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ABSTRACT. Home-Away Assignment problems are naturally considered as quadratic programming mod-
els in binary variables. For solving the problem, different formulations are studied here. First, the problem
is rewritten as a quadratic programming formulation with linear constraints, and a quadratically constrained
version respectively. For large scale problem, some reduced formulation are proposed by manipulating their
special structure, with 1/4 of the original size. Note that the quadratic programming formulations lead to
semidefinite relaxations solved approximately by semidefinite programming method. Comparison between
our SDP relaxation and the MIN-RES-CUT based formulation is given. Finally some numerical experiments
are given to illustrate the characteristics of each model.

Keywords: Sports scheduling, Integer quadratic programming, Semidefinite programming.

1 INTRODUCTION

Several problems in sport scheduling have been the focus of attention in the Operational Research
community, such as the Home-Away assignment problem (HA-Assignment) which assigns the
label home (H) or away (A) to each match of a double round robin tournament to satisfy some
decision criteria (see [6] or [7]). Some of these criteria involve minimizing the total traveling dis-
tance of teams, or minimizing the number of breaks [6, 16]. Models dealing with HA-Assignment
problems have been proposed as linear integer programs [6, 7, 16], or as MIN-RES-CUT prob-
lems [15], and others. In the last cited article, a Semidefinite Programming relaxation (SDP) for
HA-assignment was proposed. With the objective of deducing more efficient SDP models, we
study alternative quadratic programming formulations for the problem, which in turn leads to
other SDP relaxations with better properties than that those obtained from MIN-RES-CUT. We
also provide numerical experiments illustrate the performance of the solver.
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472 A REDUCED SDP MODEL FOR HA ASSIGNMENT PROBLEM

1.1 Modeling HA-assignments

In this subsection, we introduce the mathematical definition of the HA-Assignment problem,
based on [15]. Here, we deal with a double round-robin tournament with a pair number (2n) of
teams. In a round robin tournament each team plays every other team twice, once at home and
the other away. A slot, or round, is a date where every team plays against other team. The number
of slots is 2(2n− 1), each team has its home and each match is held at the home of one of the
two playing teams.

A timetable is a matrix T whose rows are indexed by a set of teams T = {1,2, . . . ,2n}, and
columns are indexed by a set of slots (rounds) S = {1,2, . . . ,4n−2}. Each entry of a timetable,
say τ(t,s)((t,s) ∈ T ×S), shows the opponent of team t in slot s. A timetable T should satisfy
the following conditions:

• for each team t ∈ T , the t-th row of T contains each element of T\{t} exactly twice;

• for any (t,s) ∈ T ×S, τ(τ(t,s),s) = t.

The first condition means that each team plays exactly twice with every other team, while the
second one establishes that the team playing with τ(t,s) in slot s should be t. In Figure 1 we
show a timetable for n = 2 (four teams). Generating timetables has been focus on attention of
some works in sport scheduling (see [7]). It is an easy task to randomly generate timetables. If
some matches are fixed in advance, the work becomes harder ([14]).

T =

2 3 2 4 3 4
1 4 1 3 4 3
4 1 4 2 1 2
3 2 3 1 2 1

Figure 1: A timetable matrix for n = 2

A home-away assignment A is a matrix whose rows are indexed by T , and the columns by S
respectively. Each entry of the HA-assignment, ats((t,s) ∈ T × S), is either ‘H’ (home) or ‘A’
(away), according to the status of team t at round s.

Given a timetable T , an HA assignment A = (ats)((t,s) ∈ T ×S) is said to be consistent with
T if it satisfies:

C1 ∀(t,s) ∈ T ×S,{ats,aτ(t,s)s}= {A,H}, and

C2 ∀t ∈ T , if τ(t,s) = τ(t,s′) and s 6= s′ then {ats,ats′}= {A,H}.

In Figure 2 we present an HA-assignment, consistent with the timetable shown in Figure 1. A
schedule of a round-robin tournament is defined as a pair (T ,A ) of a timetable and a HA-
assignment consistent with the timetable.

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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A =

H H A A A H
A H H H A A
A A H A H H
H A A H H A

Figure 2: An HA-assignment matrix consistent with T

Our decision making is as follows: given a fixed timetable T , find a HA-assignment A , consis-
tent with T , according to some criteria. Break minimization and minimizing the total traveling
distance, for instance, provides decision criteria based on a quadratic objective function in binary
variables. Consequently, we propose an unified framework, grouping these decision criteria.

1.1.1 The total traveling distance minimization problem

We describe the HA-Assignment problem which minimize the total traveling distance. The
distance matrix D ∈R2n×2n contain the distances between each pair of venues in the tournament.

Instance: A timetable T and distance matrix D .

Task: Find an HA-assignment A consistent with T , minimizing the total traveling distance.

For each t ∈ {1,2, . . . ,2n} and s ∈ {0,1, . . . ,4n− 2}, we fix at0 and at4n−1 at H. The traveling
distance l(t,s) of team t between rounds s and s+1 is defined as:

l(t,s) =


d(t, t) = 0 if (at s,at s+1) = (H,H)

d(τ(t,s),τ(t,s+1)) if (at s,at s+1) = (A,A)
d(t,τ(t,s+1)) if (at s,at s+1) = (H,A)
d(τ(t,s), t) if (at s,at s+1) = (A,H).

(1.1)

The total traveling distance for all the teams is given by

l(y) =
2n

∑
t=1

4n−2

∑
s=0

l(t,s).

1.1.2 Break minimization/maximization problems

Given an HA-assignment A , it is said that the team t ∈ T has a break at round s ∈ S (s ∈ S\{1})
if ats−1 = ats = A or ats−1 = ats = H. The number of breaks b(A ) in a HA-assignment is defined
as the number of breaks belonging to all teams. In practical sport scheduling, such as in [8], the
number of breaks is required to be reduced.

Instance: A timetable T

Task: Find an HA-assignment that is consistent with T and minimizes/maximizes the number
of breaks.

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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1.2 SDP relaxations for HA-assignment problems

In [15] the HA-assignment problem is formulated as MIN-RES-CUT, and Goemans and
Williamson approximation algorithm [9] was applied to the associated SDP relaxation. Our focus
here is proposing an alternative scheme to get SDP relaxations, from a quadratic model which
explore in more detail the special structure of the graph based problem.

1.3 Organization

The remainder of this article is organized as follows. In the next section we describe the opti-
mization models to deal with our HA-assignment problem. First, we describe the MIN-RES-CUT
formulation given in [15]. This combinatorial optimization problem induces a quadratic program
in binary (1,-1) variables, which in turn leads to a SDP relaxation. In section 3 we describe an al-
ternative integer quadratic program based on the same graph which conduce to MIN-RES-CUT,
but with a simplified modeling strategy, which allows us to produce binary quadratic models
with linear constraints, and with reduced size, when compared to MIN-RES-CUT. In section 4
we offer numerical results which compare the solver performance in each quadratic model, and
also results comparing the SDP formulations. The last section is devoted to conclusion and final
remarks.

2 OPTIMIZATION MODELS

In this section we describe some equivalent optimization models to treat HA-Assignment prob-
lems. We first describe the MIN-RES-CUT formulation, and SDP relaxation established in [15];
then our quadratic formulations which leads to alternative SDP relaxations are proposed.

2.1 MIN RES CUT and SDP Relaxation

Suzuka, et.al. proposes in [15] a MIN-RES-CUT formulation for HA-Assignment problems
minimizing the total traveling distance, and in [12] for break minimization. Their motivation
was to solve the problems via SDP relaxations. We first describe the general form for the
MIN-RES-CUT problem and the associated SDP relaxation.

Consider an undirected graph G = (V,E) with vertex set V and edge set E, and nonnegative
weight function w : E→R+. For any vertex subset V ′ ⊆V we define δ (V ′) = {{vi,v j} : vi,v j ∈
V ;vi 6∈ V ′ 3 v j}. The MIN-RES-CUT problem is defined as follows: Given a graph G = (V,E),
a specified vertex r ∈V , a weight function w : E→R+ and a set Ecut ⊆ {X ⊂V : |X |= 2}, find
a vertex subset V ′ as solution of the combinatorial optimization problem:

minimize ∑e∈δ (V ′)∩E w(e)
subject to r 6∈V ′

Ecut ⊆ δ (V ′)
(2.1)

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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It is known that MIN-RES-CUT is a NP-hard problem (see for example [11]). The base for an
SDP relaxation associated to MIN-RES-CUT is the following binary quadratic programming
formulation: For each v ∈ V , let xv be a binary variable with value xv = −1 if v ∈ V ′, or xv = 1
if v 6∈ V ′. Then, the first constraint is imposed by xr = 1, and the second by xvxu = −1 for
{u,v} ∈ Ecut . The objective function add weight wuv if e = {u,v} ∈ δ (V ′)∩E; that is if e is an
edge and its ends are in opposite sides of the cut defined by V ′. By using these binary variables,
the objective function becomes 1

4 ∑u,v∈V wuv(1− xuxv). Finally, the constraint xv ∈ {−1,1} is
imposed by x2

v = 1. The above considerations provide the binary quadratic model:

minimize l(x) = 1
4 ∑u,v∈V wuv(1− xuxv)

subject to x2
v = 1 ∀v ∈V

xuxv =−1 ∀{u,v} ∈ Ecut

xr = 1.

(2.2)

From this quadratic formulation, an SDP relaxation is built as follows: For m1 = |E|, let W =

diag(w) be the m1×m1 diagonal matrix with the weights w associated to the edges in the above
problem as diagonal elements. For C = 1

4 [diag(We−W )] and X , a symmetric m1×m1 matrix,
the SDP relaxation is

minimize l(X) = 〈C,X〉
subject to Xvv = 1 ∀v ∈V

Xuv =−1 ∀{u,v} ∈ Ecut

X � 0.

(2.3)

If x ∈ {−1,1}m1 is a feasible solution for (2.2), then X = xxT is feasible for (2.3). The last
problem is a relaxation because a solution for (2.3) does not necessarily provides a solution
for (2.2). However, good approximated solutions for (2.2) can be extracted by Goemans and
Williamson’s procedure ([9]).

2.1.1 MIN-RES-CUT formulation for HA-assignment problems

The MIN-RES-CUT formulation in [15] for the total traveling distance minimization HA-
Assignment problem is described as follows: Given a timetable T = (τ(t,s))((t,s) ∈ T × S),
consider an artificial vertex r and construct the graph G=(V,E) as: V = {vts : (t,s)∈ T×S}∪{r}
is the vertex set, E = {{vt(s−1),vts} : t ∈ T,s ∈ S\{1}}∪{{r,vts} : (t,s) ∈ T ×S}, the edges, and
Ecut = {{vts,vτ(t,s)s} : (t,s) ∈ T × S} ∪ {{vts,vts′} : t ∈ T,s,s′ ∈ S,τ(t,s) = τ(t,s′),s 6= s′} the
restriction set.

A subset of the vertices V ′ ⊂ V is feasible for the MIN-RES-CUT formulation if r /∈ V ′ and
Ecut ⊂ δ (V ′). Note that feasibility here is associated onl to the partition of the vertex set, that is
the edges of the graph only participates at the objective function.

For a feasible solution V ′ we construct an HA-Assignment A = (ats)((t,s) ∈ T ×S) as follows:
if vts ∈V ′ then ats = A, else ats =H. This HA-assignment is consistent with timetable T because

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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(C1) each pair of vertices corresponding to a match is in Ecut , and (C2) for each team, every pair
of vertices corresponding to matches with a common opponent is in Ecut .

2.1.2 Minimizing the total traveling distance

Now, we describe the minimization of the total traveling distance: Consider the traveling distance
l(t,s), between the venues where matches in rounds s and s+1 are held, as in (1.1), and denote
by t ′ = τ(t,s) and t ′′ = τ(t,s+1) the teams which plays in these rounds. Then

l(t,s) = d(t ′, t ′′)|vts∩V ′||vts+1∩V ′|+d(t, t ′′)(1−|vts∩V ′|)|vts+1∩V ′|
+d(t ′, t)|vts∩V ′|(1−|vts+1∩V ′|)

(2.4)

where |vts∩V ′| ∈ {0,1} according to vts ∈V ′ or vts 6∈V ′. The function l(t,s) is quadratic on the
binary variables ({0,1}). These binary variables are associated with the vertices vts ∈V (instead
of the edges). The idea in [15] is to model HA-assignment problems as MIN-RES-CUT. To do
it, a (linear) weight function on the edges should be defined. In (2.4) there is a quadratic relation
on binary variables associated to the vertices, not linear weights on the edges. To fix it, they
performed the following linearization: Since r /∈V ′, we have

|vts∩V ′|= |{r,vts}∩δ (V ′)| for all vts ∈V.

On the other hand, taking |{vts,vts+1}∩δ (V ′)| ∈ {0,1} the product in equation (2.4) is modeled
as

|vts∩V ′||vts+1∩V ′| = 1
2 (|{r,vts}∩δ (V ′)|+ |{r,vts+1}∩δ (V ′)|

−|{vts,vts+1}∩δ (V ′)|).
(2.5)

Merging (2.5) into (2.4) we obtain a linear function on binary variables centered at the edges,
as needed. The weights of the objective function are the coefficients for |{r,vts} ∩ δ (V ′)|,
|{r,vts+1}∩ δ (V ′)| and |{vts,vts+1}∩ δ (V ′)|; and the constraints r /∈ V ′ and Ecut ⊂ δ (V ′). We
denote by W1 this set of weights.

2.1.3 Minimizing the number of breaks

There is a break between round s and s+ 1 if (ats,ats+1) ∈ {(H,H),(A,A)}. The number of
breaks b(t,s) between s and s+1 can be modeled by

b(t,s) = |vts∩V ′||vts+1∩V ′|+(1−|vts∩V ′|)(1−|vts+1∩V ′|)

which share characteristics with (2.5), being a quadratic relation in the same binary variables.
This relation leads to another coefficient matrix W2 of weights similar to W1.

2.1.4 The MIN-RES-CUT SDP relaxation

The combinatorial problem in (2.1) with the specific data provided by the graph G = (V,E), the
set Ecut and weight matrix W1 (or W2) specified in this section provides a combinatorial formu-
lation for HA assignment problems. A quadratic formulation, and respective SDP relaxation are

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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also specified from (2.2) and (2.3) for the abovementioned data, leading to the following MRC
SDP relaxation:

Minimize l(X) = 〈C,X〉
subject to Xvv = 1 v ∈V 1

Xvw =−1 {v,w} ∈ E1cut

X � 0

(2.6)

with C = 1
4 diag(We−W ), which is the formulation given in [15].

3 ALTERNATIVE FORMULATIONS FOR HA ASSIGNMENT PROBLEMS

In this section we construct an alternative SDP relaxation for HA-assignment problems, based on
quadratic programming in binary variables, which consider in more details the special structure of
the assignment problem. The MIN-RES-CUT formulation described in section above also leads
to a quadratic programming problem in binary variables, and consequently to a SDP relaxation.
The structure of the constraints in this formulation is a consequence of the graph structure which
consider each node independent of the other. Our formulation group the nodes in classes, leading
to a simplification of the resulting model. The first tool that we use is described in next subsection:

3.1 Dealing with timetables

In [13] is proposed a procedure to build a partition in a timetable, in order to extract crucial
information from it, and simplify the optimization models. We here formalize such procedure.
Given a timetable T and the index set T ×S, we construct a partition of the indices according to
the following observation: For each (t,s) ∈ T ×S, there exist unique indices (t ′,s′) ∈ T ×S, such
that the indices in the set {(t,s),(t,s′),(t ′,s),(t ′,s′)} are related each other, and isolated from the
rest of the indices. t ′ = τ(t,s) is the team which plays with t in slot s, and s′ is the slot where
the two teams play again. Thus we can partition the index set T ×S into K = n(2n−1) subsets.
Furthermore, we can order the elements in each group by appearance order in the table from left
to right and from up to down. The following procedure assigns the label γts = [γ1

ts,γ
2
s ] to each

(t,s) ∈ T ×S:

First let us define the set K (k) = {(t,s) ∈ T × S : γ1
ts = k} Clearly |K (k)| = 4, because four

labels γ1
ts = k where assigned in each step. The procedure pass though the timetable sequentially,

by visiting each of the (t,s) components from left to right, and form up to down. Each component
of T ×S is labeled once, placing it into the K (k) group, for some k = 1, . . . ,n(2n−1). It is clear
that for k1 6= k2, K (k1)∩K (k2)= /0, since each component is labeled once. This last observation
also explains that T × S = ∪n(2n−1)

k=1 K (k), so we have our partition. In Figure 3 we show labels
assigned to each component of the timetable in Figure 1. The partition will be useful to construct
the models later.

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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Algorithm 1: Procedure:

1 begin
Input: A Timetable T

Output: labels γts = [γ1
ts,γ

2
s ] to each (t,s) ∈ T ×S:

2 Label γts := [0,0]; ∀(t,s) ∈ T ×S;
3 k := 1;
4 for t = 1 to 2n do
5 for s = 1 to 4n−2 do
6 if γts = [0,0] then
7 identify t ′ > t, s′ > s such that τ(t,s) = t ′, and τ(t,s) = τ(t,s′);
8 Label γts := [k,1]; γts′ := [k,2]; γt ′s := [k,3]; γt ′s′ = [k,4]; k := k+1
9 end

10 end
11 end
12 end

γ =

[1,1] [2,1] [1,2] [3,1] [2,2] [3,2]
[1,3] [4,1] [1,4] [5,1] [4,2] [5,2]
[6,1] [2,3] [6,2] [5,3] [2,4] [5,4]
[6,3] [4,3] [6,4] [3,3] [4,4] [3,4]

Figure 3: Labels assigned to each component on the timetable

3.1.1 Quadratic constraints by using the partition

Let us give a closer look at the constraints in (2.6). By using the partition provided by K (k),k =
1, . . . ,n(2n−1), we can characterize the restriction set E1cut as follows: We denote by E1cut(k) =
{{vtksk ,vtks′k

},{vtksk ,vt ′ksk
},{vtks′k

,vt ′ks′k
},{vt ′ksk

,vt ′ks′k
}}, and observe that E1cut = ∪n(2n−1)

k=1 E1cut(k).
So we have an explicit formulation for the second group of constraints in the above model,
namely

X(tksk)(tks′k)
=−1

X(tksk)(t ′ksk)
=−1

X(tks′k)(t
′
ks′k)

=−1
X(t ′ksk)(t ′ks′k)

=−1,

for k = 1, . . . ,n(2n−1) (denoting X(ts)(t̂ ŝ) = Xvv̂ for v = vts and v̂ = vt̂ ŝ). We shall use this explicit
characterization for the constraints to build an alternative formulation.

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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3.2 Alternative quadratic programming formulations for HA-assignment problems

We here propose an alternative quadratic programming formulation which in turn leads to another
SDP relaxation. It will be shown that the size of this new formulation, in terms of the number of
variables is 1/4 of the size of (2.2). Numerical advantages will be exhibited too.

Let us consider the graph G = (V 2,E2) whose vertex set is V 2 = {vts : (t,s) ∈ T × S}, and
edges E2 = {{vts−1,vts} : t ∈ T,s ∈ S\{1}}, and the partition K defined earlier. We here shall
describe the formulation for the total traveling distance minimization problem. For minimization
of breaks, the development is analogous. Recall that the traveling distance l(t,s) of team t from
slot s to slot s+1 is equivalent to (2.4) which is a quadratic function in binary {0,1} variables.
The MIN-RES-CUT formulation given in [15] replaces l(t,s) by a linear function in binary
variables centered at the edges, and then establishes a quadratic {1,−1} model to deal with it,
through an SDP-relaxation. We here propose to employ the original quadratic objective function
(2.4), which is naturally defined in binary {0,1} variables, and derive an SDP-relaxation from it.
Let us denote by yts ∈ {0,1}with value 0 if vts /∈V ′ and 1 if vts ∈V ′. The equation (2.4) becomes:

l(t,s) = d(t ′, t ′′)ytsyts+1 +d(t, t ′′)(1− yts)yts+1 +d(t ′, t)yts(1− yts+1)

= d(t, t ′′)yts+1 +d(t ′, t)yts +(d(t ′, t ′′)−d(t, t ′′)−d(t ′, t))ytsyts+1
(3.1)

for t = 1, . . . ,2n and s = 1, . . . ,4n−3. Initial and final coefficients are l(t,0) = d(t,τ(t,1))yt1 and
l(t,4n−2) = d(τ(t,4n−2), t)yt4n−2 respectively. The entire objective function have the form

l(y) =
2n

∑
t=1

4n−2

∑
s=0

l(t,s) = cT y+
1
2

yT Qy.

The quadratic form Q contains nonzero elements only on the entries above and below the diag-
onal, since only two consecutive variables s and s+ 1 are involved in the quadratic terms. Note
that this formulation does not increases with the artificial vertex r.

To define the constraints we shall denote the variables yts according to the partition K of the in-
dex set. Each entry (t,s)∈ T×S is labeled with γts = [k, j], k ∈ {1, . . . ,n(2n−1)}, j ∈ {1,2,3,4}.
Let us denote yts by ytksk if γts = [k,1]; yts = ytks′k

if γts = [k,2], yts = yt ′ksk
if γts = [k,3] and finally

yts = yt ′ks′k
if γts = [k,4]. By using the {0,1} to {−1.1} transformation, namely x(y) = 2y−1 we

write the cut constraints as
(2ytksk −1)(2ytks′k

−1) =−1
(2ytksk −1)(2yt ′ksk

−1) =−1
(2ytks′k

−1)(2yt ′ks′k
−1) =−1

(2yt ′ksk
−1)(2yt ′ks′k

−1) =−1,

for k = 1, . . . ,n(2n−1), which provide the quadratic constraints

ytksk + ytks′k
−2ytksk ytks′k

= 1
ytksk + yt ′ksk

−2ytksk yt ′ksk
= 1

ytks′k
+ yt ′ks′k

−2ytks′k
yt ′ks′k

= 1
yt ′ksk

+ yt ′ks′k
−2yt ′ksk

yt ′ks′k
= 1

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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for k = 1, . . . ,n(2n−1). The result is a group of 4n(2n−1) quadratic constraints on y, which we
denote for each k and j by

1+ cT
k jy+

1
2

yT Hk jy = 0, for j = 1,2,3,4.

Now we cast the problem as

minimize l(y) = a+ cT y+ 1
2 yT Qy

subject to 1+ cT
k jy+

1
2 yT Hk jy = 0,

k = 1, . . . ,n(2n−1);
j = 1,2,3,4.

The matrices Hk j are highly sparse, because they involve only two consecutive variables,
and Q is a tridiagonal matrix with zero diagonal. By using the relation a + cT y + 1

2 yT Qy =

〈

(
a 1

2 cT

1
2 c 1

2 Q

)
,

(
1 yT

y yyT

)
〉, and similarly for the constraints, we write equivalently the

quadratic program as

minimize l(y) = 〈

(
a 1

2 cT

1
2 c 1

2 Q

)
,

(
1 yT

y yyT

)
〉

subject to 〈

(
1 1

2 cT
k j

1
2 ck j

1
2 Hk j

)
,

(
1 yT

y yyT

)
〉= 0,

k = 1, . . . ,n(2n−1);
j = 1,2,3,4.

y ∈ {0,1}2n(4n−2).

(3.2)

To build a SDP relaxation, we replace the rank one matrix variable

(
1 yT

y yyT

)
by Y ∈

R2n(2n−1)×2n(2n−1), satisfying Y � 0, and Y(ts)(ts)−Y(11)(ts) = 0 for all (t,s) ∈ T ×S.

The quadratic programming formulation provided by the MIN-RES-CUT model in [15] asso-
ciates to each vertice of the underlying graph a binary {1,−1} variable; and the objective func-
tion is defined as the sum of the linear weights on the edges (see (2.1)). In order to offer these
linear weights, a linearization given by (2.5) was performed. Our proposal recognizes the orig-
inal quadratic structure of the objective function (prior to be linearized) to define directly an
equivalent quadratic model suitable to be relaxed through the following SDP model:

minimize l(y) = 〈

(
a 1

2 cT

1
2 c 1

2 Q

)
,Y 〉

subject to 〈

(
1 1

2 cT
k j

1
2 ck j

1
2 Hk j

)
,Y 〉= 0,

k = 1, . . . ,n(2n−1);
j = 1,2,3,4.

Y(ts)(ts)−Y(11)(ts) = 0, ∀(t,s) ∈ T ×S
Y � 0.

(3.3)
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3.2.1 A linearly constrained quadratic model

We can use linear constraints to model the C1−C2 conditions:

ytksk + yt ′ksk
= 1

ytksk + ytks′k
= 1

−ytksk + yt ′ksk
= 0

(3.4)

At each group k, the first equation means that only one of the teams plays at home in slot sk.
The second equation establishes that team tk should play alternatively at home and away in slots
sk and s′k; and the third one ensures that if the first team plays at home (away) at the first slot,
then the second team should be home (away) in the second match between them. Putting all the
constraints together for k = 1, . . . ,n(2n−1), we can write the above constraints as a linear system
of equations, say Ay = b. Our quadratic binary program with linear constraints becomes

Minimize l(y) = cT y+ 1
2 yT Qy

subject to Ay = b
y ∈ {0,1}4n(2n−1)

(3.5)

A is an 3n(2n− 1)× 4n(2n− 1) matrix with entries in {0,1}, while H is tridiagonal (with zero
diagonal) 4n(2n−1)×4n(2n−1). We can directly construct an SDP relaxation from (3.5), but
the special structure presented by these linear constraints allows us another simplification: By
equations (3.4) we have that yt ′ksk

ytks′k
yt ′ks′k

=

 1
1
0

−
 1

1
−1

ytksk = bk−Atksk ytksk .

Denoting by zk = ytksk we write all the variables y in function of z ∈ {0,1}n(2n−1). For each k,
consider the subsets Bk = {(tk,s′k),(t ′k,sk),(t ′k,s

′
k)} and Nk = {(tk,sk)} of the indices T × S; and

construct B = ∪n(2n−1)
k=1 Bk and N = ∪n(2n−1)

k=1 Nk. This leads us to yB = b−ANz, and yN = z which
in turn defines the linear transformation Y by Y (z) = y . The objective function l(y) becomes

l̄(z) = l(Y (z)) = ā+ c̄T z+ zT Q̄z,

where ā = a + cT
Bb + bT HBBb; c̄ = (c− AT

NcB − 2AT
NQBBb− 2QNBb)T and H̄ = [AT

NQBBAN +

AT
NQBN +QNBAN ]. Our equivalent reduced model is:

Minimize l̄(z) = ā+ c̄T z+ 1
2 zT Q̄z

subject to z ∈ {0,1}n(2n−1),
(3.6)

which is a 0-1 quadratic programming with 1
4 of the number of variables, compared with problem

(3.5). This formulation only has the binary variables constraint, making it suitable for using
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some metaheuristics, like genetic algorithms, without the care of generating feasible solution
populations. The resulting SDP relaxation is

minimize l(Z) = 〈C̄,Z〉
subject to diag(Z) = e

Z � 0
(3.7)

where C̄ =

(
ā 1

2 c̄T

1
2 c̄ 1

2 Q̄

)
which we call reduced SDP.

3.2.2 Comparison between the SDP formulations

Notice that the combinatorial problem (2.1) is centered at the edges of the underlying graph, in
the sense that the weights in the objective function act over the edges in the feasible cut, and
the constraints determine where the cut edges are chosen. When specialized to HA-assignment
problems, the original formulation of the objective function, based on (1.1), in the case of total
traveling distance minimization, shows a quadratic relation in binary variables defined on the
vertices (not on the edges). The authors in [15] adapt the model by adding an artificial vertex r,
and 2n(4n− 2) additional edges (linking r to every other vertex). The relation (3.1) provides a
linearization of the objective function. Now the variables are centered at the edges, instead of the
vertices, and a linear relation is obtained, as required by the MIN-RES-CUT format.

On the other hand, when the quadratic program (2.2) is formulated, binary variables (centered
at the vertices) model the combinatorial problem (2.1). Simple quadratic constraints are natural
to model the cut constraints, and the objective function becomes a quadratic function on these
binary variables. This quadratic function is then linearized, with variables centered at the edges,
to be in the sequel modeled as a quadratic program in binary variables. The number of variables
is equal to the number of vertices, namely 2n(4n−2)+1.

Also, our quadratic model (2.2) is meant to keep the original binary variables centered at the
vertices, avoiding the use of any artificial vertex, and the linearization of any variable. The result
is a quadratic program with 2n(4n− 2) variables and 4n(4n− 2) constraints, the same size that
(2.2). The associated SDP relaxation (2.6) is also the same size. Now, the reduced problem (3.6)
is an equivalent quadratic program with n(2n−1) binary variables. The constraints were reduced
to the binary condition. Such reduction on the number of variables achieve 1

4 of the original size
(given by the size of (2.2). This reduction leads to improving the performance of the solvers,
when dealing with the respective relaxations. Even though the reduction on the problem size
seems to be very good, the obtained objective function suffer an undesirable transformation: In
problem (2.2), the matrix of coefficients associated to the quadratic constraints is highly sparse
(actually, it only has nonzero components above and below of the diagonal entries), because
quadratic terms only occur in consecutive slots. When the transformation Y is performed, the
quadratic term’s matrix lose it sparsity condition, and thus, the objective function becomes more
difficult to be optimally solved.
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4 NUMERICAL RESULTS

In this section we offer some computational experiments to compare the different studied models.
At first, we deal with integer quadratic models, comparing the full sized and reduced versions, in
a preliminary experiment, in part published at [10]. A more robust experiment is reported at the
second part, comparing SDP relaxations for the HA-Assignment problem.

4.1 Integer quadratic programming models

Table 1: Objective function values for quadratic and linear models with
linear constraints, with full and reduced size, vs quadratically constrained
quadratic models.

n
Fixing FO Fixing timetable

QLC QQC Deviation QLC QQC Deviation

2 835.5 957.7 0.12760 840.2 886,4 0.05212
3 2148.5 2395 0.10292 1845.3 2231 0.17288
4 3244.9 3727.9 0.12956 3332.5 3925,8 0.15113
5 5479.9 6205.8 0.11697 5364.0 6110,8 0.12221
6 7334.4 8730.1 0.15987 7672.3 9263,6 0.17178
7 10380.1 12089.2 0.14137 10757.9 12433,7 0.13478
8 13779.5 15912.5 0.13405 13799.5 15893,6 0.13176
9 16792.9 19349.2 0.13211 17531.8 20705,9 0.15329
10 21204.6 24875.6 0.14757 21869.0 25935,2 0.15678

Three different integer programming formulations for the same problem are solved with simu-
lated data: A quadratic program with linear constraints QLC (3.5), a reduced quadratic program
QR (3.6), and a quadratically constrained quadratic program QQC (3.2). All computations were
performed on a PC Intel(R) core(TM) i7-3632 QM, 2.20 GHZ, 64 bits.

In the first experiment, we fix the objective function and solve instances with 10 different ran-
domly generated timetables, for each problem size n, with the objective of exploring the perfor-
mance of the solver in a variety of configurations (timetables). Even sharing the same objective
function for each n, we solve 10 distinct instances, because different timetables lead to differ-
ent constraints. For the second experiment we fix a timetable, and then we solve the problem
for 10 different objective functions data, for each problem size (single configuration). We solve
HA-assignment problems for a even number of teams, between 4 and 20. Since our objective is
to compare the formulations for the problem, we use a non commercial solver which deal with
both, linear and quadratic integer programs, namely SCIP [3].

In Table 1 we present the objective function values for both experiments. The second and fifth
column show values for the quadratic model with linear constraints (QLC), while the third and
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Table 2: Runtime for the quadratic models, with
linear constraints, fixing the timetable.

n
QLC fixing timetable

full reduced

mean SD mean SD

2 0.02768 0.01198 0.02247 0.01144
3 0.09818 0.01719 0.10523 0.03064
4 0.29231 0.07935 0.32632 0.12838
5 1.14851 0.29057 1.17092 0.30648
6 6.92692 0.74739 6.68803 1.08223
7 10.4368 0.99115 9.95315 0.89028
8 15.1239 1.65025 13.8831 1.45535
9 20.6103 1.86102 21.6154 7.18129

10 50.1043 21.6128 60.6731 22.7746

Table 3: Runtime for the quadratic models with
linear constraints, fixing the objective function.

n
QLC fixing OF

full reduced

mean SD mean SD

2 0.01881 0.00349 0.02049 0.00817
3 0.10556 0.03898 0.09833 0.02711
4 0.22068 0.06098 0.24719 0.07874
5 1.02054 0.30153 1.15223 0.54655
6 6.27446 1.73542 6.07395 1.71097
7 10.9502 1.57499 9.91357 0.59958
8 14.5375 1.38106 13.5211 1.30986
9 21.3364 1.86914 21.9286 6.80267

10 60.8347 19.6424 41.4042 22.7594

sixth columns are for the model with quadratic constraints (QQC). The remaining columns con-
tain relative deviations of the values. The difference between linear constrained and quadratic
constrained models is possibly because the solver only guarantee locally optimal solutions in
problems with quadratic constraints.

In Table 2 we present mean and standard deviation for the runtime, in the instances where the
objective function is fixed for both cases, full and reduced size quadratic models (3.5) and (3.6).

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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Table 4: Runtime for the quadratically constrained
model (QQC), fixing the objective function and
the timetable.

n
Fixing OF Fixing Timetable

mean sd mean sd

2 0.02107 0.00155 0.02079 0.00139
3 0.03974 0.00286 0.03858 0.00298
4 0.06538 0.00474 0.06054 0.00273
5 0.10066 0.00444 0.10122 0.00608
6 0.15408 0.00958 0.14684 0.00681
7 0.22715 0.00974 0.21647 0.00427
8 0.30999 0.00893 0.30643 0.00908
9 0.41958 0.01458 0.42272 0.01283

10 0.56785 0.00973 0.57336 0.00966

It was expected that the running times for the reduced version in the quadratic models to be
consistently smaller, but this does not occur.

Now we shall study Table 3, which provides runtime for our integer quadratic and linear pro-
grams, with full and reduced size configurations, but fixing the structure (fixing a timetable). In
each case we solve for 10 different objective function’s data, for each problem size. There is no
clear evidence of advantage in choosing the reduced version. Sometimes is faster and in other
times slower.

The Table 4 deal with runtime for both experiments, but for the quadratically constrained
model (QQC). When compared with Table 2 and Table 3, we observe a huge difference in the
performance. The price we pay is that global optimization is not guaranteed.

4.2 SDP models

In this subsection we report more robust computational experiments that show the differences
between the MIN-RES-CUT formulation in ([15]), and our reduced SDP version. Ten instances
for each problem size of n = 8 to 20 (that is, tournaments with 16 to 40 teams) where generated.
We construct a timetable of “double” round robin by concatenating two different “single” ran-
domly generated round round robin table. Distance matrices where also randomly generated. All
the problems where optimally solved as linear integer programs, as in ([15]), and solutions for
SDP relaxations where also reported. All computations where implemented in the Julia language
[4], using the JuMP [5] mathematical modeling package, with the solvers CPLEX [2] for Linear
Integer Programming, and MOSEK [1] for SDP. Examining the running times for MRC and the
reduced SDP, the advantage of the reduced version is overwhelming.

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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Table 5: Running times for S.

n
Linear SDP MRC Reduced SDP

f t E f t E f t

2 7.3300e+02 0.02 -1.2258e-01 1.10 0.0000e+00 0.44
3 1.7891e+03 0.05 -2.8128e-01 3.95 0.0000e+00 0.27
4 3.2777e+03 0.15 -3.0212e-02 13.81 8.7450e-03 0.64
5 5.1840e+03 0.29 7.8695e-03 38.74 9.7976e-03 1.47
6 7.7355e+03 0.48 1.1984e-02 113.39 1.6149e-02 3.13
7 1.0212e+04 0.87 3.3375e-02 253.88 3.2369e-02 5.33
8 1.3432e+04 3.16 3.5014e-02 516.90 5.3592e-02 9.33
9 1.6894e+04 5.11 2.8511e-02 1070.48 4.4611e-02 16.47

10 2.0920e+04 7.46 8.2483e-02 2065.31 8.0239e-02 29.03
11 2.5079e+04 13.24 6.5871e-02 3600.69 6.0877e-02 49.06
12 2.8963e+04 17.38 8.8370e-02 5487.36 7.5394e-02 75.73
13 3.4313e+04 25.94 9.5084e-02 8925.42 9.8324e-02 114.65
14 4.0464e+04 91.94 1.3480e-01 13786.32 1.3321e-01 180.81
15 4.5725e+04 97.57 1.1949e-01 21204.91 1.1993e-01 229.93
16 5.3133e+04 172.20 1.3060e-01 34686.28 1.2608e-01 363.37
17 6.0957e+04 674.33 1.1399e-01 46958.26 1.1160e-01 731.70
18 6.6762e+04 1013.89 1.3102e-01 67643.59 1.2555e-01 819.57
19 7.5247e+04 1666.63 1.3078e-01 104376.27 1.3800e-01 1039.97
20 8.0043e+04 1104.60 1.4696e-01 123204.42 1.4079e-01 1459.20

5 CONCLUSIONS

In this article we study integer quadratic programming formulations for HA-Assignment prob-
lems which appear in sport scheduling, and their associated semidefinite positive (SDP) relax-
ations. We start from the combinatorial optimization model (2.1) given by the MIN-RES-CUT
model, and previously studied in ([15]), obtaining a quadratic programming formulation based on
(2.2) and it respective SDP relaxation (2.3); with de data associated to HA-assignment problems.

By exploring the special structure of the HA-assignment problem, through the modeling tools
shown in the subsection 3.1, we write the integer quadratic model (3.2) which lead to the SDP
relaxation (3.3), sharing the same problem size that MRC.

The first advantage of our modeling stand on the linear constraints (3.4) which in turn leads to a
reduction on the problem size to 1/4 of the original size (3.6). Despite the reduction, improve-
ment is not accomplished in practice for the quadratic models, as shown in Tables 2 and 3, in
which the reduced problems are not solved in a faster way. An explanation for this phenom-
ena is that when the transformation Y is applied in (3.6), the matrix associated to the quadratic
objective function lose the sparsity condition.
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The quadratic model with quadratic constraints given by (3.2) behaves much better than the linear
constrained one (3.5), as exhibited by Table 4. Nevertheless, the solutions are not globally optimal
(see Table 1). This observation suggests that quadratic relations provide better characteristics to
the solver´s performance than the linear counterparts

The main contribution of this paper are the SDP relaxations given by (3.3) and the reduced
version (3.7), which is compared to the MRC relaxation introduced in [15]. In the Table 5 are
shown results for instances from 4 to 40 teams. The quality of these solutions, measured by the
relative errors are similar for both of the models, but for our reduced SDP relaxation the running
times are much better.
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RESUMO. Os problemas de alocação local visitante são considerados de forma natural
como modelos de programação quadrática em variáveis binárias. Para resolver ditos prob-
lemas, estudamos aqui diferentes formulações. Primeiro, o problema é reformulado como
um programa quadrático com restrições lineares, e restrições quadráticas, respectivamente.
Para problemas de grande porte, propomos uma formulação de tamanho reduzido, obtida
manipulando sua estrutura especial a 1/4 do problema original. Notemos que a formulação
de programação quadrática nos leva a uma relaxação semidefinida, que é resolvida de forma
aproximada por métodos de programação semidefinida. Comparamos nossa formulação re-
duzida de programação semidefinida, com a conhecida formulação MIN-RES-CUT. Fi-
nalmente, oferecemos experimentação numérica para ilustrar as caracterı́sticas de cada
modelo.

Palavras-chave: Calendários esportivos, programação quadrática inteira, programação
semidefinida.
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