductions
of matrices. This work is a revised and expanded version of a paper presented at the XXXVII
Brazilian National Congress in Applied and Computational Mathematics (CNMAC 2017) [13].

In Section 2, background information with respect to the bandwidth reduction problem is pro-
vided. In Section 3, we describe the algorithms for determining the starting vertex to the Reverse
Cuthill-McKee method evaluated in this computational experiment. In Section 4, we describe
how the simulations were conducted. In Section 5, the results are discussed. Finally, In Section
6, the conclusions are addressed.

2 THEORETICAL BACKGROUND, DEFINITIONS, AND GRAPH NOTATION

In this section, we provide definitions necessary to support the discussion in the following sec-
tions. In this section, we give some basic background concepts concerning the characteristics of
the graph-theoretical description of ordering.

1https://www.mathworks.com/help/matlab/ref/symrcm.html?requestedDomain=www.mathworks.com,
https://octave.sourceforge.io/octave/function/symrcm.html.

2http://www.boost.org/doc/libs/1\_38\_0/libs/graph/doc/cuthill\_mckee\_ordering.html.

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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Let A = [ai j] be an n× n symmetric matrix associated with a connected undirected graph G =

(V,E), where V and E are sets of vertices and edges, respectively. The overall bandwidth of

a matrix A is defined as β (A) = max
1≤i≤n

[
i− min

1≤ j<i
( j | ai j 6= 0)

]
[18]. The vertices v,u ∈ V with

labels s(v) = i and s(u) = j are associated with lines i and j of A, respectively. Therefore, aii 6= 0,
ai j 6= 0 if {v,u} ∈ E, and ai j = 0 if {v,u} /∈ E. Thus, the bandwidth of G for a vertex labeling S =

{s(v1),s(v2), · · · ,s(v|V |)} (i.e., a bijective mapping from V to the set {1,2, · · · , |V |}) is defined as
β (G) = max

{v,u}∈E
[|s(v)− s(u)|].

The Reverse Cuthill-McKee method [11] is based on graph-theoretical concepts. Essentially, the
method labels the vertices of a graph G(V,E) in order of increasing distance from a given initial
vertex v. Ordering the vertices in such a manner partitions them into level sets according to the
distance from the vertex v. Given a vertex v ∈ V , the level structure L (v) rooted at vertex v,
with depth `(v), is the partitioning L (v) of V satisfying L (v) = {L0(v),L1(v), . . . ,L`(v)(v)},
where L0(v) = {v} and Li(v) = Ad j(Li−1(v))−

⋃i−1
j=0 L j(v), for i = 1,2, 3, . . . , `(v) [2], `(v) =

max
u∈V

[d(v,u)] denotes the eccentricity of the vertex v, Ad j(U)= {w∈V : (u∈U ⊆V ) {u,w}∈E},
and the distance d(v,u) is the length of a shortest path connecting vertices v and u [18]. In
particular, the width of a rooted level set is defined as b(L (v)) = max

0≤i≤`(v)
|Li(v)|.

The diameter of a graph is defined as Φ(G) = max
v∈V

[`(v)]. A vertex v ∈ V with `(v) = Φ(G) is

a peripheral vertex. On first consideration, starting the Reverse Cuthill-McKee procedure with
a peripheral vertex seems to be a compelling idea. The reason is that the heuristic approach
would use a vertex with maximum eccentricity, in the hope that on average the rooted level set
L (v) would also have small width. Finding peripheral vertices in graphs, however, is compu-
tationally expensive [21], that is, for a graph G = (V,E), one can find a peripheral vertex by
executing |V | breadth-first search procedures. However, it takes O(|V |(|V |+ |E|)) time in these
operations. There exist alternative algorithms for finding a peripheral vertex, including Arany’s
algorithm [1], but these algorithms are still computationally expensive when compared with a
pseudoperipheral vertex finder. Consequently, many heuristics for bandwidth reductions require
as a first step the determination of a pseudoperipheral vertex instead of determining a peripheral
vertex as the initial vertex of the approach [15]. If, for a given u ∈ V , a vertex v ∈ L`(u)(u) has
`(v) = max

x∈L`(u)(u)
[`(x)], and `(v) = `(u), then Smyth [21] defined u as a pseudoperipheral vertex.

On the other hand, Kaveh and Bondarabady [19] defined a pseudoperipheral vertex regarding the
width b(L (v)) of a vertex v ∈ V . It is, therefore, desirable to find a pseudoperipheral vertex v
with large `(v) at a low cost. Additionally, the rooted level set L (v) must have small width.

Algorithm 1 shows the Reverse Cuthill-McKee method [11]. As previously mentioned, the
method labels the vertices of a graph (see line 8) with the same distance from the pseudope-
ripheral vertex v in order of increasing degree (see line 6). Finally, the ordering is reversed.
Therefore, the final label of vertex v is |V |. Thus, Algorithm 1 begins the numbering with the
label s(|V |) (see lines 2–4 in Algorithm 1). Algorithm 1 returns the new labeling at line 12.

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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Algorithm 1 Reverse Cuthill-McKee method [11].
Input: a connected graph G = (V,E); a vertex v ∈V ;
Output: a labeling S = {s(1),s(2), ...,s(|V |)}.

1 begin
2 s(|V |)← v;
3 i← |V |;
4 j← |V |;
5 while (i > 0) do
6 foreach (vertex w ∈ Ad j(s( j))−{s(|V |), . . . ,s(i)}, in order of ascending degree) do
7 i← i−1;
8 s(i)← w;
9 end

10 j← j−1;
11 end
12 return S;
13 end

3 ALGORITHMS FOR FINDING PSEUDO-PERIPHERAL VERTICES

The George-Liu algorithm [9] returns a pseudoperipheral vertex v with eccentricity equal or
greater than the eccentricity of the vertex with minimum degree in L`(v)(v). Algorithm 2 shows
this pseudoperipheral vertex finder. The George-Liu algorithm [9] begins with an arbitrary vertex
v at line 2 in Algorithm 2. Afterward, the algorithm builds the rooted level structure L (v) at line
3. Then, the George-Liu algorithm [9] builds the rooted level structure L (u) of a vertex u with
minimum degree belonging to L`(v)(v) in lines 5 and 6. If `(u)> `(v) at line 7, then u is attributed
to v (i.e., v← u; see line 8), L (v)←L (u) is computed at line 9, and the process is repeated;
otherwise, the process stops and v is the pseudoperipheral vertex found at line 12 in Algorithm 2.

The Kaveh-Bondarabady algorithm [19] returns a pseudoperipheral vertex v in which L (v) has
a smaller width than the widths of the level structures rooted at vertices with minimum degree
in each level of L (v). Algorithm 3 shows the Kaveh-Bondarabady algorithm [19]. We refer to
this algorithm as the KB2 method. The algorithm selects a vertex v with minimum degree of the
graph at line 2. Then, the method generates a rooted level structure L (v) at line 3, computes its
width b(L (v)) at line 4, and selects a vertex u with minimum degree (at line 8) from each level
Li(v) of L (v) (see the loop in lines 7–15 in Algorithm 3). The KB2 algorithm generates a rooted
level structure L (u) from each of such vertices at line 9, computes its width b(L (u)) at line 10,
and chooses the one corresponding to the smallest width (in lines 10–14). The algorithm repeats
the process as far as reduction in width of the current rooted level structure can be observed
(see the loop in lines 5–16 in Algorithm 3). Finally, the Kaveh-Bondarabady algorithm returns a
pseudoperipheral vertex s with a small b(L (s)) at line 17.

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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Algorithm 2 The George-Liu algorithm [9].
Input: graph G = (V,E);
Output: pseudoperipheral vertex v ∈V ;

1 begin
2 v← ArbitraryVertex(V );

// build a rooted level structure

3 L (v)← Breadth-First-Search-variant(v);
4 repeat
5 u← MinimumDegreeVertex(L`(v)(v));

// build a rooted level structure

6 L (u)← Breadth-First-Search-variant(u);
7 if (`(u) > `(v)) then
8 v← u;
9 L (v)←L (u);

10 end
11 until (u 6= v);
12 return v;
13 end

In this computational experiment, we implemented and evaluated a slight modification in the
Kaveh-Bondarabady algorithm [19] by starting with an arbitrary vertex instead of starting with
a vertex with minimum degree at line 2 in Algorithm 3. We refer to this algorithm as the MKB2
method. We studied experimentally these algorithms in conjunction with the Reverse Cuthill-
McKee method [11].

We also evaluated the use of an arbitrary vertex instead of selecting a vertex with minimum
degree at line 8 in Algorithm 3. Exploratory investigations showed that this modification did not
improve the general performance of the RCM ordering. Thus, we discarded this modification.

4 DESCRIPTION OF THE TESTS

Three algorithms for finding pseudoperipheral vertices were implemented and evaluated in this
computational experiment (George-Liu [10], KB2 [19], and an alternative algorithm for finding
pseudoperipheral vertices described in Section 3) in conjunction with the Reverse Cuthill-McKee
method [11]. Thus, these three algorithms (together with the Reverse Cuthill-McKee method) are
named RCM-GL, RCM-KB2, and RCM-MKB2, respectively.

We implemented the algorithms in the C++ programming language. We used a GNU (i.e., the
g++ version 4.8.4) compiler. To evaluate the bandwidth reductions provided by these algorithms,
we used 26 symmetric matrices (with sizes ranging from 10,605 to 607,232) contained in the
SuiteSparse matrix collection [6].

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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Algorithm 3 The Kaveh-Bondarabady algorithm (KB2) [19].
Input: graph G = (V,E);
Output: pseudoperipheral vertex s ∈V ;

1 begin
2 v← VertexMinDegree(V );

// build the rooted level structure L (v)
3 L (v)← Breadth-First-Search-variant(v);
4 width← b(L (v));
5 repeat
6 s← v;

// observe each level in the rooted level structure L (v)
7 for (i← 1 to `(v)) do
8 u← VertexMinDegree(Li(v));

// build the rooted level structure L (u)
9 L (u)← Breadth-First-Search-variant(u);

10 if (b(L (u))< width) then
11 width← b(L (u));
12 v← u;
13 L (v)←L (u);
14 end
15 end
16 until (v = s);
17 return s
18 end

The workstation used in the executions of the simulations featured an Intel® CoreTM i7-4770
(CPU 3.40 GHz, 8 MB Cache, 8 GB of main memory DDR3 1.333 GHz) (Intel; Santa Clara,
CA, United States). This machine used the Ubuntu 14.04.5 64-bit operating system with Linux
kernel-version 4.2.0-36-generic.

5 RESULTS AND ANALYSIS

Table 1 shows the characteristics of the matrices [name, size (n, number (|E|) of nonzero co-
efficients), original bandwidth (β0)] and the average values of bandwidth and time, in sec-
onds, yielded by three pseudoperipheral vertex finders with the Reverse Cuthill-McKee method.
Numbers in boldface are the best results.

Table 1 shows that the RCM-MKB2 method performed better on average than the RCM-KB2
method did. The same table and Figure 1 show that the variant of the KB2 algorithm [19] evalu-
ated in this study obtained in general the highest number of best bandwidth results (in 12 matri-
ces) in the dataset composed of 26 symmetric matrices when applied in tandem with the Reverse

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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Table 1: Results of three pseudoperipheral vertex finders in conjunction with the Reverse Cuthill-
McKee method [11] applied to reduce the bandwidth of 26 symmetric matrices.

Matrix n |E| β0
GL MKB2 KB2

β t(s) β t(s) β t(s)

ted B 10,605 144,579 48 42 3.61 72 6.19 63 3.02

ted B
10,605 144,579 48 42 3.59 72 6.17 63 3.05

unscaled

vibrobox 12,328 301,700 12162 4841 0.13 4604 0.09 4489 0.10

minsurfo 40,806 203,622 202 202 0.05 202 356.94 265 0.02

gridgena 48,962 512,084 405 404 0.07 394 0.20 403 0.15

qa8fk 66,127 1,660,579 1048 1968 0.27 1966 0.19 1966 0.19

qa8fm 66,127 1,660,579 1048 1968 0.26 1966 0.19 1966 0.19

thermal1 82,654 574,458 80916 232 1.82 80916 3.07 410 3.41

boyd1 93,279 1,211,231 93269 89508 0.52 89508 0.40 90678 0.43

2cubes
101,492 1,647,264 100407 4800 0.65 5538 0.48 4473 0.31

sphere

thermo
102,158 711,558 102138 276 0.26 253 3565.17 253 3390.19

mech TC

thermo
102,158 711,558 102138 276 0.31 253 6278.30 253 5642.73

mech TK

G2 circuit 150,102 726,674 93719 1945 0.37 1961 0.15 1960 0.43

c-73 169,422 1,279,274 169413 80177 0.49 61694 9.94 81036 10328.08

c-73b 169,422 1,279,274 169413 80177 0.48 61694 9.77 81036 10263.89

cont-300 180,895 988,195 157496 604 0.22 603 0.26 603 0.26

d pretok 182,730 1,641,672 129917 2699 0.55 2578 0.51 2577 0.25

turon m 189,924 1,690,876 185352 3023 0.80 3021 0.33 4338 0.73

thermo
204,276 1,423,116 185352 276 0.62 603 4085.86 515 7716.47

mech dM

HTC 336
226,337 783,496 94690 38689 675.13 30196 688.61 30198 982.07

4438

HTC 336
226,337 762,969 94690 42761 676.43 30199 8973.65 30198 996.92

9129

offshore 259,789 4,242,673 237738 21617 1.80 25873 1.55 21793 1.54

dielFilterV3clx 420,408 25,309,272 420391 13196 11.24 12428 304.49 14705 15.18

boyd2 466,316 1,500,397 373055 246807 0.48 262683 37516.37 246807 3332.29

gsm 106857 589,446 21,758,924 588744 17742 7.91 20991 7.68 21959 4.92

dielFilterV2clx 607,232 25,309,272 498160 14745 4.34 14745 616365.30 22821 12.58

Number of best results 3 11 13 12 6 8 9

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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Figure 1: The number of best results yielded by three methods when applied to reduce the band-
width of 26 symmetric matrices. Original means that the three methods evaluated did not reduce
the bandwidth of the original matrix.

Cuthill-McKee method [11]. Original in this figure means that the three methods evaluated did
not reduce the bandwidth of the original matrix. Nevertheless, Table 1 also shows that the RCM-
GL method [9] yielded almost the same number of best bandwidth results than the RCM-MKB2
method at shorter execution times than did the two other methods evaluated.

Table 1 and Figure 2 show that the RCM-GL and RCM-KB2 methods delivered overall similar
running times when applied to 18 matrices. The RCM-KB2 method, however, delivered much
longer execution times than the RCM-GL method did when applied to the eight other matri-
ces used in this computational experiment. Furthermore, Table 1 shows that the RCM-KB2 and
RCM-MKB2 methods performed erratically in the sense that these methods may deliver poor
performance for some instances (e.g., boyd2, thermomech TK, thermomech dM). In particular,
the execution times of the RCM-MKB2 algorithm were much longer than the execution times
of the two other algorithms evaluated when applied to several matrices (e.g., dielFilterV2clx,
boyd2, HTC 336 9129). Probably, a bad choice in the initial vertex incurs in many iterations in
the repeat-until loop in the MKB2 algorithm.

6 CONCLUSIONS

In this work, we compared the results yielded by the George-Liu [10] and Kaveh-Bondarabady
[19] algorithms with a modified Kaveh-Bondarabady algorithm to provide initial vertices to the
Reverse Cuthill-McKee method [11] for bandwidth reductions of matrices. The results of the
algorithms implemented in this paper achieved the expected bandwidth quality based on the
existing literature [9, 16, 19].

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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Figure 2: Execution times of the RCM-GL and RCM-KB2 methods when applied to 18
symmetric matrices.

The RCM-GL algorithm [9] yielded, in general, better bandwidth results at shorter execution
times than did the two other algorithms evaluated when applied to 26 symmetric matrices (with
sizes ranging from 10,605 to 607,232). Thus, based on the results of our experiments, we con-
clude that although the RCM-MKB2 algorithm is a suitable alternative for reducing the band-
width of matrices, the RCM-GL method [9] dominated the RCM-MKB2 and RCM-KB2 [19]
methods in reducing the bandwidth of sparse matrices. Therefore, our experiments led us to con-
clude that, among the algorithms evaluated here, the George-Liu algorithm [10] performed best
on average. Additionally, the method is the recommended algorithm for finding pseudoperipheral
vertices to the Reverse Cuthill-McKee ordering [11].

Heuristics for bandwidth reductions contribute to providing adequate memory location, and
hence, improving cache hit rates [5, 16]. We plan to apply the algorithms evaluated in this work
to perform parallel implementations of vertex reordering algorithms and, therefore, reduce the
computational times of parallel iterative methods for solving linear systems to verify the best
algorithm(s) in specific application fields.

RESUMO. A necessidade de se determinar vértices pseudoperiféricos surge de diversas
abordagens por teoria dos grafos de ordenação de linhas e colunas de sistemas de equações
lineares compostos de matrizes esparsas. Neste trabalho, são mostrados resultados de dois
algoritmos para encontrar vértices pseudoperiféricos: George-Liu e Kaveh-Bondarabady.
Os resultados desses algoritmos são comparados com os resultados de uma variação do
algoritmo de Kaveh-Bondarabady. Por meio de análise experimental, concluiu-se que o

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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algoritmo de George-Liu retornou melhores resultados que os outros dois algoritmos,
principalmente ao se considerar os tempos de execução dos algoritmos.

Palavras-chave: matrizes esparsas, numeração de vértices de grafos, algoritmos em grafos,
método Reverse Cuthill-McKee, redução de largura de banda, teoria dos grafos.

REFERENCES

[1] I. Arany. An efficient algorithm for finding peripheral nodes. In “Colloquia Mathematica Societatis
János Bolyai (Hungarian Edition), Theory of Algorithms Pécs”, volume 44 (1984), pp. 27–35.
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