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ABSTRACT. In this paper, an approach to investigate switched affine system via matrix inequalities is
presented. Particularly, an extension of LaSalle’s invariance principle for this class of systems under ar-
bitrary dwell-time switching signal is presented. The proposed results employ a common auxiliary scalar
function and also multiple auxiliary scalar functions to study the asymptotic behavior of switched solutions
and estimate their attractors for any dwell-time switching signal. A specific feature of these results is that
the derivative of the auxiliary scalar functions can assume positive values in some bounded sets. Moreover,
a problem of constrained optimization is formulated to numerically determine the auxiliary scalar functions
and minimize the volume of the estimated attractor. Numerical examples show the potential of the theoreti-
cal results in providing information on the asymptotic behavior of solutions of the switched affine systems
under arbitrary dwell-time switching signals.
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1 INTRODUCTION

Switched systems arise in practice when modeling the operation of many systems [9]. For this
reason, important results about stability and stabilization for this class of system were presented
in[2,5,8].

A subclass of nonlinear switched systems, known as switched affine system, can model some
practical problems as well, especially in the area of electronics and power systems. An interesting
application of this class of systems in electrical power systems can be found in [6]. Since these
systems are subject to changes in the system equilibrium conditions due to fast varying loads, the
focus in [6] was to determine conditions to ensure that the system trajectories remain confined
into a security region of operation, even if the equilibrium point of the model changes.
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An important observation about the switched affine system is that its equilibrium points change
according to the time switching signal. Therefore, in this paper we are not interested in studying
the stability of a particular equilibrium point but the asymptotic behavior of solutions.

The invariance principle is a powerful tool to study the asymptotic behavior of dynamical sys-
tem solutions. It was established for the class of nonlinear switched system in [2]. However,
less conservative results were obtained considering the extension of LaSalle’s invariance prin-
ciple. The extension of the invariance principle was firstly obtained for continuous differential
equations [14, 15] and afterwards for discrete systems [1], periodic systems [13] and switched
nonlinear systems [17].

The invariance principle presented in [3] and [17] can be used to analyze the solutions of the
switched affine system. However, the authors did not explore the particularities of the affine
system to obtain the results. For this reason, in this paper, the properties of the affine system are
explored to obtain sufficient conditions in terms of matrix inequalities to analyze the solution of
this class of systems. More specifically, extensions of the invariance principle under a common
auxiliary scalar function and also multiple auxiliary scalar functions will be presented. The main
results are useful to estimate attractors of switched affine systems under arbitrary dwell-time
switching signals.

From a practical point of view, the results proposed in this paper overcome the problem of finding
the auxiliary scalar function and also the multiple auxiliary scalar functions satisfying all the
conditions of the invariance principle presented in [17] and [3]. Moreover, the techniques that
are used enabled us to construct a constrained optimization problem, which can numerically
determine the auxiliary scalar function and the multiple auxiliary scalar functions, minimizing
the volume of the estimated attractor. Preliminary results of this work were presented in [10]
and [11]

The remainder of this paper is organized as follows. In Section 2, preliminary concepts of
switched systems are presented; in Section 3, an extension of the invariance principle for ar-
bitrary switched affine systems is presented; in Section 4, a systematic method to obtain optimal
estimates of the attractor set of affine switched systems, which explores a nonlinear optimization
problem, along with some numerical examples, is presented. Finally, the conclusion is presented
in Section 5.

The notation used in this paper is fairly standard. Specifically, N denotes the set of natural
numbers, R” denotes the Euclidean space of dimension n and R"*" denotes the space of real
matrices n X n. The notation || - || refers to the Euclidean norm, B(x,€) denotes the open ball
{y e R": ||y — x|| < €} radius € centered in x and B(.#,€) = U, 4 B (x,€). The complement
and boundary of set .# is denoted by .#¢ and d.# respectively. For matrices or vectors, (')
indicates transpose. In addition, for a matrix P, P > 0 indicates that P is a real symmetric and
a positive definite matrix and Amax(P), Amin(P) denote its minimum and maximum eigenvalue,
respectively.
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2 PRELIMINARIES

Consider the following class of switched system:

2= fon (), 2.1)

where f, :R" = R"is a ¢'-function for all p € & = {1,---,. 4}, .4 is the number of subsys-
tems, x(7) € R” is the state vector and o (¢) : [0,00) — 7 is a piecewise constant function, contin-
uous from the right, called switching signal. Let {7}y be a sequence of consecutive switching
times associated with the switching signal ¢ and I, = {t € [, T41) : 0(%) = p,k € N} be
the union of intervals where subsystem p is active. The smooth, piecewise continuous func-
tion x : I — R” is a solution of the switched system (2.1) in the interval I if x(r) satisfies
X(t) = fou)(x(2)), Ve € I, N for all p € . We assume that the sequence of switching times
{7 }ren is divergent and that each subsystem p is active infinite times. The set of all switching
solutions is denoted by .. We denote @) (¢,x0), the solution of the switched system (3.1) with
initial condition x at the time = 0 under switching signal o (z).

Some preliminary definitions, which can be found in [7] and [3], are presented below for the
switched system (2.1).

Definition 2.1. The solution Qs(;)(t,X0) € /" has a non-vanishing dwell-time if there exists h > 0
so that infy (Ty_1 — Tp) > h where {7 }ren is the sequence of consecutive switching times asso-
ciated with @g(;)(t,X0). The number h is called a dwell-time for @s(;)(t,%0) and the set of all
solutions possessing a non-vanishing dwell-time is denoted by . jye11 C 7.

Definition 2.2. A point g € R" is a limit point of the continuous curve Qg (t,%o) : [0,00) — R"
if there exists a sequence {1y }ren, with ty — 4o as k — +oo, so that klim Os (1) (tk;X0) = q. The
oo

set of all limit points of Qg () (t,X0) is denoted by ¢ (xo).

The set ®f (x0) of @g((,x0) depends not only on the initial condition xo but also on the
switching signal ©.

Definition 2.3. The solution @ ;) (t,x0) : [0,0) — R" of (2.1) is attracted to a compact set M if
for all € > 0 there exists a time T > 0 so that Qg ;(t,%0) € B(A ,€) for t > i. Clearly, ¢ ;) (t,%0)
is attracted to a set A, that is, Qs (t,X0) — A, if, and only if, tli_)rrolod((pﬁ(,)(t,xg),i//) =0,
where d is the distance between a point and a set, which is defined by d(y, . #) = miélE// lly —ml|.

Definition 2.4. A compact set ./ is weakly invariant in regard to the switched system (2.1) if for
each xo € A, there exists an index p € & and a real number ¢ > 0 so that ¢,(t,x0) € A for
anyt € [—c,0] ort € [0,c].

The following proposition, which is proven in [3], establishes properties of the limit set @7 (xq)
of bounded solutions

Proposition 2.1. Let ¢g(;)(t,X0) € Laen be a bounded solution of (2.1) fort > 0. Then, of (xo)
is nonempty, compact and weakly invariant. Moreover, Qg ;(t,x0) is attracted to &g (xo).

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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In the next section, an extension of LaSalle’s invariance principle for a subclass of switched
systems (2.1) is proposed. This extension is useful for obtaining estimates of global attractor sets
of switched affine systems.

3 AN INVARIANCE PRINCIPLE FOR SWITCHED AFFINE SYSTEMS

The purpose of this section is to analyze the asymptotic behavior of the solutions of the class of
continuous-time affine switched systems

x(t) :AG(Z>X([) +b6(t)a X(O) = X0, 3.1)

where A, € R"™", b, e R",Vp € & and o(t) is a dwell-time switching signal, using an auxiliary
common scalar function for all subsystems of the switched system (3.1) and multiple auxiliary
scalar functions.

3.1 Results obtained via common auxiliary scalar functions

Consider a scalar quadratic function V : R" — R, which in the course of this text will be called
an auxiliary function, given by

V(x) = (x—d)'P(x—d), where P € R”*" and d € R". (3.2)
In addition, suppose that

3 P>0 satisfying Q) :A;PJrPA,, <0, Vpe Z. (3.3)

Now, let 7, = {x € R" : VV(x)(A,x+b,) > 0} be the set where the derivative of the auxiliary
function V' along the trajectories of the subsystem p is positive or null and 2 = U, » . Let
Qf’d ={x e R":V(x) <, where ¢ € R} be a sublevel set of the auxiliary function (3.2) for a
given P and d.

Lemma 1 provides sufficient conditions for the set Z to be bounded by a sublevel of the auxiliary

function V.

Lemma 1. Consider the switched affine system (3.1) and the auxiliary function (3.2) such that
(3.3) is satisfied. Then, the set 9 is bounded and there exists a real number

0> Aax(P) (2 + [1d])?, (B4
22 Ama
with 7 = max,e » {“P*V S } Wy, = ||b,P—d'PA,|| and &, = |d'Pb,|, which

ensures the inclusion 9 C Qf’d.
Proof. The derivative of the function V' along the solution of subsystem p satisfies
VV(xX)(Apx+b,) = x'Qpx+2(b,P—d'PA,)x—2d'Pb,
X Amax (Qp)x+2||b),P —d'PA, || ||x|| +-2|d'Pb, |
2
Amax (Qp) [Ix]1” + 21 [lx]] + 28,

IN
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where U, = Hb;,P — d’PA,,H and §, = |d'Pb,,|. Thus, we conclude that

VV (x)(Apx +bp) < Aanax (Qp) [|x]1% + 20 |1 x]| + 26, (3.5)

Since (3.3) is satisfied for all p € &2, we have that Amax (Q),) < 0. Thus, from (3.5), we conclude
up"" V ﬂ%_zzfmax (Qp)‘gp

that the derivative of function V is strictly negative when ||x|| > —

2fmalx(Qp)
n vV 2;_ max
Then, 92, C {xER :O§||x|\§—“”Jr lj{mailQp)(Q")g” and 7 = U, %y C

U2 =22

{xeR":0< [|x]| <z}, where z = max,c {”ﬁ i” zmed;(Qp)é” } Therefore, the set
max ({p

2 is bounded.

Analyzing the values that the function V assumes when x € &, we obtain:
V(x) < Amax (P) [x = dI* < Aanax (P) (e + 1)) < Amax (P) (z+ | d])? , ¥x € 2.
Then, choosing ¢ € R such that £ > Anax (P) (z+ ||d||)*, we conclude that Z C Qf’d. O

The next lemma guarantees the existence of a positively invariant set for the switched affine
systems under an arbitrary dwell-time switching signal.

Lemma 2. Consider the switched affine system (3.1) and the auxiliary function (3.2) such that
(3.3) is satisfied. Let £ € R be a real number satisfying (3.4). If xo € Qf’d, then every solution
(pc(,)(nxo) € Lawers With xy € Q?d stays inside Qf’d forallt > 0.

Proof. For x( € Q?d, let (p(,(,)(t,xo) € Yweir be a solution of the switched system (3.1) under
arbitrary dwell-time switching & (¢). Suppose the existence of 7 > 0 so that @7 (f,x0) ¢ Q?d.
Then, by the continuity of V and @) (7, Xo), there exists 7 € (0,7) so that V (¢4 (7,x0)) = £ and
V(9o (t,x0)) > £, Yt € (,7]. Thus, V has to increase out of Q?’d. On the other hand, according
to Lemma 1, fixed the real number /£ satisfying (3.4), Z C Qf’d, which leads to a contradiction.

Therefore, the solution @, (t,%0) € Sgweir Stays inside Q?‘d for all > 0 because every sublevel
set of the function V is bounded. O

From Lemma 1 e Lemma 2, we can prove the following invariance principle for the class of
switched affine systems using a common auxiliary function.

Theorem 3. Consider the switched affine system (3.1) and the auxiliary function (3.2) such that
(3.3) is satisfied. Then, every solution Qg ;) (t,%0) € Fawen s attracted to a weakly invariant set
in Qg‘d, where £ is given by (3.4).

Proof. First, we consider xg € Qf"d, then, by Lemma 2 we have that every solution @ ;) (t,%0) €
Fawenr stays inside Qg’d for all # > 0, that is, the solution @g(;)(#,%0) € Sawen is bounded. By
Proposition 2.1 we conclude that the solution will be attracted to a weakly invariant set in Qf’d.

Now, let xq ¢ Qf’d and Qg (1) (7,%0) € Faweir- If gy (,%0) enters Qf’d at some time ¢, then the
result follows from the first part of this proof. Suppose the solution @) (#,%0) ¢ Qf’d, vt > 0.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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Since ¢ > sup V(x), it follows that 895"1 N2 = 0. This implies the existence of € > 0 such that
x€9
sup  VV(x)(Apx+by) < —€ <0, Vp e P Therefore V(@5 (t,X0)) is strictly decreasing,

x€ (Q[P*d)l'

which implies the existence of 7 € R such that @) (7,x0) € Qf"d. By Lemma 2, the solution
(1) (t,%0) € Q?d for all ¢+ > 7. Thus, the conclusion follows from the first part of this proof.
Therefore, every solution @) (#,X0) € Lawen is attracted to a weakly invariant set in Qf’d. d

The following example illustrates the results of Theorem 3.

Example 3.1. Consider the switched affine system

$=Agx+bo(), xER? (3.6)
-4 0 -9 -1 =5
where o(t) € & = {1,2,3} and A = _— ] by = [ 3 ] Ay = l s 6 ]
1 -3 1 5 . .
by = 6 | Az = 0 L bz = e The eigenvalues of the matrices A,, p €

{1,2,3}, are {-7,—4}, {—%i%i}, {=3,—1}, respectively. In addition, the equilibrium
points of each subsystem p, p € {1,2,3}, are different: x.q, = [—% — %]/, Xeqy = [—% — H/
and xeq, = [1 —2]'.

With the objective of obtaining an estimate of the attractor set for the switched affine system (3.6),

1 —-05
-0.5 4

2
andd =d; = l 0.5 ], respectively. Since Py satisfies (3.3), Lemma 1 ensures that the set 9 is

consider the auxiliary function (3.2), where P and d are given by P = P, =

bounded and 9 C Q? ’dl, where { = [ = 419.5925, which satisfies (3.4). Then, from Theorem 3,
? A Therefore, the
attractor set of the system (3.6) is contained in the ellipsoidal region Q? i for any dwell-time

switching. The volume of this estimation is vol (Qg‘ ’dl) = 680.7098.

every solution Qg ;) (t,%0) € Fywen is attracted to a weakly invariant set in Q.

Figure 1 illustrates Q? 4 and a trajectory starting at xo = [-20 20) under switching signal

o (1) with dwell-time h = 0.2 seconds. This figure confirms the results of Theorem 3 by showing
Py,
7

Observe in Figure 2 the changes of sign of the derivate of V along the solution.

an attractor inside the set Q2. Function V along the switching solution is shown in Figure 2.

3.2 Results obtained via multiple auxiliary scalar functions

Although Theorem 3 provides less conservative conditions on the auxiliary function V as com-
pared to the LaSalle’s invariance principle, it still may be difficult to find such V satisfying all
assumptions of Theorem 3 for all p € &2. Moreover, the function V can not exist, or it might lead

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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Figure 1: Phase portrait for Example 3.1 with initial condition xo = [~20 20]" illustrating the

level set Q? A

o
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and switching signal with dwell-time 4 = 0.2 seconds.
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Figure 2: Function V, defined by P; and d, along the switched affine system solution with initial
condition xo = [—20 20]".

to very conservative estimates of attractors. In order to overcome this difficulty, we will consider
now the existence of multiple auxiliary scalar C' functions Vp : R" — R as follows:
V,(x) = (x—d)' P, (x—d), where P, € R"" and d € R". (3.7)

Henceforth, the set of functions (3.7) will be called multiple auxiliary functions. In addition, we
suppose that

3 P, > 0 such that 0, = AP, + P,A, < 0,Yp € 2. (3.8)

Define &), = {x € R" : VV,,(x)(Apx+b),) > 0} the set where the derivate of function V), along the
trajectories of subsystem p is positive or null. Let & = U,,c » &.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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The next lemma provides sufficient conditions for the set & to be bounded.

Lemma 4. Consider the switched affine system (3.1) and the multiple auxiliary functions V, given
by (3.7) such that (3.8) is satisfied. Then, the set & is bounded.
Proof. The derivative of V), along the solution of the subsystem p € &, is given by
VYV, (x)(Apx+by) = X Qpx+2(b,P,—d P,A,)x—2d'P,b,
< Amax(Qp)x'x+2||b, P, —d'PyA, || [1x]| +2|d'Pyby |
= Jmax (Qp) 1[I + 25 [Ix]| +28,,
where k, = ||b/,P, —d'PyA,|| and {, = |d'P,b,|. Thus, we conclude that
V(%) < Amax (Qp) [[[| + 25, [|x]| + 28, 3.9

Since (3.8) is satisfied for all p € &2, we have that Amax(Q,) < 0. Then, from (3.9), we conclude
Kp+4/ K%*Z}Lmax(Qp)gp

that the derivative of V,,(x) is strictly negative when ||x|| > —

/,Lmax(Qp)

2 _ .

Then & ¢ {xernio<io<-TVET@BY wa ¢ = Upers, C
{xeR":0<|jx|| <n}, where
K+ 1/ 5~ 22nax Q)45 10
=max<{ — , .

1 pEP Amax(Qp)

that is, the set & is bounded. O

The next lemma guarantees the existence of upper and lower bounds for the multiple auxiliary
functions V), given by (3.7).

Lemma 5. Consider the switched affine system (3.1) and the multiple auxiliary functions V,
given by (3.7) such that (3.8) is satisfied. Then, there are continuous functions a,3 : R* — R

satisfying:
a(x) <V,(x) <B(x), VxeR"andVpe Z. (3.11)

Proof. To show the existence of functions o and f satisfying (3.11) we will determine a
particular case of them. Since P, = P[’, > 0, we have

Vp(x) < Amax(Pp)(x—d) (x—d)
= (x—d) diag[Amax(Pp), s Amax ()] (x — ), (3.12)
for all p € & and Vx € R". Define Py = diag[Smax, -+ , Omax]> Where Spay = ;rg};{ﬁmax(Pp)}.
From (3.12), we have that

Vy(x) < (x—d)Py(x—d), Yx€eR"andVpe 2. (3.13)

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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Thus, considering B(x) = (x —d)'Py(x — d), from (3.13) we have V,(x) < B(x), Vp € & and
Vx € R". Now, define P,, = diag[8min, - - , Omin)> Where Spin = mig{)lqnin(Pp)}. Then, from (3.8),
PEY

we have that

Vp(x) > Amin(Pp)(x—d) (x—d)
(x — d)'diag[Amin(Pp), -+, Amin (Pp)] (x — d)
(x—d)'Pu(x—d), Vpe & and Vx € R". (3.14)

Y%

Define a(x) = (x —d)'Py(x—d). As a consequence of (3.14), we have V,(x) > o(x), Vp €
P e Vx € R". Therefore, the scalar functions

a(x)=(x—d)Py(x—d) and B(x) = (x —d) Py(x—d),
satisfy (3.11). O

We now consider the continuous functions @, 8 : R” — R, such that ot(x) = (x —d)'P,(x —d)
and B(x) = (x —d)'Py(x —d), with B, Py € R"™" satisfying (3.11). Moreover, we define the
sets Q! = {x € R": a(x) < o}, QP’" = {xeR": a(x) </;} and ©M4 = {x e R": B(x) <

Eo,}w1thsup[3(x)<€o<oo and sup B(x) <lj <oo, je{l,---, A4 +1}. Itis clear by
xXeE erPm‘d

construction that

Pud — oPnd - oFnd = . oPnd — ofnd - Pu.d

&ECO C QZO C Qzl c..-C Q[j C Q[M QZM g (3.15)
The next lemma estimates the values £, ---,¢ 4, and the regions &, ®< and QZ’“"{, Vje
{0,1,...,.4 +1}. '

Lemma 6. Consider the switched affine system (3.1) and the multiple auxiliary functions V,
given by (3.7) such that (3.8) is satisfied. Moreover, assume that o/(x) = (x —d)'P,(x —d) and
B(x) = (x—d)' Py(x—d), with Py, Py € R"™" satisfying (3.11), then:

(i) If €o > Amax(Pu) (N + ||d|)?, then & C @4 C QZ’)"’d where 1 is given by (3.10).

(ii) Given a real number {y such that & C @4 C QZ’)”’d, then QPJ”” - QP’" Vj €

{peeesct + 107 2 2.

Proof.
(i) Due to Lemma 4, the inclusion & C {x e R":0 < |[x—d|| <n}, where 1 is given by

(3.10), is verified. Then, when we analyze the values the continuous function f§ : R” — R,
given by B(x) = (x —d)' Py (x — d), assumes in &, we obtain

B(x) < Amax (Par) |l = d|* < Amax (Pur) (n + [|d]])? ,Vx € &
Thus, for {y € R satisfying £y > Amax(Pu) (N + ||d||)%, we conclude that & C @,

Therefore, by construction of the set QZ’)”"I, we have that & C @4 C QZ’)’“‘I.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)



1 80 AN EXTENSION OF THE INVARIANCE PRINCIPLE FOR SWITCHED AFFINE SYSTEM

(ii) The proof will be given by induction on the index j € {1,---, .4 + 1} For N =1, we can

show that Q¢ € Q™. when £; > J2M) o Tn fact, if x € Q7" then Amin(Pn)|[x —
Pll‘l*d Z I)‘l* Ph‘l'«

d|]* < afx) < fo,Vx € Q[;U <. < (lmin(()Pm)>’ Vx € Qﬁo “. For x € QZU “,

we have that

B ) < Aanax(Par) [ — dII* < Ao (Par) (mﬁﬁ)) AAT:IE m>) o

forall x € Qf'"'d.
0

Thus, by defining ¢; > 1‘:::255; £y, we have that @4 C QZ’)” QP’”’ since sup ﬁ( )<
er
{1 < oo is verified.

Next, we assume the result holds for .#" subsets, that is, the real numbers ¢y € R

and (; > ;L‘q‘:"‘EPM))ﬁ, 1, j € {l,..., A/}, ensure that QP'”’ C QP’”’ . C QP’" C

Qf’;’j . Now, we show that the result holds for .4+ 1. For all x € Qe ", we have that
lx —d|? < ( by ) For x € QP’"’ the following inequalities are satisfied fB(x) <

mln(Pm>
Amax (Pyr) ||x — d||* < [)}’me“EPM” ly,forallx e QP’”’ Therefore, for £ | > lﬁ“"ﬁiﬁf;f/y,
we have QZ"” Qg’; . O

In order to take into account multiple auxiliary functions, we consider the following assumption.

Assumption 3.1. For every pair of consecutive switching times T, < tj such that 6(1,) = 0(7j) =
p the following holds:

Vo (0p(Th,%0)) > V(@ (T,%0)),  if @p(Th,x0) ¢ O and @, (t,x0) ¢ O

The next result shows that every solution of the affine switched system (3.1) is bounded.

Lemma 7. Consider the switched affine system (3.1) and the multiple auxiliary functions V), given
by (3.7) such that (3.8) is satisfied. Moreover, we assume that Assumption 3.1 is satisfied. Then,
every solution Qg ;)(t,X0) € Faweit, Xo € R", is bounded.

Proof. Let ) € R such that £y > Anax (Py) (0 4 ||d||)* and 1 is given by (3.10). For xo € QZ’)’”d,
let (p(,(t)(t,xo) € Lawen be a solution of the switched system (3.1) under arbitrary dwell-time
switching signals. Then, by Lemma 3 in [17], we have that every solution @, (t,X0) € Fawent
stays inside QZ’)”’d, Vt > 0, that is, the solution @ (t,x0) € 7 is bounded.

Now, let xo ¢ QZ""’ and Q1) (1,%0) € Fawenr- If @o(r)(t,%0) enters QZ’)”"Z at some ¢, then the
result follows from the first part of this proof. Suppose that the solution @) (,%0) & QZ’)"’d,
Vt > 0. Let Ly € R such that sup,. s B(x) < fp < Lo and xg € QP’" ={xeR": a(x) <Ly}
Define Q{’;“d ={xeR":a(x) <L;j}with sup B(x) <Lj<oo, je{l,---, .4 +1}. Then the
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following inclusion holds & C @ C Qf’g’d C Q{’l"’d C--- C Qf'l'f'd C Qi’:’j c--C Qfm;if
Due to the existence of the multiple functions V), given by (3.7) and Assumption 3.1, the Lemma
3 in [17] again implies that if xo € Q’Z’g’d, then (p(,(,)(nxo) € SLawelr Stays inside Qi”a‘fil, vt >0,

that is, the solution @, (t,X0) € Fwenr With xo ¢ QZ’)’"d is bounded.

Therefore, every solution Ds(1) (t,%0) € Lywen of the switched system (3.1) under arbitrary dwell-
time switching signal o(z) is bounded. O

Exploring the above results, next theorem establishes an extension of the invariance principle by
means of multiple auxiliary scalar functions.

Theorem 8. Consider the switched affine system (3.1) and the multiple auxiliary functions V),

given by (3.7) such that (3.8) is satisfied. Moreover, we assume that Assumption 3.1 is satisfied.

Then every solution O (1) (t,%0) € Faweit» X0 € R", is attracted to the largest weakly invariant set
Py.d

OfQ ms!

Cyy1”
Proof. First, we consider xy € ®44_Note that, in the hypotheses of this theorem, the Assump-
tion 3.1 and the inequalities (3.7) and (3.8) are satisfied. Then, by Lemma 7 and Lemma 3 in [17],
we have that every solution (1) (t,%0) € Fyweu is bounded and stays inside Q?’jjil forallz > 0.

By Proposition 2.1 we conclude that the solution will be attracted to a weakly invariant set in
Po,d
(YN

Now let xg & ®¢ and @g,)(t,x0) € Faeu- If there exists 7 > 0 such that @) (7,x0) € @M,
then the proof follows from the first part of this proof. Suppose the solution @ ;) (t,%0) € Lawell
does not enter @4 Due to Lemma 7, we have that solution O (1) (t,x0) € Fywen is bounded.
Consider the subsequence of switching times {Tk,,} at which the system p becomes active,
that is, o(%,) = p. From Assumption 3.1, we have that Vp((p(,mp)(rkp,xo)) is a decreas-
ing sequence of real numbers bounded from bellow. Then, Vp((po(fkp)(rkp,xo)) — r, where
k — oo for all p € &. By Proposition 2.1, ®Z (x) is a nonempty and weakly invariant set.
Let ¢ € of (xp), then there exists a sequence {7} such that @o(1j)(tj,%0) — c as j — oo. Since
the set & is finite, there exists at least one index p € &7 and a subsequence {z;,} such that
tj; € Iy. Then, Vﬁ(q)g(,ji)(tji,xo)) — V5(c) = rp for all ¢ € o (xp). Using the same ideas of
the proof of Proposition 2 in [3], we can guarantee the existence of an interval [g,7] contain-
ing the origin and functions v;(r) = Qg 41,)(f +1;,X0) defined on [, 7], satisfying the follow-
ing properties: v;(¢) uniformly converges to v(z) on [g,7], V(1) C oS (x) for all 7 € [g,7],
0(t) = Az(v(t)) + by and v(0) = c. Then Vi(v(t)) = rp and VV5(0 (1)) [Ap(v(2)) + bp) = O for
all € [g,7]. Particularly, for 7 = 0, VV;(v(0)) [Ap(v(0)) + bp] = VV(c) [Ap(v(c)) +bp] =0,
then ¢ € {x € R" : VV,,(x)(Apx+b,) = 0} and of (x0) C {x € R" : VV,,(x)(Apx+ b)) =0} C
©"4. The set @ (xo) is a weakly invariant set, then the solution is attracted to the largest
weakly invariant in {x € R" : VV,(x)(Apx +b,) = 0}, which leads to a contradiction because
{x € R" : VV,(x)(A,x+b,) = 0} C @4 Thus, there exists 7 € R such that ¢(7,xo) € @4
and the result follows from the first part of this proof.
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Therefore, every solution (pc,(,)(t,xo) € Sawen 1s attracted to the largest weakly invariant set in
Pond

s =
The following example illustrates Theorem 8.
Example 3.2. ( [12]) Consider the affine switched system
X =AgX+bo(), xeR?, (3.16)
—4 1 2 7 =5
where, o(t) € &2 = {1,2} and A; = . ],blz | LAy = 3 Ol,bz—

. The eigenvalues of the matrices Ap, p € {1,2}, are {—3.4384,—7.5616} and

{—3.5+1.6583i}, respectively. In addition, the equilibrium points of each subsystem p, p €
{1,2}, are given by: x.q, = [0.5769 0.3077)" and x.,, = [1 —1.4]".

With the objective of obtaining an estimate of the attractor set for the switched affine system
0.6507 0.1375

3.16), ider th ili ti 3.7), with Pp = Py; =
( ), consider the auxiliary functions (3.7), with P 1 [ 01375 0.3493

] and P, =

0.1133 0.0688
0.0688 0.3475
can conclude that & ¢ @4 C Q Fimy ' C Q - Q C Q ,as o =0y =9.3252>

Amax (Pyr, ) (1 + ||d1 ||)2, where 11 is glven by (3.10), 0 = 22.1834, £2 = 527716, I3 = 125.5371,
0.7040 0 0.2960 0
and B, = ml =
0 0.7040 0 0.2960

21 =

] satisfying (3.8) and the vector d = dy = [1 0.5]'. From Lemma 6, we

Pml dl Pml7dl Pml dl

Py =Py, = 1 . Then, from Theorem 8§,

. . . . . Py od
every solution Po (1) (t,%0) € Lawenr I8 attracted to a weakly invariant set in Q Zml L Therefore, the
3
. . . L . By od .
attractor set of the system (3.16) is contained in the ellipsoidal region Q gml ! for any dwell-time
3

switching signal. The volume of this estimation is vol (Q;ml ’dl) = 1332.58.
3

Figure 3 illustrates Q N and a trajectory starting at xo = [110 85)' with switching signal o (t)
with dwell-time h = O 2 seconds This figure confirms the results of Theorem 8 by showing an
attractor inside the set Q. "ot Function WV, »(X)(Apx+bp), p € P, along the solution of the
switched affine system (3. 16) is shown in Figure 4. Observe in Figure 4 the changes of sign of the
derivate of V along the solution.

4 ESTIMATING THE ATTRACTOR SET BY OPTIMIZATION

In this section, the results of Section 3 are explored to obtain a systematic method to find the
common auxiliary function or multiple auxiliary functions for the switched affine system in or-
der to determine an estimate of the attractor as small as possible. For this purpose, a constrained
optimization problem where the restrictions are given by the sufficient conditions of the invari-
ance principle has been considered. Using this new procedure, Examples 3.1 and 3.2 are solved
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Figure 3: Phase portrait for Example 3.2 with initial condition xo = [110 85]" illustrating the

Py, ,dy . . . . .
level set Q /’1 and switching signal with dwell-time 4 = (0.2 seconds.
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Figure 4: Function VV, (x)(A,x+ b)), defined by Py, P»; and d;, along the switched affine system
solution with initial condition xo = [110 85]'.

again to show that the new estimates of the attractor have smaller volume than the estimates ob-
tained previously by trial and error. To obtain the solution of the optimization problems in the
next examples, we have used the function ga, of the Global Optimization Toolbox of Matlab,
which is a Genetic Algorithm which explores the technique of heuristic optimization, inspired
by biological evolution, to solve the optimization problem [16].

4.1 Common auxiliary function

Theorem 3 ensures that the sublevel set Q?d, associated with the common auxiliary function
(3.2), is an estimate of the attractor set for the switched affine system (3.1) under arbitrary dwell-
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time switching. However, it is clear from Lemma 1 and Example 3.1 that the size of set Qf’d is
related to matrix P € R"*" and the vector d € R".

Thus, we are interested in finding a matrix P > 0 and a vector d € R” such as (P,d) minimizes
the volume of the set Qf’d. For this purpose, we considered the next optimization problem. Note
that this problem can be constructed due to the format of the assumptions of Theorem 3.

Optimization Problem 4.1.

minimize —In(det(P)) 4.1
subject to P>0 4.2)
0,<0,Vpe P 4.3)
Amax (Pur) (zp + ||d[))* =1 < 0,¥p € 2 (4.4)
where

PeR™ deR", Q,=A,P+PA,c R Vpe 2,
up = ||b,P—d'PA,||, Vpe 2, §,=|d'Pb,|, Vpe 2,

Hp+ /13 = 2 (08
e Ranax Q)

,Vpe L.

The next theorem establishes the formulation for finding an estimate of the attractor set of the
switched affine system (3.1) with minimum volume. In this theorem, the estimate of the attractor
set is formulated into an optimization problem.

Theorem 1. Suppose that the pair (P,d) is a solution for the Optimization Problem 4.1. Then,
Qf’d is an estimate of the attractor set for the switched affine system (3.1) with minimum volume,
that is, every solution Do (1) (t,%0) € Luwen Is attracted to a weakly invariant set in Qf‘d.

Proof. Let P € R"*" and d € R" be a solution to the Optimization Problem 4.1. Then,
QP — {xeR": (x—d)YP(x—d) < 1} = {x eR": (x—d) P(x—d) < £} = Q"

where P = %F. Moreover, the constraints of the optimization problem (4.2)—(4.3) are equivalent
to (3.3) and (3.4). Thus, from Theorem 3, it follows that every solution (pc(,)(t,xo) € Lawell 18
attracted to a weakly invariant set in Qf’d. Since the volume of Qf’d is proportional to (det(P))'/?
[4], minimizing this determinant is equivalent to minimizing —In(det(P)) and therefore, the

proof is complete. g

We can obtain the matrix P and the vector d satisfying Theorem 1 by solving the Optimization
Problem (4.1) via numerical algorithms. In other words, a computational procedure based on
nonlinear optimization to estimate the attractor set for the switched affine systems, under arbitrary
dwell-time switching, is obtained by exploring Theorem 1.
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The next Procedure 4.1 explores Theorem 1 to estimate the attractor set of the switched affine
systems (3.1) under arbitrary dwell-time switching signals.

Procedure 4.1.

e Input: A, c RV, b, cR", pc &.

e Qutput: Qf’d (an estimate the attractor set of switched affine systems (3.1) obtained via
Theorem 1).

1. Find the positive definite matrix P € R™" and the vector d € R", solving
Optimization Problem 4.1.

2. Calculate the volume of the set Qf’d.

Example 4.1 explores Theorem 4.1 and Procedure 4.1 to solve Example 3.1 again, in order to
obtain a better estimate of the attractor set of the switched affine system (3.6) under arbitrary
switching signal.

Example 4.1. Consider the switched affine system (3.6) presented in Example 3.1. Following
0.0246 —0.0006

1andd:

the Procedure 4.1, we can find the local optimal solution P =
—0.0006  0.0394

0.0841
0.7245

] , Which defines the ellipsoidal region Qllj’d centered at d with vol (Qllj’d> =100.8775.

Then, from Theorem 4.1, every solution Ps(1) (t,%0) € Lawelr Is attracted to a weakly invariant set
in Qf‘d. Therefore, the attractor set of the system (3.6) is contained in the ellipsoidal region Qf’d
for any dwell-time switching signal. Moreover, we can confirm that the estimate of the attractor

set obtained by using Procedure 4.1 is better than those presented in Example 3.1, whose volume
is vol (@)1} = 680.7098.

Figure 5 illustrates the trajectory of the switched affine system with xo = [—15 27]/ under a dwell-
Py.dy
7
and Qf’d, obtained by using Procedure 4.1. The attractor set is contained in Qf’d, confirming the
results of Theorem 4.1.

time switching signal with h = 0.2 seconds, and, the estimate of Q , obtained in Example 3.1,

4.2 Multiple auxiliary functions

The results established in Subsection 8 ensure that the set QZ’;‘il , associated with the scalar
function o(x), given by a(x) = (x—d)P,(x—d), where P,, € R"™", is an estimate of the attractor
set of the switched system affine (3.1) for any dwell-time switching signal o (¢). However, it is
evident from the hypotheses of Theorem 8 that the size of QZ’Zjil, is related to the positive
definite matrices Py, -+, Py, Py, Py € R"*" and the vector d € R". Then, at this moment, we are
interested in finding matrices Py, -, Py, Py, Py € R™" and vector d € R” that minimize the
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Figure 5: The estimates Qf’d and Q;‘ 41" of the attractor set and a solution (pG(t)(t,xo), X0 =

[—15 27]', of the switched affine system (3.6) under a switching signal o(¢) with dwell-time
h = 0.2 seconds.

volume of the set Qf’:y"il . For this purpose, we consider the next optimization problem. Note that
this problem can be constructed due to the format of the assumptions of Theorem 8.

Optimization Problem 4.2.

minimize

subject to

where

—In(det(P,,))

P,>0,Vpc ¥

0,<0,Vpe &

P,—P,<0,Vpec &
P,—Py<0,Vpe ¥

Amax (Pur) (1 + [1d[|)> =1 < 0, Vp € 2
P,>0

Py >0

P, eR™" NVpe P, By,c RV Py e R, d eR",
Qp =ALP,+PyA,Npe P,

Ky = ||b),P, —d'PyA,|| ,Vp € 2,

§p=|d'Pyby| Vp e 2,

o + \/Klzz —2Amax (Qp) Ep
L Ao ()

Vpe P

4.5)
(4.6)
A.7)
4.8)
(4.9)

(4.10)

@.11)

4.12)
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The next result allows us to find an estimate of the attractor set of switched affine system 3.1
with minimum volume under arbitrary switching signal by exploring Theorem 8. In this result,
the estimation of the attractor set is formulated as a nonlinear optimization problem.

Theorem 2. Suppose that (Py,...,Py,Pn,Pu,d) is a solution of the Optimization Problem 4.2.

P;
Consider that Assumption 3.1 is satisfied and £; > W@l, Vje{l,..., /" +1}. Then,
in\I'm
Q?’ijil is an estimate of the attractor set of the switched affine system (3.1) with minimum vol-
ume for any arbitrary dwell-time switching signal, that is, every solution @ ;) (t,%0) € Lawelr is

attracted to a weakly invariant set in Qf’;/’i,

Proof. Consider that (Py,...,P Py, Py,d) is a solution for the Optimization Problem 4.2. From
constraints (4.6) - (4.7) and from the first .4~ coordinates of the solution of the Optimization
Problem 4.2, it is possible to write the functions V), as (3.7) such that (3.8) is satisfied. Using
(4.8) and (4.9), we can define a(x) = (x—d) Py (x—d) and B(x) = (x —d)'Py(x — d) satisfying
(3.11). Rewriting (4.10), we have Amax(Pu) (N, + |d|))* < 1, Vp € 2, that is, by Lemma 6,

P
one guarantees that (3.15) is satisfied, where {p =1, ¢; > Mﬁjq, Vjie{l,...,./ +1}

= Amin(P
and 7 is given by (3.10). Since Assumption 3.1 is consideﬁlglgl,1 (evnézy hypothesis of Theorem 2
is satisfied. Therefore, every solution of the switched affine system (3.1) under arbitrary dwell-
time switching signal, @) (#,X0) € Fawen, With xo € R”, is attracted to the largest invariant
set in QZf’;ﬁi. Since the volume of Qf’”’d is proportional to (det(P,,))'/? [4], minimizing this
determinant is equivalent to minimizing — In(det(P,,)) and the proof is complete. O

Positive definite matrices Py,...,Py, Py, Py € R"" and a vector d € R”", which satisfy The-
orem 2, are obtained by numerically solving the Optimization Problem 4.2. In other words,
(Piy...,Py,Py,Py,d) can be systematically calculated to obtain a good estimate of the attractor
set.

Exploring Theorem 2, the next procedure is defined to estimate the attractor set of switched affine
systems (3.1) under arbitrary dwell-time switching.

Procedure 4.2.

e Input: A, e RV, b, cR", pe .

* QOutput: Qf’;/’il (estimate of the attractor set of the system (3.1) obtained via Theorem 2.)

1. Find the positive definite matrices Py, ..., Py ,, By, Py € R™™ and the vector d € R",
by solving the Optimization Problem 4.2.

2. Since by=1, for je{1,....,. 4/ +1},
2'max(PM)

* calculate ;> ————{;_1.

)Lmin (Pm)
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3. Calculate the volume of the set Qf’;/’il.

Example 4.2 explores Theorem 2 under Procedure 4.2 to obtain a better estimate of the attractor
set as compared to the estimate obtained in Example 3.2.

Example 4.2. Consider the switched affine system of (3.16) presented in Example 3.2. Us-

ing the Procedure 4.2 and solving the Optimization Problem 4.2, we obtain the local opti-

0.4759 0.0938] [0.5625 0.0170] [0.4758 0.0938]
) — _

mal solution P = M=

0.0938 0.4983|’ 0.0170 0.5663|" ™  ]0.0938 0.4982|
05816 0 B [ —0.3110

0 0.58160| 0.1157

{3 = 3.2522. Then, from Theorem 2, every solution (pg(,)(t,xo) € SLawell 18 attracted to a weakly

invariant set in QZ’“d. Therefore, the attractor set of the system (3.16) is contained in the el-

lipsoidal region QZ’“d for any dwell-time switching signal. The volume of this estimation is

] and the scalars by = 1, {1 = 1.4815, ¢, = 2.1951 and

vol (QZ’“d> = 21.3861. Moreover, we can confirm that the estimate of the attractor set ob-
tained by using Procedure 4.2 is better than the one presented in Example 3.2, whose volume
my »d

is vol (@) = 1332.58.

3

Figure 6 illustrates the trajectory of the switched affine system with xo = [90 27]/ under a dwell-
Py, ,d . .

time switching signal with h = 0.2 seconds, and, the estimate of Q P V% obtained in Example 3.2,
3

and QZ’“d, obtained by using Procedure 4.2. The attractor set is contained in QZ”’d, confirming

the results of Theorem 2.

05 0 05 1 15 |

L L L L L L L L L - -
-40 -20 0 20 40 60 80 100 120 0 5 10 15 20

Figure 6: Phase portrait for Example 3.2 with initial condition xo = [90 27| illustrating the level
sets QZ’”d, ng‘ ' and switching signal with dwell-time 4 = 0.2 seconds.
: 3
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5 CONCLUSION

In this paper, we have studied the asymptotic behavior of the solutions of the class of switched
affine systems under arbitrary dwell-time switching signal exploring the specific structure of
these systems.

The invariance principles proposed in this paper were obtained via a common auxiliary scalar
function and multiple auxiliary scalar functions. These principles offer estimates of the attractor
set of the switched affine systems (3.1) in terms of an ellipsoidal sublevel set for any dwell-
time switching signal. Exploring the invariance principle and a nonlinear optimization problem,
optimal estimates of the attractor set were obtained. Illustrative examples show the potential
of the theoretical results in providing information on the asymptotic behavior of solutions of
switched affine systems under arbitrary dwell-time switching signals.
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RESUMO. Neste artigo, uma abordagem para investigar o sistema chaveado afim por
meio de desigualdades matriciais é apresentado. Particularmente, uma extensao do principio
de invariancia de LaSalle para esta classe de sistemas sob sinal chaveamento dwell-time
arbitrdrio é apresentado. Os resultados propostos empregam uma fungdo escalar auxiliar
comum e também multiplas fungdes escalares auxiliares para estudar o comportamento
assintdtico das solugdes chaveadas e estimar seus atratores para qualquer sinal de chavea-
mento dwell-time. Uma caracteristica especifica destes resultados é que a derivada das
fungdes escalares auxiliares podem assumir valores positivos em alguns conjuntos limi-
tados. Além disso, um problema de otimizacdo restrita ¢ formulado para determinar nu-
mericamente as fung¢des escalares auxiliares e minimizar o volume do atrator estimado.
Exemplos numéricos mostram o potencial dos resultados teéricos em fornecer informagdes
sobre o comportamento assintético das solugdes do sistema chaveado afim sob sinais de
chaveamento dwell-time arbitrarios.

Palavras-chave: sistema chaveado afim, principio de invariancia, dwell-time, conjunto de
atrator.
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