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ABSTRACT. In this work we study two-phase flow with gravity either in 1-rock homogeneous media
or 2-rocks composed media. These phenomena can be modeled by a non-linear scalar conservation law
with continuous flux function or discontinuous flux function, respectively. Our study is essentially from a
numerical point of view, we apply the new Lagrangian-Eulerian (LEH) finite difference method developed
by Abreu and Pérez [1, 2, 3, 4, 5, 25] and the classical Lax-Friedrichs method to obtain numerical entropic
solutions. Comparisons between numerical and analytical solutions show the efficiency of the methods even
for discontinuous flux function. Our main contribution, is the comparison and error analysis between the
new LEH and the classical Lax-Friedrichs (LF) methods, in order to show the good performance of the LEH
scheme for models with discontinuous flux functions.

Keywords: conservation laws, finite differences, Lagrangian-Eulerian approach, two-phase flow,
heterogeneous porous medium.

1 INTRODUCTION

Many problems in engineering, physics and other areas of sciences lead us to the study of con-
servation laws. For instance, they model many physical phenomena that appear in aerodynam-
ics, fluid mechanics, traffic flow, groundwater flow, multi-phase flow in porous media and oth-
ers [7, 8, 9, 16, 19, 20, 26, 29, 30, 32]. In general a scalar conservation law in one dimension takes
the form:

ut +( f (u))x = 0, (1.1)

where u is the conserved quantity and f (u) is the flux function.
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22 NUMERICAL STUDY FOR TWO-PHASE FLOW WITH GRAVITY IN POROUS MEDIA

A conservation law jointly with a piecewise constant initial data, having a single discontinuity,
are known as Riemann problem. Riemann solutions are in general either composed by shocks,
rarefaction waves or combinations of them [7, 17, 20, 29, 30].

Often there is more than one weak solution to the conservation law 1.1 with the same initial data,
however only one of them is physically correct, the so called entropic solution. There are distinct
entropy criteria for scalar conservation laws with continuous flux function, we use the Oleinik
condition which provides a geometrical construction to obtain the entropic solutions [17,24,30].

Immiscible two-phase flow in porous media can be modeled by a non-linear scalar conserva-
tion law. Buckley and Leverett [7] in 1942 solved two-phase flow without gravity by means of
fractional flow theory commonly used in petroleum engineering [12]. Proskurowski solved the
Buckley-Leverett equation with gravity taken into account [26]. Others works on two-phase flow
with or without gravity are [10, 11, 27, 28, 31].

In the case that the medium is composed of two types of rocks, the flux function has a spatial
discontinuity and the Riemann solutions contain in general an additional stationary shock [6,
11]. Although, for the model studied in [11], the analytical entropic solutions can be obtained
through an extension of Oleinik construction with appropriate connections between the fluxes
[6,11], there is no an entropy condition that works in general for all discontinuous flux functions.
Thus, the usage of appropriate numerical methods to obtain the Riemann solutions of hyperbolic
conservation laws with discontinuous flux function gain importance.

Although there are several good numerical methods to deal with discontinuous flux function
in conservation laws theory (see for instance [13, 14, 21, 22] among others), up to now there
are only two finite difference schemes whose convergence to entropic solutions have been rig-
orously proved for general space-discontinuous flux functions [1, 13, 25]: the classical Lax-
Friedrichs scheme [13] and the new Lagrangian-Eulerian (LEH) scheme developed by Abreu and
Pérez [1, 2, 3, 4, 5, 25] which is a shock-capturing and high-resolution method for first order hy-
perbolic problems (maybe with forcing terms, because LEH method has also the “well-balance
property when adapted for balance laws). The new scheme provides high-order resolution in
smooth regions and prevents the creation of spurious oscillations near discontinuities. The new
Lagrangian-Eulerian scheme satisfies Harten’s requirements [26] of being a second-order ac-
curate TVD scheme. All these features turn the LEH method a very interesting option to deal
with conservation or balance laws with discontinuous flux functions. Our main contribution in
this paper, is the comparison and error analysis between the new LEH and the classical Lax-
Friedrichs (LF) methods, in order to show the good performance of the LEH scheme for models
with discontinuous flux functions.

Motivated by this, in this work we solve some Riemann problems by both the Lagrangian-
Eulerian and the Lax-Friedrichs methods for two-phase flow with gravity in two cases; first we
test our codes for the homogeneous rock case and then we obtain the numerical solutions for
a piecewise-homogeneous rock (two-rocks composed media). In the homogeneous test-case we
compare the numerical solutions with the analytical solutions obtained via the classic Oleinik

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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construction. In the case of two-rocks composed media, we use the analytical entropic solutions
appearing in [11] and briefly explained in Section 3 of this paper, to calculate the errors of the
methods.

2 IMMISCIBLE TWO-PHASE FLOW WITH GRAVITY

We study the one-dimensional flow in porous media of two immiscible fluids: water and oil,
under the effect of gravity force. Initially there is an impermeable interface, in z = 0, separating
the mixture of the fluids and we study the flow near the interface, once the interface disappears.
This is equivalent to solve a class of Riemann problems for a scalar conservation law.

We assume also that the flow is isothermal, there are no sources or sinks, the porosity is con-
stant, compressibility and capillary pressure effects are neglected. Equation (2.1) expresses the
conservation of mass:

∂

∂ t
(φsi)+

∂

∂ z
vi = 0, i = w,o, (2.1)

vi =−K
ki

µi

(
∂ pi

∂ z
−ρigez

)
, i = w,o. (2.2)

Here, φ denotes porosity, si, vi , respectively denote saturation and seepage velocity of the phase
i. The seepage velocity is given by Darcy’s law (2.2), in which K is the absolute permeability of
the rock, ki, µi, pi and ρi are the fluid relative permeability, viscosity, pressure and density for
each phase i. Also in (2.2) g denotes the gravitational constant. The viscosities µi are assumed
constants, while the permeabilities ki are assumed to be functions of the saturations.

Under the assumption that the porous medium is totally saturated (sw + so = 1) the equation
(2.1)-(2.2) reduce to the following scalar conservation law.

∂ sw

∂ t
+

∂

∂ z
( f (sw)) = 0, (2.3)

with flux function

f (sw) =
s2

w

s2
w +µ(1− sw)2 [v+(1− sw)

2
µ(1−ρ)]. (2.4)

here we denote µ = µw/µo and ρ = ρo/ρw, sw is the saturation of the phase water. The
dimensionless parameter v is related to the pressure gradients.

For two-rock composed media, the porous medium is piecewise-homogeneous, so we define the
permeability of the rock by the following equation

K(z) =

{
Kl , if z < 0
Kr, if z > 0

which leads to a discontinuous flux function of the form

f (sw,z) =

{
fl , if z < 0,
fr, if z > 0,

(2.5)

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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where

fl =
s2

w

s2
w +µ(1− sw)2 [v+(1− sw)

2
µ(1−ρ)] (2.6)

and

fr =
s2

w

s2
w +µ(1− sw)2

[
v+(1− sw)

2
µ(1−ρ)

Kr

Kl

]
. (2.7)

The initial Riemann data for equations (2.3)-(2.5) are denoted by

sw(z,0) =

{
sl z≤ 0,
sr z > 0.

(2.8)

3 ANALYTICAL SOLUTIONS FOR SCALAR CONSERVATION LAWS

For non-linear scalar conservation laws, discontinuous or non-smooth solutions commonly ap-
pear even for smooth initial data. Thus a weak formulation of the conservation law and the cor-
responding “weak” concept of solutions are needed to deal with this kind of equations. Specially
for Riemann problems the weak solutions are combinations of shocks and rarefaction waves.
The shocks (even for smooth initial data) happen when characteristics cross, at the time where
the characteristics first cross, the function s(z, t) has an infinite slope - the wave “breaks” and a
shock forms [17]. The shock waves joining states sl and sr travel with constant speeds σ which
satisfy the Rankine-Hugoniot condition:

σ =
f (sr)− f (sl)

sr− sl
. (3.1)

Unfortunately weak solutions are not unique and additional conditions are needed in order to
select the physically correct one (entropic solution). For instance we consider the Oleinik entropy
condition which apply to general non convex flux f : the solution s(z, t) is the entropy solution if
all discontinuities have the property that [17, 23]

f (s)− f (sl)

s− sl
≥ σ ≥ f (s)− f (sr)

s− sr
, (3.2)

for all s between sl and sr and σ is gives by equation (3.1).

The above exposed, is the basement of the Oleinik’s geometric construction which allows to
obtain the entropic analytic solutions for any Riemann problem in the one-dimensional scalar
case for continuous flux functions (the case of two-phase flow in homogeneous porous medium).
Thus the entropic solution can be constructed by using the convex or concave hulls of the flux
function, depending on the relation between the initial Riemann left and right states, see the
Figure 1. If part of this hull is a tangent or secant line to the flux function (for example the dotted
and dashed lines in the Figure 1) this represents a shock wave, with shock speed coinciding with
the inclination of the line. Everywhere the hull coincides with the flux function (for example,
if s > s1 when sr = 0 or if s < s0 when sr = 1 in Figure 1), the solution is a rarefaction wave,
with spreading speeds varying along with the derivative of the flux function. For the case of

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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combinations of shocks and rarefactions, the junction points between them can be obtained by
calculating the zero of the equation (3.3)

f (s+)− f (s−)
s+− s−

− f ′(s+) = 0, with s− fixed (3.3)

for a right characteristic shock wave or the zero of the equation

f (s+)− f (s−)
s+− s−

− f ′(s−) = 0, with s+ fixed (3.4)

for a left characteristic shock wave.

Figure 1: Example of flux function f and entropic shock
waves as limits of travelling waves. Source: [30].

In [11] Kaasschieter considered a generalization for discontinuous flux functions in space
variable z

∂ s
∂ t

+
∂

∂ z
fl(s) = 0, z < 0,

∂ s
∂ t

+
∂

∂ z
fr(s) = 0, z > 0, (3.5)

fl(SL) = fr(SR).

Here fl , fr : [0,1]→R are assumed to be twice differentiable such that fl(0) = fr(0) and fl(1) =
fr(1). The states

SL(t) = lim
z↑0

s(z, t), SR(t) = lim
z↓0

s(z, t), t > 0 (3.6)

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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are the left and right states of the stationary shock always appearing in the solutions. They are
called fluxes connections in literature [6,11]. The last expression in (3.5) represents the Rankine-
Huguniot condition for stationary shocks.

Kaasschieter obtained entropy conditions for a model of two-phase flow with gravity in two-rocks
of the form (3.5) with flux functions in (2.5)-(2.7). We will use the same entropy conditions to
construct our analytical solutions in Section 5.2.

To obtain the entropy conditions, Kaasschieter [11] regularised the problem by adding the capil-
lary diffusion term, he considered similar solutions s(z, t) = s(ξ ), with ξ = z/t for the regularized
problem, he assumed some hypothesis like SL 6= SR and pc,L(SL) 6= pc,R(SR) (distinct capillary
pressures at the connection states), between others, and after some calculations he proved that:

(i) All non-stationary waves must satisfy the classical Oleinik entropy condition for one of
the flux functions fl or fr. Of course, waves with negative speeds are obtained through the
convex or concave hulls of fl , while waves with positive speeds are obtained through the
convex or concave hulls of fr.

(ii) There is a stationary shock separating the non-stationary waves groups. The stationary
shock connecting states SL and SR can be obtained geometrically by using a horizontal
jump line connecting the fluxes.

(iii) The appropriate (unique) selection of these connection states, requires an entropy
condition. For this problem the states SL and SR must satisfy the entropy inequality

f ′l (SL)� 0 or f ′r(SR)� 0 (3.7)

where the notation f ′l (SL) � 0 is used if f ′l (SL) ≥ 0 and lims↑SL sign( f ′l (s)) = 1 or
lims↓SL sign( f ′l (s)) = 1. Analogously the notation f ′r(SR) � 0 means that f ′r(SR) ≤ 0 and
lims↑SR sign( f ′r(s)) =−1 or lims↓SR sign( f ′r(s)) =−1.

Thus, in order to obtain the entropic solutions for our model with discontinuous fluxes, the key
fact is the appropriate selection of the connection states SL and SR of the stationary shock by
using a horizontal jump connecting the fluxes while satisfying the entropy inequality in (3.7), the
other waves can be obtained through the Oleinik construction for fl and fr, for illustration see
Figures 8(a), 9(a),10(a), 11(a), 12(a), 13(a) in Subsection 5.2.

4 FINITE DIFFERENCE METHODS

Finite difference methods are numerical methods for solving differential equations, in particular
very useful for conservation laws. This kind of method consists on replacing the derivatives in
the differential equations by finite difference approximations obtained through Taylor expansions
of the functions.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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In order to preserve the conservation property of the solutions, finite differences schemes in
conservative forms [15] are used:

Un+1
j =Un

j −
k
h

(
G(Un

j ,U
n
j+1)−G(Un

j−1,U
n
j )
)
. (4.1)

The function G is called the numerical flux.

Lax-Friedrichs Scheme

The classical Lax-Friedrichs (LF) scheme for conservation laws with continuous flux functions
in conservative form (4.1) has the following numerical flux, see [18]:

G(Un
j−1,U

n
j ) =

1
2
(

f (U j−1)+ f (U j)
)
− 1

2ν
(Un

j −Un
j−1),

where
ν = k/h.

For this method to be convergent, it must satisfy the CFL condition [18]

max j| f ′(Un
j )|

k
h
≤ 1.

For conservation laws with discontinuous flux functions the numerical flux of the method can be
adapted to

G(Un
j−1,U

n
j ) =

1
2
(

f (U j−1,x j−1)+ f (U j,x j)
)
− 1

2ν
(Un

j −Un
j−1),

where

f (U j,x j) =

{
fl(U j), if x j < 0,
fr(U j), if x j > 0,

(4.2)

with CFL condition
max j(| f ′l (Un

j )|, | f ′r(Un
j )|)

k
h
≤ 1.

Lagrangian-Eulerian Scheme

The Lagrangian-Eulerian (LEH) method developed by Abreu and Pérez [1, 2, 3, 4, 5, 25] is a
scheme based on a Eulerian central scheme finite volume formulation, but in a space-time
Lagrangian-Eulerian framework. These scheme is derived from the divergence forms of the equa-
tions [25], and it is an order high-resolution scheme for numerically solving nonlinear conser-
vation law problems. This scheme provides high-order resolution in smooth regions and pre-
vents the creation of spurious oscillations near discontinuities. The convergence of the numeri-
cal solutions to the entropic solutions for models with discontinuous flux functions was proved
in [25], [1].

This method for hyperbolic conservation laws with continuous flux functions is given by the
following numerical formulation, see [1, 25] for the details:

Un+1
j =

1
4
(Un

j−1 +2Un
j +Un

j+1)−
k

2h
( f (Un

j+1)− f (Un
j−1)), (4.3)

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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and the CFL condition for this scheme is given by

max j| f ′(Un
j )|

k
h
≤
√

2
2

.

The scheme (4.3) can be written in the conservative form (4.1), where the numerical flux is,
see [1, 25]

G(Un
j ,U

n
j+1) =

1
4

[
h
k
(Un

j −Un
j+1)+2( f (Un

j+1)+ f (Un
j ))

]
.

For conservation laws with discontinuous flux functions the method use the following numerical
flux

G(Un
j ,U

n
j+1) =

1
4

[
h
k
(Un

j −Un
j+1)+2( f (Un

j+1,x j+1)+ f (Un
j ,x j))

]
,

with f in the form (4.2) and CFL (see [1, 25] for details):

max j(| f ′l (Un
j )|, | f ′r(Un

j )|)
k
h
≤
√

2
2

.

5 NUMERICAL SOLUTIONS

5.1 Two-Phase Flow in One-Rock Media

First we consider a test-case of homogeneous media, i.e., constant absolute permeability of the
rock K. We proceed to compare the numerical solutions in the following two cases:

(i) Purely gravitational flow (i.e., v = 0);

(ii) Mixed flow with dominant gravity (v small and non-zero, for instance v = 0.01).

For both cases we set the following parameters µ = 0.25 and ρ = 0.8.

In order to illustrate the solution for the pure gravitational problem (case i), we consider initial
Riemann data sl = 1 and sr = 0, see Figure 2 . The solution consists in a shock wave with
negative speed joining sl = 1 with s1 = 0.4732 traveling upwards in the reservoir. There is also a
rarefaction wave with positive and negative speeds joining the states s1 = 0.4732 with s2 = 0.274,
preceding a last shock wave with positive speed joining s2 = 0.274 with sr = 0. This last shock
moves to the right (bottom in the reservoir).

A numerical refinement study for this case is shown in Figures 2b-2d to illustrate that accuracy
increases when the mesh is refined. In the Table 1, we show the errors between the approximate
solution obtained by Lagrangian-Eulerian and Lax-Friedrichs methods when compared to the
analytical Oleinik solution.

The variation of the error with respect to the time is shown in Figure 3, notice that as time
increases the error tends to increase, and this is smaller in refined meshes.

In Figures 4 and 5 the solutions for other Riemann data in the case (i) are illustrated.

In the case (ii), for mixed flow with dominant gravity, the Riemann solutions for initial data sl = 1
and sr = 0, are shown in the Figure 6 and in Figure 7 for initial data sl = 0 and sr = 0.8.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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Figure 2: Case (i) with the Riemann data sl = 1, sr = 0.

Table 1: Errors between the approximate solutions U and exact solutions u of case (i) with
Riemann data sl = 1, sr = 0.

Cells LEH ||u−U ||l1
h

LEH ||u−U ||l2
h

LF ||u−U ||l1
h

LF ||u−U ||l2
h

128 1.57×10−2 5.04×10−2 2.52×10−2 6.79×10−2

256 9.80×10−3 4.00×10−2 1.60×10−2 5.38×10−2

512 6.10×10−3 3.23×10−2 1.03×10−2 4.32×10−2

1024 3.50×10−3 2.37×10−2 6.20×10−3 3.27×10−2

2048 2.20×10−3 1.97×10−2 3.90×10−3 2.65×10−2

4096 1.30×10−3 1.54×10−2 2.30×10−3 2.07×10−2

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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Figure 3: Errors Lax-Friedrichs and Lagrangian Eulerian of case (i) with Riemann data sl = 1,
sr = 0.
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Figure 4: Case (i) with the Riemann data sl = 0.4, sr = 0.
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Figure 5: Case (i) with the Riemann data sl = 1, sr = 0.3.
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Figure 6: Case (ii) with the Riemann data sl = 1, sr = 0.
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Figure 7: Case (ii) with the Riemann data sl = 0, sr = 0.8.
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5.2 Two-Phase Flow in Two-Rocks Media

For two-rocks composed media the conservation law has a discontinuous flux function (2.5)-
(2.7). We consider some distinct combination of values for µ , ρ , Kl , Kr and we only study the
pure gravitational flow, i.e. v = 0.

• Case 1: ρ = 3/2 (heavy oil), permeabilities Kl = 0.5 and Kr = 1, so fl > fr;

• Case 2: ρ = 3/2 (heavy oil), permeabilities Kl = 1 and Kr = 0.5, so fl < fr;

• Case 3: ρ = 0.8 (light oil), permeabilities Kl = 0.5 and Kr = 1, so fl < fr;

• Case 4: ρ = 0.8 (light oil), permeabilities Kl = 1 and Kr = 0.5, so fl > fr.

In the case 1, three simulations were performed for distinct values of µ and initial Riemann
data, see the Figures 8, 9, 10. To illustrate we explain the solution in Figure 8: it consists of
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Figure 8: Case 1 with t = 0.5, µ = 1/3 and Riemann data sl = 0, sr = 1.
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two groups of waves, the first group has negative speeds and travels upward in the reservoir, it
is composed by a shock wave joining the states sl = 0 and s1 = 0.298 followed by a rarefaction
wave up to state SL = 0.4095. The second group consists in a solely shock wave with positive
speed travelling downwards in the reservoir connecting the states SR = 0.6659 and sl = 1. There
is a stationary shock joining the states SL = 0.4095 with SR = 0.6659 separating the two groups
of waves.

The errors of numerical solutions are shown in the Table 2, notice that Lagrangian-Eulerian
scheme had better performance (more accurate) than the Lax-Friedrichs method and also that the
error decreases when the mesh is refined, see the Figures 8b-8d.

The solution in Figure 9 has a structure similar to the solution in Figure 8. The last simulation
corresponding to the case 1, see Figure 10, shows a solution without the negative-speed group of
waves and only a stationary shock followed by a positive speed shock.

For the cases 2, 3 and 4 the simulations shown in the Figures 11, 12 and 13 respectively, illustrate
again the well performance of the methods in particular the high accuracy of the Lagrangian-
Eulerian scheme when compared with Lax-Friedrichs method. For all the cases the analyti-
cal solutions were obtained using the entropic condition (3.7) developed in [11] to choose the
appropriate connection between the fluxes (stationary shock).

Table 2: Errors between the numerical solutions U and exact solutions u of case 1 with t = 0.5,
µ = 1/3 and Riemann data sl = 0, sr = 1.

Cells LF ||u−U ||l1
h

LF ||u−U ||l2
h

LEH||u−U ||l1
h

LEH ||u−U ||l2
h

256 1.48×10−2 5.59×10−2 1.00×10−2 4.76×10−2

512 8.90×10−3 4.28×10−2 5.80×10−3 3.55×10−2

1024 5.30×10−3 3.27×10−2 3.30×10−3 2.66×10−2

2048 3.00×10−3 2.41×10−2 1.80×10−3 1.91×10−2
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Figure 9: Case 1 with t = 1, µ = 0.1 and Riemann data sl = 0, sr = 0.25.
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Figure 10: Case 1 with t = 1, µ = 0.1 and Riemann data sl = 0.4, sr = 1.
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Figure 11: Case 2 with t = 0.5,µ = 1/3 and Riemann data sl = 0, sr = 0.4.
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(d) 2048 cells.

Figure 12: Case 3 with t = 1,µ = 1/3 and Riemann data sl = 1, sr = 0.
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Figure 13: Case 4 with t = 2,µ = 1/3 and Riemann data sl = 0.2, sr = 0.6.
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6 CONCLUSIONS

The Lax-Friedrichs and the Lagrangian-Eulerian methods were used to obtain the approxi-
mate Riemann solutions for two-phase flow with gravity in both homogeneous and piecewise-
homogeneous porous media (two-rocks media). For two-rocks media the flux function has a
discontinuity in space variable z so find analytical solutions is not simple. We used the entropy
criterion (3.7) developed in [11] to compare with our numerical results. Both methods LF and
LEH present a diffusive behavior, however the Lagrangian-Eulerian scheme showed to be less
diffusive and more accurate as reflected in the table and figures shown in Section 5. Notice also
that the error decreases when the mesh is refined.

RESUMO. Neste trabalho estudamos o escoamento bifásico com gravidade em meios
homogêneos de 1-rocha ou em meio composto de 2-rochas, estes fenômenos podem ser
modelado por uma lei de conservação escalar não-linear com função de fluxo contı́nua ou
função de fluxo descontı́nua, respectivamente. Nosso estudo é essencialmente de um ponto
de vista numérico, aplicamos o novo método de diferenças finitas Lagrangian-Eulerian de-
senvolvido por Abreu e Pérez [1, 2, 3, 4, 5, 25] e o método clássico Lax-Friedrichs para
obter soluções numéricas entrópicas. Comparações entre soluções numéricas e analı́ticas
mostram a eficiência dos métodos mesmo para a função de fluxo descontı́nua.

Palavras-chave: leis de conservação, diferenças finitas, abordagem Lagrangiana-
Euleriana, escoamento bifásico, meio poroso heterogêneo.
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[26] W. Proskurowski. A note on solving the Buckley-Leverett equation in the presence of gravity. J.
Comput. Phys., 41 (1981), 136–141.

[27] A. Riaz & H. Tchelepi. Dynamics of vertical displacement in porous media associated with CO2

sequestration. SPE Journal, (2008).

[28] A. Riaz & H.A. Tchelepi. Stability of two-phase vertical flow in homogeneous porous media. Phys.
Fluids, 19(7) (2007). DOI:10.1063/1.2742975.
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