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ABSTRACT. Multiple longitudinal outcomes are common in public health research and adequate methods
are required when there is interest in the joint evolution of response variables over time. However, the main
drawback of joint modeling procedures is the requirement to specify the joint density of all outcomes and
their correlation structure, as well as numerical difficulties in statistical inference, when the dimension of
these outcomes increases. To overcome such difficulty, we present two procedures to deal with multivariate
longitudinal data. We first present an univariate approach, for which linear mixed-effects models are con-
sidered for each response variable separately. Then, a novel copula-based modeling is presented, in order to
characterize relationships among the response variables. Both methodologies are applied to a real Brazilian
data set on child growth.

Keywords: bivariate copula, linear mixed-effects model, longitudinal growth data, time-varying
dependence.

1 INTRODUCTION

Longitudinal data or repeated measures data arise when multiple observations are made on the
same subject or unit of analysis over time [33].

In practice, it is quite common in clinical trials and social science settings for multiple outcomes
to be measured repeatedly within a set of study participants. Some examples are hearing thresh-
olds measured on both ears of a set of participants, HIV studies with CD4 T-cell counts and viral
RNA copy numbers are collected longitudinally on each participant, toxicological studies where
doses of a toxic agent and some information on its deleterious effect are measured jointly (see
[32]). Understanding relationships among multivariate outcomes is challenging due to the com-
plex correlated nature of the problem, whilst providing a unique opportunity in studying the joint
evolution of multiple response variables over time.
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38 BIVARIATE COPULA-BASED LINEAR MIXED-EFFECTS MODELS

A number of approaches to joint modeling of multivariate longitudinal data have been proposed
in the statistical literature (see, e.g., [4, 6, 12, 17, 24]). When the joint distribution of the two
or more outcomes is known, the statistical inference is relatively straightforward using either
marginal or joint approaches.

Another possibility is the use of a conditional model, where the joint likelihood of the two or more
responses is factorized. The main drawback of these joint modeling procedures is the requirement
to specify the joint density of all outcomes or, at least, the correlation structure of the data,
which can lead to parsimony and/or computation (optimization) problems, as well as to numerical
difficulties in statistical inference, when the dimension of these outcomes increases.

In a multivariate longitudinal study, the relationship between a response and predictors, or the
association between a pair of responses, may change over time. In addition to this, the degree of
correlation can be of greater interest to the analyst than relation between covariates and marginal
mean of outcomes. When the former is the main objective in the multivariate longitudinal anal-
ysis, a third alternative for the analysis is to join a set of marginal distributions using a copula
function.

This method separates the multivariate joint distribution into two parts: one describing the in-
terdependency of the probabilities, the other describing the marginal distributions alone. De-
pendence modeling using copula has become very popular the last years (see, e.g., [26, 20]).
According to [22], [14], [31] and [8], applications to serial dependence in longitudinal data have
a huge potential once the marginal distribution of the process at each point in time can be mod-
elled arbitrarily, while dependence over time is captured by a multivariate copula. This kind of
approach is not the primary focus of this paper and will be studied further in future work.

In this paper, we present two procedures, in terms of strengths and weaknesses, to deal with mul-
tivariate longitudinal data. In particular, there is an interest in revealing time-varying dependence
relationships in the child growth patterns using data from a longitudinal study conducted with
150 children measured monthly, from birth to six months of life. To achieve this goal, we exploit
the modularity of copula-based modeling. Considering the applied nature of this work, we make
sacrifices to balance the interpretability, complexity and computation of the model. Here, weight
and height are outcome variables (i.e. the variables of interest) once were measured monthly,
from birth to six months of life.

The paper is organized as follows. In Section 2, we present the univariate and bivariate longi-
tudinal models used in this study. Section 3 concerns statistical inference for them. Section 4
provides an application to a real data set (longitudinal child growth data). Finally, Section 5 ends
the paper with some final remarks and directions for future work.

2 METHODS

In this section, we present some statistical models that can be used for analyzing multivariate
(bivariate, here) longitudinal data. The idea is to show first an univariate approach, where a
linear mixed-effects model is considered for each of the two response variables (weight and
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height) separately, thus ignoring the (possible) dependence between them. After that, the joint
modeling of the two outcomes are based on copulas to relate their marginal distributions at each
observation time, and also to describe the dependence structure between them. Therefore, the
association between the repeated measurements in a given occasion and the temporal evolution
of the anthropometric measures of the individuals are two important aspects that a flexible model
should be able to describe.

2.1 Univariate Approach

Linear mixed-effects models (also known as multilevel models, hierarchical linear models,
random-effects models, among other names), which contain a mixture of fixed effects and ran-
dom effects, provide a way to deal with longitudinal responses within a subject. The basic idea
is to model additional sources of variability in the response by introducing additional terms into
the relationship between mean response and explanatory variables, which are random quanti-
ties rather than fixed parameters. According to [7], these models consist of two parts: one rep-
resents intra-individual (or within-subject) change; and the other represents individual differ-
ences in these changes (between-subject or inter-individual variation). The inclusion of subject-
specific random effect allows for heterogeneity between subjects and also induces within-subject
correlation into the model [32].

Let Yit be the response of the i-th child at time t, with i = 1,2, . . . ,m and t = 0,1, . . . ,ni. In this
work, m = 150, ni varies between two and six, and it is considered two response variables: the
height (Y1it ; in centimeters, cm) and the weight (Y2it ; in grams, g) of the studied children, which
were collected monthly from birth (t = 0) to six months of life (t = 6).

A special case of the mixed-effects model is the random intercept model, which can be viewed
as the deviation of the i-th subject-specific of the outcome from the population mean of the
response. Although the simplicity of the mixed model with only random intercept is appealing,
it poses the restriction that the correlation between the repeated measurements remains constant
over time. An extension of this model is a mixed model with random intercept and slope, where
an additional random-effects term is included, describing that the rate of change in covariates
differs between subjects. In general, the linear mixed-effects model can be expressed as follows:

Yit = X
′
itβ +Z

′
itω i + εit , (2.1)

where X it =
(

X (0)
it ,X (1)

it , . . . ,X (p−1)
it

)′
is a known set of p covariates for the i-th child, associated

with the unknown fixed-effects parameters β = (β0,β1, . . . ,βp−1)
′
. In our case, the time-fixed (or

time-invariant) characteristics that make up the ni× p design matrix X i =
[
X (0)

i X (1)
i . . . X (p−1)

i

]
are: vector of ones (X (0)

i = 1, due to the fixed intercept), child’s gender (X (1)
i ; female or male)

and total duration of breastfeeding (TDB) (X (2)
i ; in months), in addition to the time-dependent

variables: child’s age (X (3)
i ; corresponding month) and child’s hemoglobin level (X (4)

i ; in grams
per deciliter, g/dl). Thus, p = 5, here (four covariate coefficients - β1,β2,β3,β4 - plus the fixed

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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intercept - β0). Moreover, Zit =
(

Z(0)
it ,Z(1)

it , . . . ,Z(q−1)
it

)′
is a set of q covariates that characterizes

random variation in the response attributable to among-unit sources, and it is associated with the
random-effects ω i =

(
ωi0,ωi1, . . . ,ωiq−1

)′
, which characterize among-unit variation (specific to

child i). Finally, εit represents the random error, which describes variation due to sources, like
within-unit fluctuations and measurement error. The usual assumptions are: ω i has a multivariate
(q-variate) normal distribution with zero mean vector and covariance matrix Σ, i.e. ω i∼Nq (0,Σ),
and ε i = (εi1,εi2, . . . ,εini)

′
has a multivariate (ni-variate) normal distribution with zero mean and

covariance matrix (diagonal) Ri = σ2V i, i.e. ε i ∼ Nni (0,Ri). It is also assumed that random
effects and random error are both independent across subjects given the covariates. Furthermore,
the most common choice for Ri is the model that says variance is the same at all time points for
all units, i.e. Ri = σ2Ini , where Ini stands for the identity matrix of order ni.

It is important to highlight that additional correlation among the errors can be accommodated
by allowing for a more general covariance structure in the model. [7] suggest an additive de-
composition of ε i into serially correlated variation and measurement error. It is assumed that
ε i = ε(1)i + ε(2)i, where ε(1)i is a component of serial correlation, which is usually a decreasing
function of the time separation, and ε(2)i is an extra component of measurement error reflecting
variation added by the measurement process itself. According to the same authors, parsimonious
choice of the covariance structure can improve the efficiency of inferences made about mean
structure and obtain better estimates of standard errors of estimated mean parameters. An ad-
ditional property of the linear mixed model is related to the covariance of the response profile,
which can be described in terms of a set of covariance parameters in both matrix Σ and Ri [12].
The most commonly used covariance structures are shown below:

• Compound symmetry structure, i.e. the (k, l)-th entry of Ri is σ2ρ1(k 6=l), for some ρ ∈
[−1,1], where 1(.) is an indicator function, which in this case takes value 1 when k 6= l and
value 0 when k = l;

• Autoregressive structure of order 1 (AR(1)), i.e. the (k, l)-th entry of Ri is given by
σ2ρ |k−l|, for some ρ ∈ [−1,1]. This structure is widely used for fitting models to data
sets with equally spaced longitudinal observations on the same units of analysis [33];

• Toeplitz structure, which specifies that covariance depends only on lag, i.e. the (k, l)-th
entry of Ri is given by σ

1(k 6=l)
kl or Ri = σ21(k=l) otherwise;

• Exponential decay structure, i.e. the (k, l)-th entry of Ri is given by σ2 exp{−|k− l|/r},
where r > 0 is the constant range parameter.

The number of parameters of the covariance matrix depends on its structure. This generality,
however, brings the obvious disadvantage of having a very large number of parameters [23]. In
this sense, it is necessary to determine the best structure of the covariance matrix in the data
modeling. However, there are no general simple techniques available to compare all these mod-
els. [7] suggest to use the empirical variagram of the residuals as a tool for the selection of the

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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covariance structure, especially when the data are irregularly spaced and unbalanced. According
to [12], when data are highly unbalanced with many repeated measurements per subject, a rea-
sonable strategy is to use a simple covariance structure for ε i, once random effects can account
for most of the variation in the data.

The simplest cases of linear mixed models are random intercept models, where there is a single
normally distributed random effect. Random intercept models are sometimes referred to as vari-
ance components, error components, or random-effects models. Thus, in our context, a random
intercept model for the response variable height can be expressed as follows:

Y1it = β10 +β11X (1)
it +β12X (2)

it +β13X (3)
it +β14X (4)

it +ω10i + ε1it , (2.2)

where Y1it is the height of the child i at time t, β10 is the fixed intercept, β11 is the gender effect,
β12 is the TDB effect, β13 is the age effect, β14 is the hemoglobin level effect, ω10i ∼ N

(
0,σ2

ω10

)
is the random intercept and ε1it is the error.

The mixed-effects model with random intercept and slope, for the response variable weight, can
be expressed as:

Y2it = β20 +β21X (1)
it +β22X (2)

it +β23X (3)
it +β24X (4)

it +ω20i +ω23iX
(3)
it + ε2it , (2.3)

where Y2it is the weight of the child i at time t, β20 is the fixed intercept, β21 is the gender
effect, β22 is the TDB effect, β23 is the age effect, β24 is the hemoglobin level effect, ω20i ∼
N
(
0,σ2

ω20

)
and ω23i ∼ N

(
0,σ2

ω23

)
are the (uncorrelated) random effects of the intercept and

slope, respectively, and ε2it is the error.

In this work, the AR(1) and compound symmetry covariance structures were assumed for the
errors ε1i = (ε1i1,ε1i2, . . . ,ε1ini)

′
and ε2i = (ε2i1,ε2i2, . . . ,ε2ini)

′
of the linear mixed-effects mod-

els (2.2) and (2.3), respectively. These choices were made based on the values of the Akaike
Information Criterion (AIC) [1] and through the construction of the semi-variogram [7].

2.2 Multivariate Approach

A number of approaches to joint modeling of multivariate longitudinal data have been proposed
in the statistical literature (see, e.g., [4, 6, 12, 17, 24]). The analysis can be demanding because
of the existence of correlations between multiple time-dependent responses repeated over time.

As an alternative approach, copulas have been widely used when the interest resides in modeling
the dependence structure among variables. In practice, copulas have shown to be a good option
when the assumption of multivariate normality of the data is doubtful. Moreover, they can capture
nonlinear dependence and tail dependence, and have no constraints on the marginal distributions
of random variables (great flexibility). Thus, copulas have been successfully applied in the areas
of finance, actuarial science and biomedical studies [20], as well as in engineering, in multivariate
process control and hydrological modeling [34, 16]. In our work, the copula-based approach
allows us to model dependence between the height and weight of 150 children in the study.

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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In probability theory and statistics, a copula C is a multivariate distribution function whose
marginal distribution functions have their domains belonging to the real range [0,1]. In the
bivariate context, we have C(u,v) = P(U ≤ u,V ≤ v), where U and V are both random vari-
ables uniformly distributed over the (0,1) interval (i.e. U,V ∼ U(0,1)) and can be originated
from transformations (probability integral transforms) of any continuous random variables, say
X and Y . In our paper, we have considered that X represents the heights of the children, while Y
represents their weights, where X and Y have distribution functions F(x) and G(y), respectively.

Copulas can be formally defined as follows.

Definition 1 (Copula). A bivariate copula is a function C : [0,1]2→ [0,1] satisfying the following
requirements:

• Grounded: C(u,0) =C(0,v) = 0;

• Uniform marginals: C(u,1) = u and C(1,v) = v;

• 2-increasing: C(u2,v2)−C(u2,v1)−C(u1,v2)+C(u1,v1)≥ 0 for all u2 > u1 and v2 > v1.

Sklar’s theorem is the most important result about copulas. The bivariate version of this theorem
is presented below.

Theorem 1. [30] Let X and Y be two random variables with distribution functions F(x) and
G(y), respectively, and joint distribution function H(x,y). Then, there exists a copula C such
that, for all x,y ∈ R, satisfies H(x,y) = C(F(x),G(y)). If F and G are continuous, then C is
unique. The theorem above leads us to conclude that any bivariate distribution function can be
constructed through the combination of its marginals by means of a copula [26].

In Table 1, we can see the different copula functions, C(u,v), and their densities, c(u,v), which
are used in this paper, as well as the copula association parameter (and its possible values),
denoted by θ . For instance, Table 1 shows the bivariate Gaussian copula and Student’s tν copula,
as well as their density functions, where Φ−1(.) and T−1

ν (.) denote the quantile functions of the
standard normal and Student’s t distribution with ν degrees of freedom, respectively, and Γ(.) is
the gamma function.

It is important to mention that the copula captures all the dependence information between the
variables. The copula-based dependence measures have been studied for decades. E.g., [29]
proved many mathematical properties for some copula-based dependence measures.

Another important definition is given below. It shows us how the copula densities presented in
Table 1 (third column) were obtained.

Definition 2 (Copula density). If C(u,v) =
∫ u

0
∫ v

0
∂ 2C(s,t)

∂ s∂ t dtds, for all (u,v) ∈ [0,1]2, then C is

said to be absolutely continuous and the copula density c can be defined by c(u,v) = ∂ 2C(u,v)
∂u∂v .

Linear correlation (or Pearson’s product-moment correlation) coefficient is most frequently used
in practice as a measure of dependence. However, in general, it is not possible to construct a

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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Table 1: Some copula functions, their densities and parameter space.

Copula C(u,v) c(u,v) θ ∈

Gaussian
∫ Φ−1(u)
−∞

∫ Φ−1(v)
−∞

1

2π(1−θ 2)
1
2

√
1

1−θ 2 exp
{
− ζ 2

1−2ζ1ζ2+ζ 2
2

2(1−θ 2)

}
exp
{ 1

2 (ζ
2
1 +ζ 2

2 )
}

[−1,1]

×exp
{
− s2−2θst+t2

2(1−θ 2)

}
dtds where ζ1 = Φ−1(u) and ζ2 = Φ−1(v)

Student’s tν
∫ T−1

ν (u)
−∞

∫ T−1
ν (v)
−∞

1

2π(1−θ 2)
1
2

1
2

(
Γ( ν

2 )

Γ( ν+1
2 )

)
ν(1−θ 2)−

1
2 [−1,1]

×
(

1+ s2−2θst+t2

ν(1−θ 2)

)− ν+2
2 dtds ×

[(
1+ [T−1

ν (u)]
2

ν

)(
1+ [T−1

ν (v)]
2

ν

)] ν+1
2

×
(

1+ [T−1
ν (u)]2−2θT−1

ν (u)T−1
ν (v)+[T−1

ν (v)]2

(1−θ 2)ν

)−1− ν
2

Clayton
(
u−θ + v−θ −1

)− 1
θ (1+θ)(uv)−1−θ

(
u−θ + v−θ −1

)− 1
θ
−θ

(0,∞)

Frank − 1
θ

log
(

1+ [exp{−θu}−1][exp{−θv}−1]
exp{−θ}−1

)
θ [1−exp{−θ}]exp{−θ(u+v)}

1−exp{−θ}−(1−exp{−θu})−(1−exp{−θv}) R−{0}

Gumbel exp
{
−
[
(− logu)θ +(− logv)θ

] 1
θ

}
(− logu)θ−1(− logv)θ−1

uv [1,∞)

×exp
{
−
[
(− logu)θ +(− logv)θ

] 1
θ

}
×
([

(− logu)θ +(− logv)θ
]( 1−θ

θ )
2)

+

(
[θ −1]

[
(− logu)θ +(− logv)θ

]( 1−2θ

θ )
)

joint distribution of the margins with arbitrary linear correlation coefficient, once this measure
does not completely determine the joint distribution. According to [19], the population versions
of Kendall’s tau (τK) and Spearman’s rho (ρS) can be represented in terms of copulas. Thus,
we have chosen for this work measures of dependence that are copula-based. To illustrate mea-
sures of a form of dependence known as concordance, that are invariant under strictly monotone
transformations of the random variables, let us consider the following definition.

Definition 3 (Concordance). (i) Two observations (x1,y1) and (x2,y2) are concordant if x1 ≤ x2

and y1 ≤ y2 or if x1 ≥ x2 and y1 ≥ y2. An equivalent characterization is (x1− x2)(y1− y2) > 0.
The observations (x1,y1) and (x2,y2) are said to be discordant if (x1− x2)(y1− y2)< 0.
(ii) If C1 and C2 are copulas, we say that C1 is less concordant than C2 (or C2 is more concordant
than C1) if C1(u,v)≤C2(u,v) for all (u,v) ∈ [0,1]2.

Measures of concordance assume the maximum (minimum) value +1 (-1) if the support of the
joint distribution function of X and Y contains only concordant (discordant) pairs. The mea-
sures Kendall’s tau and Spearman’s rho have been chosen in this work, and they can be ex-
pressed in terms of copulas as τK = τK(X ,Y ) = 4

∫ ∫
[0,1]2 C(u,v)dC(u,v)−1 and ρS = ρS(X ,Y ) =

12
∫ ∫

[0,1]2 C(u,v)dudv−3, respectively. Their expressions, corresponding to each copula model
chosen here, can be observed in Table 2.

Another important class of dependence measures in nonlinear context is tail dependence. Ac-
cording to [10], the concept of tail dependence relates to the amount of dependence in the right

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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upper quadrant or left lower quadrant of a bivariate distribution, and it is relevant for the study of
dependence between extreme values. The same authors emphasize that the tail dependence be-
tween two continuous random variables is a copula property and the amount of tail dependence
is invariant under strictly increasing transformations. The definition of tail dependence is shown
below.

Definition 4 (Tail dependence). Let C be the copula of X and Y .
The lower tail dependence parameter is λL = λL(X ,Y ) = lim

t→0+
P
(
Y ≤ G−1(t)|X ≤ F−1(t)

)
=

lim
t→0+

C(t,t)
t .

The upper tail dependence parameter is λU = λU (X ,Y ) = lim
t→1−

P
(
Y > G−1(t)|X > F−1(t)

)
=

lim
t→1−

1−2t+C(t,t)
1−t .

The expressions for the tail dependence parameters (or coefficients), corresponding to each
copula model, can be seen in Table 2.

Table 2: Some copula models and their measures of dependence.

Copula τK ρS λL λU

Gaussian arcsin(θ)
π/2

arcsin(θ/2)
π/6 0 0

Student’s tν
arcsin(θ)

π/2
arcsin(θ/2)

π/6 2Tν+1

(
−
√

(ν+1)(1−θ)
1+θ

)
‡ 2Tν+1

(
−
√

(ν+1)(1−θ)
1+θ

)
Clayton θ

θ+2 No closed-form 2
1
θ 0

Frank 1− 4[D1(θ)−1]
θ

† 1− 12[4D1(θ)−2D2(θ)]
θ

0 0

Gumbel θ−1
θ

Complicated 0 2−2
1
θ

† Dm(θ) = (m/θ m)
∫

θ

0 tm/(et −1)dt is the so-called “Debye” function of order m, m = 1,2.
‡ Tν+1(.) is the cumulative distribution function (cdf) of the Student’s t distribution with (ν +1) degrees of freedom.

One class of multivariate distributions that enable modeling of extremes and other forms of non-
normal dependence is the elliptical distributions. Further details on elliptical distributions can be
found in [11]. Elliptical copulas, which are of great interest here, are simply the copulas of ellip-
tical distributions and provide a rich source of multivariate distributions that share many of the
tractable properties of the multivariate normal (or Student’s t) distribution. Among the elliptical
copulas, we highlight the bivariate Gaussian and Student’s t copulas, whose main characteristics
are presented in Tables 1 and 2. Notice from Table 2 that the Gaussian copula can not accom-
modate tail dependence, while the Student’s t copula has lower and upper tail dependence of the
same magnitude.

Another important and interesting parametric family of copulas is Archimedean. This class allows
a great variety of dependence structures. Furthermore, in contrast to elliptical copulas, all com-
monly encountered Archimedean copulas have closed-form expressions [10]. The main bivariate
Archimedean copulas (Clayton copula [5], Frank copula [13] and Gumbel copula [18]) are shown
in Table 1. The Kendall’s tau and Spearman’s rho measures for these Archimedean copulas are
presented in Table 2, except for the Clayton and Gumbel copulas, which have no closed-form
expressions for the Spearman’s rho. Note from Table 2 that the Gumbel copula is able to model

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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upper tail dependence, whereas the Clayton copula can model lower tail dependence and the
Frank copula does not accommodate tail dependence.

The parametric families of copula that were presented here, are important when selecting a good
candidate copula model that summarizes the dependence structure between the height and weight
of 150 studied children, according to the chosen measures of concordance.

3 INFERENCE

In this section, we discuss inference (point and interval estimation) for the parameters of the
proposed univariate and bivariate longitudinal data models.

3.1 Point Estimation

The likelihood function for the linear mixed-effects model (2.1) is given by

L(δ |y) =
m

∏
i=1

∫
f (yi|ω i,β ,Ri,Σ) f ∗(ω i|Σ)dω i, (3.1)

where δ = (β ,R,Σ) is the set of parameters to be estimated, with R being the (∑m
i=1 ni)×(∑m

i=1 ni)

block diagonal matrix whose elements are Ri, for i = 1,2, . . . ,m; y = (y11, . . . ,ymnm)
′

is the
(∑m

i=1 ni)× 1 vector of all observed responses, with yi = (yi1, . . . ,yini)
′

being the ni× 1 vector
of observed responses for child i; f (yi|ω i,β ,Ri,Σ) represents the conditional density of response
vector Y i at point yi given ω i; and f ∗(ω i|Σ) is the joint density of ω i. It follows from Section
2.1 that Y i|ω i ∼ Nni (X iβ +Ziω i,Ri) and ω i ∼ Nq (0,Σ), where Zi is the ni× q matrix defined

as Zi =
[
Z(0)

i Z(1)
i . . . Z(q−1)

i

]
. Notice that (3.1) is the marginal density function of y, which is

obtained by integrating the joint density of y and ω over ω , where ω =
(

ω
′
1, . . . ,ω

′
m

)′
.

In order to find the maximum likelihood estimates (MLEs) for the parameters of model (2.1), we
set the score function to zero (this function is defined as the first order partial derivative of the
logarithm of likelihood function (3.1) with respect to δ ). However, it is not always possible to
find closed-form expressions for these estimators. Therefore, the use of iterative methods is often
needed.

Nevertheless, the usual method of maximum likelihood estimation provides biased estimates
for the variance components, in the presence of random effects. An alternative is to use the
restricted maximum likelihood (RML) estimation method (sometimes called residual maximum
likelihood estimation). According to [7], the RML method is used for unbiased estimation of the
variance components in a generalized linear mixed model. This approach consists of dividing
the observations into two independent parts: one refers to the fixed effects and the other to the
random effects, such that the observed probability density function is obtained by summing those
parts. In this work, we perform the RML estimation method for the proposed linear mixed-effects
models (2.2) and (2.3), by using the lme function from the nlme package of R software [27].

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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The log-likelihood function for the bivariate copula-based linear mixed-effects models, on the
other hand, is given by the composition of Eq. (3.1) and the third column of Table 1, as follows:

`(η) =
m

∑
i=1

ni

∑
t=1

logc(uit ,vit |θ)+
2

∑
j=1

logL j(δ j|y j), (3.2)

where η = (δ 1,δ 2,θ) is the set of all model parameters, δ j =
(

β j,R j,Σ j

)
is the margin j’s

parameter set (here, j = 1 refers to the linear mixed-effects model (2.2), while j = 2 corresponds
to the linear mixed-effects model (2.3)), y j =

(
y j11, . . . ,y jmnm

)
is the margin j’s (∑m

i=1 ni)× 1
vector of all observed responses, uit = F (y1it |δ 1) and vit = G(y2it |δ 2) represent the cdf for the
linear mixed-effects models (2.2) and (2.3), respectively. Here, R1 has the AR(1) structure and
R2 exhibits the compound symmetry pattern (see Section 2.1). Moreover, L j

(
δ j|y j

)
denotes the

likelihood function (3.1) for margin j’s model.

Regarding estimation of parameters in copula-based models, we can use a fully parametric esti-
mation method called Inference Function for Margins (IFM) by [21]. In their work, the authors
highlight some advantages of this two-stage maximum likelihood estimation approach: (i) the
IFM method is very useful for many multivariate models computationally unfeasible (at first
glance); (ii) it allows one to make inference and modeling, starting with univariate and lower-
dimensional margins; (iii) there is some robustness against misspecification of the dependence
structure, as well as more robustness against outliers or perturbations of the data, compared with
the maximum likelihood method; (iv) sparse multivariate data can create problems for the maxi-
mum likelihood method, but the IFM method avoids the sparseness problem to a certain degree,
especially if all parameters can be estimated from univariate and bivariate likelihoods (this can
be a major advantage in a smaller sample situation).

In the first step, the IFM method estimates the marginal parameters δ j, j = 1,2, through

δ̂ j = argmax
δ j

logL j(δ j|y j).

Then, we obtain ûit = F(y1it |δ̂ 1) and v̂it = G(y2it |δ̂ 2), in order to estimate the association
parameter θ by using the pseudo log-likelihood as follows:

θ̂ = argmax
θ

m

∑
i=1

ni

∑
t=1

logc(ûit , v̂it |θ).

Moreover, we consider time-varying bivariate copula-based linear models for fitting the child
growth data in the sense that the copula association parameter is not constant, i.e. it varies with
time. The reason for this is that the association (or dependence) between the two variables of
interest (height and weight) may vary across time, as well as the covariate effects on them and
variance components. For further details on time-varying copulas, we refer the reader e.g. to the
survey paper by [25].
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The log-likelihood function for the time-varying bivariate copula-based linear models can be
written as follows:

`(ξ ) =
m

∑
i=1

ni

∑
t=1

logc(uit ,vit |θt)+
m

∑
i=1

ni

∑
t=1

2

∑
j=1

log f jt(y jit |δ jt), (3.3)

where ξ =
(

δ
′
1,δ

′
2,θ

′
)′

is the set (vector) of all model parameters; δ j =
(

δ
′
j1, . . . ,δ

′
jni

)′
, with

δ jt =
(

β
′
jt ,σ

2
jt

)′
, is the margin j’s parameter vector; β jt and σ2

jt are, respectively, the vector of
regression coefficients and the variance for margin j at time point t (time-varying coefficients and
variance); θ = (θ1, . . . ,θni)

′
is the vector of copula parameters (time-varying association parame-

ter); f jt (y jit |δ jt) represents the density of response Yjit at point y jit ; finally, uit = Ft (y1it |δ 1t) and
vit = Gt (y2it |δ 2t) represent, respectively, the cdf for the linear models in margins 1 and 2 at time
point t. Note that, in this case, we fit a linear model to each margin at each time point, i.e. we con-
sider the (classical) multiple linear regression model: Yjit =X

′
jitβ jt +ε jit , where ε jit ∼N

(
0,σ2

jt

)
,

for j = 1,2, i = 1, . . . ,m and t = 1, . . . ,ni. This implies that Yjit ∼ N
(

X
′
jitβ jt ,σ

2
jt

)
.

For model estimation, the log-likelihood function form given by (3.3) also enables the use of the
IFM method, which estimates the marginal parameters δ jt , for j = 1,2 and t = 1, . . . ,ni, at a first
step through

δ̂ jt = argmax
δ jt

m

∑
i=1

log f jt(y jit |δ jt)

and then estimates the association parameters θt , t = 1, . . . ,ni, given δ̂ jt by

θ̂t = argmax
θt

m

∑
i=1

logc
(

Ft

(
y1it |δ̂ 1t

)
,Gt

(
y2it |δ̂ 2t

)
|θt

)
.

We perform the IFM estimation method for the proposed bivariate copula-based linear mixed-
effects models and time-varying bivariate copula-based linear models, by using the optim

function (method “L-BFGS-B” by [2]) in R.

3.2 Interval Estimation

There are no analytical results readily available for obtaining the standard errors of the IFM
estimates for the parameters of the bivariate copula-based linear mixed-effects models and time-
varying bivariate copula-based linear models proposed in this paper. We then resorted to using
a bootstrap resampling procedure in order to obtain confidence intervals for the models’ param-
eters. However, the basic nonparametric bootstrap would not perform well here (mainly for the
case of bivariate copula-based linear mixed-effects models) because of the increased dependence
due to the presence of repeated observations in each of the resampled datasets. We chose, there-
fore, to run a parametric bootstrap procedure, which samples from the model using the (point)
IFM estimates as the true values of the parameters. We performed a total of 1000 bootstrap sam-
ples for each proposed model. Then, we built 95% bootstrap confidence intervals by using the

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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percentile method by [9]. Besides its simplicity, which is the main attraction of this bootstrap
method according to [3], no invalid parameter values can be included in the obtained intervals.

4 APPLICATION TO LONGITUDINAL CHILD GROWTH DATA

In this section, we show first the main results of an exploratory analysis of the child growth data
(Section 4.1), which were drawn from a longitudinal study that was conducted with 150 children
born in a maternity hospital in the municipality of Mutuı́pe, Bahia, from June 2005 to May 2006.
Then, we present and discuss the main estimation results obtained via the univariate approach,
i.e. with the separate linear mixed-effects models’ fittings (Section 4.2), and also by the bivariate
approach, i.e. through the proposed copula-based modelings (Section 4.3).

4.1 Descriptive Analysis

The children were measured monthly, from birth to six months of life. Information on weight (in
g), height (in cm), hemoglobin level in the blood (in g/dl) and TDB (in months) were collected
repeatedly. At first, an exploratory data analysis was performed to verify whether the children’s
height and weight are changing in a similar or different fashion. Thus, we observe, among others,
that the average birth height was 48.3 cm, ranging from 42.1 cm to 52.5 cm, and the average
birth weight was 3181.0 g, ranging from 2230.0 g to 4500.0 g. Moreover, in the last month of
the study, about 25% of the children measured up to 64.1 cm and weighed up to 6909.0 g. The
average follow-up time was 3.8 months, ranging from 2 to 6 months.

In studies with two longitudinal outcomes, it is useful to understand the strength of the
relationship between them and the pattern of correlation across time.

Figure 1 shows the correlation between the children’s height and weight over the 6 months period
(corrgram). Among others, it suggests a joint analysis of both longitudinal outcomes (which are
performed and discussed in Section 4.3), in order to understand growth and weight gain patterns
over time.

As mentioned in Section 2.1, the choice of covariance matrices of the models was made on the
basis of AIC values and by the construction of semi-variograms. Figure 2, left and right panels,
show the associations between repeated observations, at time intervals, for height and weight,
respectively. The horizontal line represents the estimation of the process variance. As can be
seen from the right panel of Figure 2, the correlation decreases throughout the period considered,
whereas from the left panel of this figure, we observe that the correlation first decreases, but it
increases again in the last time points.

Furthermore, graphical methods can be used to explore the magnitude of between-person vari-
ability in outcomes over time. For instance, individual line plots for each study participant allow
inspection of the individual response patterns and whether there is strong heterogeneity in the
trajectories. Figure 3 shows the individual profile of the children’s height (left panel) and weight
(right panel). The black solid lines represent the mean response profile for height and weight,

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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Figure 1: Corrgram for child growth data, where wt and ht denote,
respectively, the weight and height at time t, t = 0,1, . . . ,6.

against time/age (trend lines). Notice that, for both longitudinal outcomes, there exist a lower
variability at the beginning and a greater variability at the end of the study (after some months of
life), which is most notable for the weight variable. In addition to this, there is a greater within-
person variability in the weight profile than in the height one, since the change in each individual
line (slope) is more evident for the former than the latter. Thus, this descriptive analysis was es-
sential for guiding our modeling strategy, indicating different trajectories with possibly different
slopes for the weight outcome.

4.2 Separate (Univariate) Linear Mixed-Effects Models

Table 3 shows the main estimation results for the linear mixed-effects models (2.2) and (2.3)
when fitted separately (univariate analysis). It can be seen that the baby girls’ growth is lower
than that of baby boys (on average, 1.439 cm smaller). There is also a significant decrease of the
hemoglobin level in the mean height corresponding to an increase in age (on average, 0.396 cm
smaller). Finally, TDB does not contribute significantly to the growth pattern across time (p-value
> 0.05). The estimation results for model (2.3) are similar to those for model (2.2), in terms of the
contribution and direction of the effect of each covariate. The only exception is the positive ef-
fect of TDB (at 5% level of significance), revealing a significant increase of the TDB in the mean
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Figure 2: Semi-variogram for height and weight data.

Figure 3: Longitudinal distribution of children’s height and weight. Mutuı́pe, Bahia, 2005-2006.

weight corresponding to an increase in age (on average, 59.228 g heavier). A random intercept for
the growth pattern means that there is some average height in the population. Thus, the covariance
structure considered in this analysis was constant and positive over time (compound symmetry
or exchangeable correlation structure). For the weight model, the random intercept and age mean
that the individual’s weight development varies not only in its initial stage, but its rate of change
also varies because there are both intra- and inter-individual differences. The AIC and BIC
(Bayesian Information Criterion; see [28]) values for each fitted model are also presented in Table
3. The overall AIC and BIC values, which are used for comparing the results from the univariate
approach with the ones obtained from the bivariate approach (see Section 4.3), are calculated by
simply summing their individual values, i.e. AICTotal = 12140.400+2924.868 = 15065.268 and
BICTotal = 12182.610+2962.385 = 15144.995.

We assessed the models’ adequacy by analyzing the conditional residuals of each fitted model.
The conditional residual is given by the difference between the observed data and the predicted

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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Table 3: RML estimation results for the (univariate) linear mixed-effects models (2.2)
and (2.3), fitted to the longitudinal child growth data. SE - standard error.

Model (2.2): Height Model (2.3): Weight
Fixed-Effect Parameter ‡ Value SE p-value Value SE p-value

Intercept 55.097 0.614 < 0.0001 4495.871 156.308 < 0.0001
Gender (Female) -1.439 0.307 < 0.0001 -286.155 77.529 0.0003

TDB 0.114 0.097 0.2415 59.229 24.142 0.0153
Age 2.612 0.035 < 0.0001 697.081 14.011 < 0.0001

Hemoglobin Level -0.395 0.023 < 0.0001 -90.555 6.413 < 0.0001
Log-likelihood -1454.434 — — -6061.202 — —

AIC 2924.868 — — 12140.400 — —
BIC 2962.385 — — 12182.610 — —

‡ Random effects of model (2.2): σ̂ω10 = 1.401; ρ̂1 = 0.665; σ̂1 = 1.706.
Random effects of model (2.3): σ̂ω20 = 414.382; σ̂ω23 = 141.663; ρ̂2 = 0.227; σ̂2 = 304.576.

value of the observation, i.e. eit = Yit −X
′
it β̂ −Z

′
itω̂ i, for i = 1, . . . ,m and t = 1, . . . ,ni, where β̂

and ω̂ i are, respectively, the RML estimates of β and ω i. Figures 4 and 5 show diagnostic plots
(normal quantile plots of the standardized conditional residuals with simulated 95% confidence
envelopes, and scatter-plots of the standardized conditional residuals versus fitted values) for
models (2.2) and (2.3), respectively. The standardized conditional residual is defined as e∗it =
eit /
√

r̂it , where r̂it is the (t, t)-th entry of R̂i, which is the RML estimate of Ri. These figures
indicate the suitability of the proposed linear mixed-effects models for the height and weight
outcomes, since we observe that the normality assumption of standardized conditional residuals
is valid (see Figures 4 and 5’s left panels) and, in general, there are no standardized conditional
residuals with high values (see Figures 4 and 5’s right panels).

4.3 Bivariate Copula-based Longitudinal Data Models

[15] proposed a graphic tool, called Kendall’s plot (or K-plot), for detecting dependence in mul-
tivariate data. Figure 6 shows the Kendall’s plot, per month, built from the longitudinal child
growth data, which indicates a considerable positive (and of approximately the same magnitude)
association between the height and weight outcomes.

Among the bivariate copula models that allow for positive association between the margins, we
highlight the Gaussian, Student’s t with arbitrary degrees of freedom (e.g. ν = 2), Clayton, Frank
and Gumbel copulas. Table 4 exhibits the estimation results for these bivariate copula-based lin-
ear mixed-effects models fitted to the longitudinal Brazilian child growth data. The results in-
clude the 95% percentile bootstrap confidence intervals for the copula association parameter (θ ),
the corresponding measures of dependence (Kendall’s tau, Spearman’s rho, lower and upper tail
dependence coefficients), and the AIC and BIC values. Here, we focus on the copula association
parameter estimate (θ̂ ), since the marginal parameter estimates are the same presented in Table
3 (we employed the IFM estimation method described in Section 3.1). It can be clearly seen
from Tables 3 and 4 that the bivariate copula-based approach overcomes the univariate one (all
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Figure 4: Diagnostic plots for the height model.

Figure 5: Diagnostic plots for the weight model.
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Figure 6: The Kendall’s plot, per month, corresponding to the bivariate data at hand.

the copula-based models have smaller AIC and BIC values than the univariate models), justi-
fying joint estimation of the height and weight’s regression models through copulas to improve
statistical efficiency. Table 4 also shows us that the bivariate linear mixed-effects model based
on Gumbel copula was selected as the best one, according to both considered criteria (it has the
smallest values on these criteria: AIC = 14429.37 and BIC = 14513.89). For this best model, the
estimated dependence measures (τ̂K = 0.789 and ρ̂S = 0.937) reveal a strong positive relation-
ship between the margins (height and weight’s regression models), and the estimated coefficient
of tail dependence (λ̂U = 0.842) shows the strongest positive relationship at the upper tail of the
joint distribution, i.e. for high heights and weights.
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Table 4: IFM estimation results for the bivariate copula-based linear mixed-effects models fitted
to the data at hand, with a focus on the copula association parameter. LL - loglikelihood.

Copula θ̂ SE 2.5% 97.5% τ̂K ρ̂S λ̂L λ̂U LL AIC BIC
Gaussian 0.920 0.044 0.784 0.950 0.743 0.912 0.000 0.000 -7198.01 14432.02 14516.54
Student’s t2 0.885 0.063 0.686 0.932 0.691 0.875 0.647 0.647 -7208.43 14452.86 14537.39
Clayton 2.634 0.668 1.222 3.851 0.568 0.755 0.768 0.000 -7214.14 14464.28 14548.81
Frank 15.046 2.768 8.219 18.584 0.763 0.929 0.000 0.000 -7197.90 14431.80 14516.32
Gumbel 4.747 0.891 2.620 6.118 0.789 0.937 0.000 0.842 -7196.68 14429.37 14513.89

Table 5 shows the IFM estimation results for the time-varying bivariate copula-based linear mod-
els’ association parameters (θ0,θ1, . . . ,θ6), as well as their 95% percentile bootstrap confidence
intervals (the results for the time-varying coefficients and standard deviation are not shown here).
The estimated dependence measures for each of these models are presented in Table 6. It can be
seen that the best bivariate model is the one based on Gaussian copula, which obtained the low-
est AIC and BIC values (also presented in Table 5). Note, however, that it does not surpass the
bivariate Gumbel copula-based linear mixed-effects model (with constant association parame-
ter θ ) selected before (see Table 4), according to both considered criteria. The reason for this
may also be due to the fact that there is an intersection among the 95% percentile intervals for
the time-varying bivariate Gaussian copula-based linear model’s association parameters, indi-
cating no gain in considering/assuming non-constant dependence between the children’s height
and weight over time. Furthermore, notice that, according to these criteria, none of the time-
varying bivariate copula-based linear models overcome the linear mixed-effects models based on
bivariate copulas with constant association parameter θ (see Tables 4 and 5).

5 FINAL REMARKS AND FURTHER RESEARCH

Linear mixed-effects models are very popular in practice, since they are easy to handle and
interpret. However, in this work such models have shown to be of limited use because of the
impossibility of jointly modeling children’s height and weight over time, also taking into account
the correlation between the response variables.

There are also, on the other hand, some limitations to the use of copula models. The added com-
plexity may render the estimation procedure more cumbersome, resulting in increased difficulty
in finding convergent estimates. Moreover, although there are specific uses and guidelines for
choosing between different types of copula models, an extra step of selecting between candidate
models is made necessary when using the proposed approach.

Future research may focus on developing copula models even further. Novel strategies that in-
corporate cross-timed dependencies can be devised, in an attempt to model the dependence all
past values of one variable has on the other variable, for instance. A regression model on the
copula parameter may also provide further insight into the relationship within the data, providing
information on how the association between variables is influenced by the covariates. In addition
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Table 6: Estimated dependence measures for the time-varying bivariate copula-
based linear models.

Month (t)
Copula Measure 0 1 2 3 4 5 6
Gaussian τ̂K 0.490 0.617 0.548 0.542 0.478 0.447 0.479

ρ̂S 0.678 0.812 0.743 0.737 0.665 0.628 0.666
λ̂L 0.000 0.000 0.000 0.000 0.000 0.000 0.000
λ̂U 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Student’s t2 τ̂K 0.425 0.554 0.455 0.486 0.369 0.310 0.370
ρ̂S 0.601 0.749 0.638 0.674 0.530 0.451 0.532
λ̂L 0.387 0.505 0.413 0.441 0.340 0.294 0.341
λ̂U 0.387 0.505 0.413 0.441 0.340 0.294 0.341

Clayton τ̂K 0.403 0.501 0.426 0.478 0.381 0.337 0.375
ρ̂S 0.568 0.684 0.596 0.658 0.540 0.483 0.533
λ̂L 0.599 0.708 0.628 0.685 0.569 0.506 0.562
λ̂U 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Frank τ̂K 0.492 0.629 0.544 0.551 0.456 0.427 0.469
ρ̂S 0.686 0.829 0.744 0.751 0.643 0.607 0.658
λ̂L 0.000 0.000 0.000 0.000 0.000 0.000 0.000
λ̂U 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Gumbel τ̂K 0.459 0.580 0.507 0.498 0.427 0.371 0.420
ρ̂S 0.635 0.768 0.691 0.681 0.595 0.525 0.586
λ̂L 0.000 0.000 0.000 0.000 0.000 0.000 O.000
λ̂U 0.545 0.662 0.593 0.584 0.512 0.454 0.505

to this, other challenge to model dependence structure would be how to handle missing values
without being forced to discard data.
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RESUMO. Estudos longitudinais com múltiplas variáveis respostas são comuns na área de
saúde pública e, consequentemente, métodos estatı́sticos adequados são requeridos quando
há interesse em analisar a evolução temporal de uma ou mais variáveis resposta. Con-
tudo, especificar a função de densidade conjunta de todas as variáveis respostas e a es-
trutura de correlação entre elas, bem como as dificuldades numéricas encontradas na in-
ferência estatı́stica quando a dimensão do problema aumenta, são os principais obstáculos
dos procedimentos de modelagem multivariada. Como alternativas, neste artigo apresen-
tamos duas propostas para lidar com dados longitudinais multivariados. Primeiramente,
mostramos uma abordagem univariada, com modelos lineares mistos ajustados a cada uma
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das variáveis respostas separadamente. Em seguida, apresentamos uma modelagem con-
junta dessas variáveis, por meio do uso de funções cópula. Ambas as metodologias são
aplicadas a um conjunto de dados reais bivariados referentes ao crescimento infantil de
crianças brasileiras.

Palavras-chave: cópula bivariada, modelos lineares mistos, dados longitudinais de
crescimento, dependência variante no tempo.
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