
i
i

“TEMA˙V21N1˙1369” — 2020/3/18 — 18:12 — page 133 — #1 i
i

i
i

i
i

Tema
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ABSTRACT. The classic definition of binomial numbers involves factorials, making unfeasible their ex-
tension for negative integers. The methodology applied in this paper allows to establish several new bino-
mial numbers extensions for the integer domain, reproduces to integer arguments those extensions that are
proposed in other works, and also verifies the results of the usual binomial numbers.

To do this, the impossibility to compute factorials with negative integer arguments is eliminated by the
replacement of the classic binomial definition to a new one, based on operations recently proposed and,
until now, referred to as transformations by the successive sum applied on sequences indexed by integers. By
particularizing these operations for the sequences formed and indexed by integers, it is possible to redefine
the usual binomial numbers to any integer arguments, with the advantage that the values are more easily
computed by using successive additions instead of multiplications, divisions or possibly more elaborate
combinations of these operators, which could demand more than one or two sentences to their application.

Keywords: discrete mathematics, algebraic structures, recursion, sequences, successive product, successive
sum, binomial numbers.

1 INTRODUCTION

Binomial numbers have an essential role in the most varied fields of pure and applied mathe-
matics and occur in many important algebraic developments. It is possible to cite, among others,
the Theory of Numbers and applications in differential and integral calculus, [5]. Normally these
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134 DOMAIN EXTENSIONS OF BINOMIAL NUMBERS APPLYING SUCCESSIVE SUMS TRANSFORMATIONS

constants appear when the operations contained in (a+b)n, being n a natural power, are devel-
oped and the various terms grouped according to the a and b resulting exponents. However, other
compound operations without the aspect of potentiation can produce them, as will be seen in this
article.

The earliest known binomial application example is due to Euclid (325 BC–265 BC) which
through geometry concluded that the square area is equal to the sum of the rectangles areas
contained in it [2], whereas the representation of binomial constants in the form of a table is
usually attributed to the Chinese mathematician Yang Hui (1238 AD–1298 AD), although there
are some divergences between references. Posteriorly, the binomial numbers were also studied
by Blaise Pascal (1623 AD–1662 AD) and more recently by Newton, Euler, Abel, and Gauss
among others [11].

The usual binomial numbers are defined by a combination of products and divisions involving
the natural numbers in factorial forms. In turn, these factorials were extended to real arguments
through the gamma function by Euler [1], allowing to establish an infinity of binomial results in
R. Nevertheless, the domain limitation of the usual binomials has remained, because the gamma
function is not defined for negative integer arguments. In recent decades, efforts have been made
to overcome this difficulty, usually by extending some property to the setZ– of the usual binomial
numbers, as done in [4] and [8].

This paper presents in a synthetic form how to define and extend the usual binomial numbers for
any integer arguments, according to the proposition made in [9], which changed the approach to
the question. It deepens the brief exposition presented in [10]. For this purpose, it was not used
factorials or some kind of product in the definition of binomials; instead, the so-denominated
transformations by the successive sum on sequences indexed by integer numbers defined applying
additions have been used. Since such transformations can be performed within any arguments in
Z, it has become possible to obtain binomial numbers easily, both in the usual natural domain and
in the integer one. These results are consistent with those of other authors cited and are obtained
considering a set of interest properties that must remain valid to any extension.

Behind this proposition there is a new methodology for approaching recursive functions, through
mathematical operations that transform integer-indexed sequences from the solution of a system
of equations composed of a known value and a recursion. For transformation orders greater or
equal than two and strictly positive arguments, it is verified that the solution obtained for this
system can be computed by nested summations. But, as it will be seen in this work, nested
summations had not been used in the cases of: unit and null orders, and negative first order.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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MOESIA, KARAM-FILHO and GIRALDI 135

2 SUCCESSIVE SUM APPLIED ON SEQUENCES INDEXED BY INTEGER
NUMBERS

The successive sums introduced in [9] can be defined as follows.

Definition 2.1.

Let G(A,+) be a group, where A is any non-empty set, and SZ the set of all sequences in A
indexed by integers, with the general form

(α i) i∈Z = ( ... , α –2, α –1, α 0, α 1, α 2, ... ,α i , ...), (2.1)

then, with these conditions, it was recursively defined the function SZ : SZ× Z→ A by{
SZ ((α i),0) = η (+), and

SZ ((α i),z+1) = SZ ((α i),z)+ αz+1, ∀z ∈Z ,

(2.2)

(2.3)

called “successive sum of (α i), calculated in i = z”, where η (+) is the neutral element of the
binary operation (+).

For convenience, SZ ((α i),z) will be symbolized by the notation

SZ ((α i),z) = α i

−
+ i= z; ∀z ∈Z . (2.4)

It should be noted that according to the symbology adopted for successive operations, the binary
operator + can be any one applicable on the terms of the sequence (α i) but, as well as associative,
it must also be commutative.

The values of the successive sum for negative z are computed by the same expressions (2.2)–
(2.3), but using the recursion as a system of equations and doing z = –1, –2, –3, and so on. When
considering all integers, it is possible to obtain the following expressions by finite induction:

α i

−
+ i= z = α 1 +α 2 +α 3 + ...+αz−1 +αz; ∀z ∈Z *+, (2.5)

α i

−
+ i= 0 = η (+), and (2.6)

α i

−
+ i= z = (−α 0)+(−α –1)+(−α –2)+ ...+(−αz+2)+(−αz+1); ∀z ∈Z –, (2.7)

where the symbol – placed before each α i indicates the symmetric of the respective term. When
attempting to write expressions (2.5)-(2.7) in the form of a single summation one realizes that it
is not possible. On the other hand, any summation can be written as a successive sum:

α i+m–1

−
+ i= n–m+1 =

n

∑
i=m

α i; ∀m6n, m and n ∈Z. (2.8)

It should be noted that all summation can be represented by a successive sum, but it is impossible
to keep the positive step +1 and make the upper index smaller than the lower one. In addition, all
results in (2.8) are computed using only the expression (2.5), what clarifies why it was initially

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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136 DOMAIN EXTENSIONS OF BINOMIAL NUMBERS APPLYING SUCCESSIVE SUMS TRANSFORMATIONS

stated that successive sums are more generic than summations. Another aspect is the importance
of keeping the variable i explicit, to allow making assignments to it. In (2.8) these assignments
have been done in two different ways: one in terms of the sequence index and the other in terms
of the value to be computed. In the sequence’s terms α i the assignment i← i+m− 1 produces
the range {αm,αn} of values to be computed, while making i = n−m+1 results in the quantity
m−n+1 of these values.

3 TRANSFORMATIONS OF SEQUENCE BY THE SUCCESSIVE SUM

In this paper the new sequence created from the results of a successive operation will be called
trans f ormation, then:

Definition 3.2.

The integer sequence transformation by the successive sum T Sz : SZ → SZ is defined as the
sequence formed by all values of a given successive sum calculated in i = z:

(α i

−
+ i=z)z∈Z = ( ... , α i
−
+ i= –1, α i

−
+ i= 0, α i

−
+ i= 1, ... ,α i

−
+ i=z, ...). (3.1)

The notations introduced in [9] will also be used here:

(α i

−
+ i= z)z∈Z = α i

−
+ i = α i

1p+ i. (3.2)

The new sequence T Sz can also be transformed, producing another T Sz:

((α i
1p+ i)

−
+ i= z)z∈Z = ( ... ,(α i

1p+ i)

−
+ i= –1, (α i

1p+ i)

−
+ i= 0, (α i

1p+ i)

−
+ i= 1, ...

... ,(α i
1p+ i)

−
+ i= z, ...).

(3.3)

By analogy to the symbolism of (3.2), it has the following notations:

((α i
1p+ i)

−
+ i= z)z∈Z = (α i

1p+ i)

−
+ i = α i

2p+ i. (3.4)

so that (3.3) can be represented more compactly as

(α i
2p+ i= z)z∈Z = ( ... , α i

2p+ i= –1, α i
2p+ i= 0, α i

2p+ i= 1, ... ,α i
2p+ i= z, ...), (3.5)

which is the second order integer sequence transformation by the successive sum.

Naturally, this process can be repeated without great difficulty indefinitely. In the following
expression we have the T Sz of order n+1, from the T Sz of order n:

((α i
np+ i)

−
+ i= z)z∈Z = (α i

np+ i)

−
+ i = α i

n+1p+ i; n ∈N *. (3.6)

Similarly to what was done to extend the successive sums to negative integer values, the integer
sequence transformations may have their orders extended to non strictly positive integer argu-
ments. The construction of T Sz for any negative order also applies the dualistic interpretation

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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MOESIA, KARAM-FILHO and GIRALDI 137

of the recursions in these transformations and is more detailed in [9]. Thus, the null order in-
teger sequence transformation by the successive sum is obtained assuming that it is possible to
consider n = 0 in (3.6):

((α i
0p+ i)

−
+ i= z)z∈Z = (α i

0p+ i)

−
+ i = α i

1p+ i. (3.7)

By interpreting (3.7) as an equation, one can determine which are the terms of the
sequence α i

0p+ i such that its first-order transformation produces (3.1), resulting in

(α i
0p+ i= z)z∈Z = ( ... , α –2, α –1, α 0, α 1, α 2, ... ,α z , ...), (3.8)

therefore the null-order transformation is the identity of those transformations.

Likewise the previous case, it is possible to admit n = –1 in (3.6):

((α i
–1p+ i)

−
+ i= z)z∈Z = (α i

–1p+ i)

−
+ i = α i

0p+ i. (3.9)

For a new extension, (3.9) is interpreted again as an equation, which results in the first negative
order integer sequence transformation by the successive sum:

(α i
–1p+ i= z)z∈Z = ( ... ,−α –2 +α –1, −α –1 +α 0,−α 0 +α 1,−α 1 +α 2, ...

... ,−α z−1 +α z , ...),
(3.10)

where – α is the symmetrical element of α . This process can be repeated indefinitely for all
negative orders.

It is noted that the integer-sequence transforms by the successive sum also have an inverse trans-
form, which is different from (3.10) with respect to the subset of sequences in which it can
be applied. This type of difference occurs for all applications of inverse transformations of the
transform T Sz, that is: the second, third, fourth, and the subsequent inverse transformations.

The recursive property relating the transforms T Sz of order k and k+1 to any integer arguments
is given by the expression (see [9], items 5.1.5 and 5.1.6):

α i
k+1p+ i = z+1 = α i

k+1p+ i =z + α i
kp+ i = z+1; ∀ k and z ∈Z . (3.11)

The transformations T Sz have among their properties some that include the usual binomial num-
bers. For example, using (3.11) it is possible to determine the expressions for the general term of
the sequence of the various negative order transforms, part of which is shown in Figure 1.

The natural constants that can be observed from the columns in Figure 1 are the values of the
table of Yang Hui, cited in the introduction of this article, that can be arranged in the form of a
triangular table, called Pascal triangle or triangle of Tartáglia. Besides of being easily obtained
by the addition algorithm highlighted in Figure 1 (see the construction of columns C1–C4), it
is also known that they correspond to the usual binomial numbers, although no potentiation is
being used here. As will be seen, from the advent of the transformations TSz, there are also new
alternatives to represent these constants. In fact, let (i) be the usual sequence of integers, that is:

(i) i∈Z = ( ... ,−2,−1, 0, 1, 2, ... , i , ...). (3.12)

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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138 DOMAIN EXTENSIONS OF BINOMIAL NUMBERS APPLYING SUCCESSIVE SUMS TRANSFORMATIONS

Figure 1: Examples of the generic term of the sequences (α i) resulting from T Sz transforms of
negative order.

By applying (3.10) on the sequence (i), it follows that

i –1p+ i= z = −(z−1)+ z = 1; ∀ z ∈Z . (3.13)

The same can be done by applying (3.8) on the sequence (i):

i 0p+ i= z = z; ∀ z ∈Z . (3.14)

Following for orders 1, 2, 3, etc., all constants of Figure 1 can be obtained.

In order to simplify the symbology of T Sz applied to the sequence (i), that is, the sequence of the
integers themselves, the following notation has been established:

i kp+ i= z = z kp+ ; ∀ k and z ∈Z . (3.15)

With the same notation as in (3.15) the values that compose the triangle of Pascal, and therefore
the constants of Figure 1, can be represented according to Figure 2.

4 FIRST EXTENSION OF BINOMIAL NUMBERS

In this section, using a new approach it will be verified how it is possible to apply the transforma-
tions by the successive sum to represent the binomial numbers by additions, as well as to extend
them to any integer arguments. To do that, it will be necessary the following result, Corollary 4.0
below, here obtained by a different demonstration than the usual one, [3], which considers nested
summations.

Corollary 4.0 (Binomials by the Successive Sum).

Any usual binomial number can be calculated through transformations by the successive sum on
the natural numbers sequence applying the expression(

n
k

)
= i k−1

p+ i= n− k+1; (n− k)> 0; ∀ k and n ∈N. (4.1)

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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MOESIA, KARAM-FILHO and GIRALDI 139

Figure 2: Examples of the generic term of the sequences (α i) resulting from the negative order
transform T Sz, with the constants represented by transformations of the natural numbers by the
successive sum.

Proof.

Let (z + i) be the sequence defined by

(z+ i) i∈Z = ( ... , z−2, z−1, z+0, z+1, z+2, ... , z+ i , ...); z ∈Z. (4.2)

A significant property of the transformations by the successive sum, demonstrated in [9] (chapter
6, item 6.1.2), establishes that

i np+ i= z =
z(z+ i)

−
· i= n

(n+1)

−
·

; ∀n ∈N and ∀z ∈Z, (4.3)

where (z+ i)

−
· i= n is the successive product of the (z + i) sequence, calculated in i=n, and (n+

1)
−
· is the usual factorial given by (n+1)(n)(n–1)...(2)(1). Since the usual multiplication “·” is

associative and commutative, it can be considered as a “+” operator, then (2.2)–(2.3) can be
applied, but in this case the neutral element is 1.

According to (4.3) any product of successive integers can be done through i np+ i= z, so it is expected
that it also represents a quotient of factorials. Indeed, firstly, the domain of (4.3) can be extended,
allowing n = –1. After that, doing the assignment n← k−1, k ∈N, one has

i k−1
p+ i= z =

z(z+ i)

−
· i= k−1

k

−
·

; ∀k ∈N and ∀z ∈Z. (4.4)

Now, by making the assignment z← n− k+1, (n− k)> 0 in (4.4):

i k−1
p+ i= n− k+1 =

(n− k+1)(n− k+1+ i)

−
· i= k−1

k

−
·

; (n− k)> 0; k,n ∈N. (4.5)

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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140 DOMAIN EXTENSIONS OF BINOMIAL NUMBERS APPLYING SUCCESSIVE SUMS TRANSFORMATIONS

The equality (4.5) can also be expressed by the factorial quotient that defines binomial numbers.
There are three cases to be checked: k > 1, k = 1 and k = 0. For the first one, opening the indicated
operations in the numerator, one has

i k−1
p+ i= n− k+1 =

(n− k+1)[(n)(n−1)(n−2)...(n− k+3)(n− k+2)]
k

−
·

=

=
n

−
·

(n− k)

−
· k

−
·

=

(
n
k

)
; k > 1, (n− k)> 0; k and n ∈N.

(4.6)

The two remaining cases can be easily verified (see [9], item 6.2.3). Then it is demonstrated (4.1).

�

Figure 3 confirms (4.1) through some examples.

Figure 3: Binomial numbers arranged in the Pascal Triangle, represented by usual
symbology and followed by their respective TSz transformation in the compact form:
i

k−1
p
+

i=n−k+1 = (n− k+1)
k−1
p
+

.

As highlighted in the introduction, no extension by the gamma function is defined for negative
integer arguments, that is: there is no result for the factorials of –1, –2, –3, etc. On the other hand,
the second member of (4.1) is only composed of additions and can be calculated for any integer
arguments, so the first extension that can be proposed for binomial numbers is simply to apply
the successive sum of (4.1) also to negative values of n and k:

Binomial Extension 1.

Let G(Z,+) be the usual group of integers and (i) the integer’s sequence, with elements in the
general form given in (3.12). Under these conditions the binomial number n choose k, or the
combinatorial number n choose k, is defined by

(
n
k

)
= i k−1

p+ i= n− k+1; ∀k and n ∈Z. (4.7)

Part of the new values for binomial numbers that can be computed using (4.7) are null, what will
be demonstrated in what follows.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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Property 1. First Extension Binomials with Null Values:

(
n
k

)
= 0; ∀k 6−1 and n ∈Z. (4.8)

Proof.

Reordering (3.11) and considering as its particular case the sequence (3.12):

i kp+ i = z+1 = i k+1p+ i = z+1− i k+1p+ i =z; ∀ k and z ∈Z . (4.9)

If k = –2 it is possible to apply (3.13) into the second member of (4.9):

i −2
p+ i = z+1 = i −1

p+ i = z+1− i −1
p+ i =z = 1−1 = 0; ∀z ∈Z . (4.10)

By the reusing of (4.9) with the result obtained in (4.10) and so on, it is possible to get null results
for all other negative values of k:

i kp+ i =z = 0; ∀k 6−2 and z ∈Z. (4.11)

From (4.11), it is clear that there exists one subset with only null results in (4.7). To confirm
the subset ∀k 6 −1 and z ∈ Z, specified in (4.8), consider the assignments z← n− k + 1 and
k← k−1 in (4.11). �

When considering binomial numbers with k > −1 and n – k < 0 the extension has results that
are not necessarily null. For each k there is some expression easily inducible (see (3.13)), as(

n
0

)
= 1; ∀n ∈Z –, (4.12)

or it can also be obtained using (4.5) with its domain extended:(
n
k

)
=

(n− k+1)(n− k+1+ i)

−
· i= k−1

k

−
·

; k > 0, (n− k)< 0. (4.13)

Figure 4 exemplifies some values of this extension.

What prevents to consider expression (4.7) as the definitive extension for the binomial numbers
is the fact that it is not the only one possible, as will be seen in the next section. Moreover, it was
not demonstrated that this is the best extension for any application or, at least, for most of them.
These doubts lead to more embracing studies evolving successive sums as a tool for extending
binomial numbers, as proposed in the following.

5 BINOMIAL NUMBERS ON ANY SEQUENCE THROUGH SEQUENCE’S
TRANSFORMATIONS BY THE SUCCESSIVE SUM

It is easy to verify that the simple change of the sequence (i) by other (α i) allows to obtain an
infinity of different results through integer sequence transformations, so that it comes out the

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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142 DOMAIN EXTENSIONS OF BINOMIAL NUMBERS APPLYING SUCCESSIVE SUMS TRANSFORMATIONS

Figure 4: The first extension of the binomial numbers, according to (4.7). The darkest area cor-
responds to (4.8), in the half-light it is the traditional Pascal triangle, and in the illuminated area
there are some extended results, given by (4.12) and (4.13).

question on how to find which sequence or sequences are appropriate to obtain the binomial
numbers of interest. It is also possible to study the question in a more general sense by con-
sidering any sequences indexed by integers and verifying what properties of the usual binomial
numbers are preserved.

In the following, it is presented the binomial numbers definition on any sequences.

Definition 5.3.

Let G(A,+) be a group and SZ the set of integer sequences on A, with elements in the general
form given in (2.1). Under these conditions the binomial number n choose k on sequence (α i),
or the combinatorial number n choose k on sequence (α i), is defined by

nC(α i)k =

(
n
k

)
α i

= α i
k−1
p+ i= n− k+1; ∀k and n ∈Z. (5.1)

Considering the sequence of integers themselves the expression (5.1) becomes equal to the ex-
pression (4.7), represented as nC(i)k, then being a generalization made from the first extension
of binomial numbers which was proposed in the previous topic.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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5.1 Stifel’s Relation for Binomial Numbers on any Integer Sequence

A remarkable additive relation due to Definition 5.3 is

Property 2. Generalized Stifel’s Relation:

(
n+1
k+1

)
α i

=

(
n

k+1

)
α i

+

(
n
k

)
α i

; ∀ k and n ∈Z. (5.2)

Proof.

The main recursive property of the transformations T Sz, given by (3.11), is

α i
k+1p+ i = z+1 = α i

k+1p+ i =z + α i
kp+ i = z+1; ∀ k and z ∈Z . (5.3)

Doing the assignment k←−k – 1 in expression (5.3), it becomes

α i
kp+ i = z+1 = α i

kp+ i =z + α i
k−1
p+ i = z+1; ∀ k and z ∈Z . (5.4)

Now, doing the assignment z←−n – k in expression (5.4), it leads to:

α i
kp+ i = n− k+1 = α i

kp+ i = n− k + α i
k−1
p+ i = n− k+1; ∀ k and n ∈Z . (5.5)

Each term in (5.5) can be interpreted as a binomial number on the sequence (α i), according to
the following expressions:

α i
kp+ i = n− k+1 = α i

kp+ i = (n+1)− (k+1)+1 = n+1C(α i)k+1; ∀ k and n ∈Z , (5.6)

α i
kp+ i = n− k = α i

kp+ i = n− (k+1)+1 = nC(α i)k+1; ∀ k and n ∈Z , (5.7)

α i
k−1
p+ i = n− k+1 = nC(α i)k; ∀ k and n ∈Z . (5.8)

Therefore (5.5) can be expressed in terms of binomial numbers on the sequence (α i) substituting
each term according to (5.6)–(5.8), that is:

n+1C(α i)k+1 = nC(α i)k+1 + nC(α i)k; ∀ k and n ∈Z . (5.9)

Changing the notation, expressions (5.9) and (5.2) are equal. �

It is observed that (5.2) is the generalization for any integer sequence (α i) of the well known Stifel
relation of usual binomial numbers [2]. Note that the property is valid even for the extension of
binomials with negative arguments.

The consistency of Definition 5.3 with respect to the Stifel relation suggests that this
generalization may preserve other properties of the usual binomial numbers.
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5.2 Other Properties for Binomials on Integers Sequences

Independently of sequence (α i) some results of nC(αi)k can be easily predicted as a result of
properties of the transforms T Sz.

Property 3. Binomial’s Value on Integers Sequences if k = 0:

(
z
0

)
α i

= −αz +αz+1; ∀ z ∈Z and ∀ (α i) ∈ SZ . (5.10)

Proof.

If the order is –1, then for any sequence it follows that the result of the general term of the
sequence of T Sz in (3.10) is given by

α i
–1p+ i= z = −αz−1 +αz; ∀ (α i) ∈ SZ . (5.11)

Doing the assignment z←−z + 1 in expression (5.11), it becomes

α i
–1p+ i= z+1 = −αz +αz+1; ∀ (α i) ∈ SZ . (5.12)

Thus, considering n←−z in the definition (5.1), it can be stated that

zC(α i)0 = α i
–1p+ i= z+1; ∀ z ∈Z . (5.13)

Using the usual binomial notation, (5.12) and (5.13), it leads to (5.10). �

From expression (5.10), it is possible to inquire which sequences (α i) preserve the remarkable
value of the usual binomial numbers given by(

n
0

)
=

n

−
·

(n−0)

−
· 0

−
·

= 1; ∀ n ∈N . (5.14)

For example, by restricting to the real numbers, any sequence in the form

(β i(x)) i∈Z = ( ... , x−2, x−1, x+0, x+1, x+2, ... ,x+ i , ...); ∀ x ∈R (5.15)

satisfies – β z(x) + β z+1(x) = – αz +αz+1 = 1, then(
z
0

)
β i(x)

= 1; ∀ z ∈Z and ∀ (β i(x)) ∈ SZ . (5.16)

Property 4. Binomial’s Value on Integers Sequences if k = n:

nC(α i) n =

(
n
n

)
α i

= α1; ∀ n ∈Z *+. (5.17)
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Proof.

Applying the definition (5.1) in this case, it follows that

nC(α i) n =

(
n
n

)
α i

= α i
n−1
p+ i = 1; ∀ n ∈Z . (5.18)

Using the recursive property (3.11) of T Sz, for the case z = 0:

α i
k+1p+ i = 1 = α i

k+1p+ i = 0 + α i
kp+ i = 1; ∀ k ∈Z . (5.19)

According to [9] and by definition, any T Sz calculated at zero results in the neutral element of +
for any strictly positive integer order, therefore

α i
k+1p+ i = 1 = η (+) + α i

kp+ i = 1; ∀ k ∈Z+, (5.20)

α i
k+1p+ i = 1 = α i

kp+ i = 1; ∀ k ∈Z+. (5.21)

Using (3.8) or considering that the null order does not perform any transformation on (α i), it
follows that

α i
0p+ i = 1 = α1. (5.22)

Substituting (5.22) into (5.21) for k = 0, 1, 2, 3 and so on, it can be demonstrated by finite
induction that the result is the same for all other orders k:

α i
kp+ i = 1 = α1; ∀ k ∈Z +. (5.23)

Returning to (5.18) with the result (5.23) it is obtained (5.17). �

Another remarkable value of the usual binomial numbers is calculated by(
n
n

)
=

n

−
·

(n−n)

−
· n

−
·

= 1; ∀ n ∈N . (5.24)

From (5.17) it can be stated that the value of the binomial numbers given in (5.24) can be
maintained in extension (5.1) if and only if

α1 = 1. (5.25)

By gathering the new constraint (5.25) with the previous one (5.15), it is clear that only the
sequence corresponding to the subset of the integers, (i), can be considered in all extension of
the usual binomials that could preserve its two remarkable values, at least for integer arguments
and considering strictly positive integer orders. The sequence of integers can be obtained as a
particular case of (5.15) by making x = 0.
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Figure 5: Examples of values of nC(i)n for n = 0 and negative orders, obtained by applying the
expressions presented in Figure 1.

Given the above, it is interesting to determine if the results of 0C(i)0 and

nC(i) n =

(
n
n

)
i
= i n−1

p+ i= 1, ∀ n ∈Z – (5.26)

agree with the remarkable value given in the (5.24) extension, for both the null order and the
other negative ones. Some results can be found in Figure 5.

From the direct observation of the results, by the property known as Increasing Alternating Sum
of Binomial Coefficients (as listed in [1], Chapter 3), it is possible to state that

nC(i) n =

(
n
n

)
i
= 0; ∀ n ∈Z –. (5.27)

Since (5.16) and (5.17) had to be restricted to only the sequence of integers, the only possibility
to extend the result of (5.24) to negative integers remains to be the sequence (i). However, as can
be seen from (5.27), rather than one, there is an infinity of null results for negative arguments. So
it is concluded that

Property 5. There is no sequence of real numbers such that the T Sz transformations simul-
taneously equal to one for binomial numbers z choose zero and z choose z, for all integer z
values.

6 ALTERNATIVE FORMS FOR EXTENSION OF THE USUAL BINOMIAL
NUMBERS APPLYING TRANSFORMATIONS OF SEQUENCE BY THE
SUCCESSIVE SUM

Considering that there is no sequences of real numbers such that their T Sz transformations are
capable of guaranteeing the unit value of binomials z choose zero and z choose z for every integer,
it is valid to inquire whether there is an alternative solution capable of ensuring the validity of
these properties for all integers, using T Sz transformations on more than one sequence. According
to this possibility, the following topics propose alternative solutions.
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6.1 Properties of Interest for Binomial Numbers Extensions

The procedure for any extension can be started by choosing which properties of the original
domain should remain valid for all elements, or most of them, in the new one. In this section, the
objective is to extend the validity of five well-known properties of the binomial numbers, from the
natural to the integer domain. The selected properties will be the Stifel’s relation, the unit value
of binomial numbers n choose zero and n choose n, the symmetric binomial numbers and the
recursive calculus on k. Thus, the following expressions and domains are explicitly established:

1 - Stifel’s Relation:

z+1C ε
k+1 = zC ε

k+1 + zC ε
k . Best Domain : ∀ k and z ∈Z . (6.1)

2 - Binomial Numbers z Choose Zero:

zC ε
0 = 1 . Best Domain : ∀ z ∈Z . (6.2)

3 - Binomial Numbers z Choose z:

zC ε
z = 1 . Best Domain : ∀ z ∈Z . (6.3)

4 - Symmetric Binomial Numbers:

zC ε
z = zC ε

z−k . Best Domain : ∀ k and z ∈Z . (6.4)

5 - Binomial Number z Choose k+1, Starting From the Binomial z Choose k:

zC ε
k+1 = zC ε

k(z− k)/(k+1) . Best Domain : ∀ k 6=−1 and z ∈Z . (6.5)

The upper index ε in C represents any extension of the usual binomial numbers and not
necessarily transformations T Sz on some sequence (α i).

Considering this set of five properties, the extension produced from the transformations T Sz on
the sequence of integer numbers (i), as defined in (4.7), presents, respectively, the following
results:

z+1C(i)k+1 = zC(i)k+1 + zC(i)k ; ∀ k and z ∈Z . (6.6)

zC(i)0 = 1; ∀ z ∈Z . (6.7)

zC(i)z = 1; ∀ z ∈Z+. (6.8)

zC(i)z = zC(i)z−k ; ∀ k ∈Z , if z ∈Z+; ∀ k ∈Z –, if k− z > 0 and z <−1. (6.9)

zC(i)k+1 = zC(i)k(z− k)/(k+1) ; ∀ k 6=−1 and z ∈Z . (6.10)

Details about the determination of the domains in (6.6)–(6.10) can be found in [9].

When comparing the domains of (6.6)–(6.10) with those of (6.1)–(6.5) it is possible to conclude
that zC(i)k is an extension that serves well in most situations that consider the properties of
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interest, except if it is important to obtain the best domain possible to binomial numbers z choose
z, if z is negative, or to keep the symmetry for all extended values.

In [9] a quantitative evaluation methodology has also been defined which is applicable to all
function extensions from natural arguments to integer ones. That proposition allows to associate
an objective global index for each binomial numbers extension, which can be useful if it is nec-
essary to choose one extension among several others that do not fit the best domain established
according to some properties of interest. In what follows, it will be presented a solution for the
above specified set of properties, according to this methodology.

6.2 Binomial Extension Applying the p and n Component Transformations of the Integer
Numbers Sequence

A sequence may be constructed by proper operations on the terms of other ones. In fact, this
property has already been used in Section 2 for the T Sz transform definition. For example, let
G(A,+) be a group and SZ the integer sequences set over A. Under these conditions, consider
two sequences on A:

(α i) i∈Z = ( ... , α –1, α 0, α 1, α 2, ... ,α i , ...). (6.11)

(β i) i∈Z = ( ... , β –1, β 0, β 1, β 2, ... ,β i , ...). (6.12)

It will always be possible to construct a new sequence in the form

(α i +β i) i∈Z = ( ... , α –1 +β –1, α 0 +β 0, α 1 +β 1, α 2 +β 2, ... ,α i +β i , ...). (6.13)

Under such conditions, it is established that (α i) and (β i) are components of (α i+β i), and the
latter is their composition by the + operator.

In this section, two integer sequence components will be operated by the transformations T Sz,
and the corresponding results will be used in a binomial numbers extension that aims the better
domain of the properties of interest, established in Section 6.1. Thus, the sequences (pi) and (ni)
are defined:

(pi) i∈Z =

{
(i) i∈Z ; if i≥ 0

(0) i∈Z; if i < 0
(6.14)

(ni) i∈Z =

{
(0) i∈Z; if i≥ 0

(i) i∈Z ; if i < 0
(6.15)

The sequences (pi) i∈Z and (ni) i∈Z are called components p and n of (i) i∈Z , since it is immediate
to conclude that

(pi +ni) i∈Z = ( ... ,−2,−1, 0, 1, 2, ... , i , ...) = (i) i∈Z. (6.16)

The addition of the successive sum of any two sequences is equal to the successive sum of the
composition by the addition of these sequences (see appendix B of [9]):

α i

−
+ i= z + β i

−
+ i= z = (α i + β i)

−
+ i= z; ∀z ∈Z . (6.17)
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The result in (6.17) can be extended without further difficulties to other transformations by the
successive sum. Then, from (6.14)–(6.17) it can be inferred that

pi
kp+ i= z + ni

kp+ i= z = (pi + ni)
kp+ i= z = i kp+ i= z ; ∀ k and z ∈Z . (6.18)

Although (6.18) may suggest that it is indifferent to apply T Sz on the components or on their com-
position, those transformations by the successive sum considered individually on the sequences
(pi) and (ni) result in distinct sequences of the transform applied on (pi + ni).

The difference between the results occurs due to the symmetric values cancellation when the
component transformations are added, producing several null results in the composition. Taking
advantage of this difference a definition of binomial numbers extension was proposed in [9] using
two sentences, as follows.

Binomial Extension 2.

Let G(Z,+) be a group, (pi) and (ni) sequences in SZ set, defined by the expressions (6.14) and
(6.15) respectively. Under these conditions, it will be defined the binomial number “z choose
k in components ı”, or the combinatorial number “z choose k in components ı”, through the
expressions

zC ı
k =

 zC(pi) k = pi
k−1
p+ i = z− k+1, if (z− k)> 0 ,

zC(ni) k = ni
k−1
p+ i = z− k+1; if (z− k)< 0; k andz ∈Z .

(6.19)

(6.20)

Remark: the exponent “ı” is not an assignable index but rather the extension identification. As
exponent of C, it is reserved in this article only for the extension of the binomial numbers through
the components p and n of (i).

To make compatible the notation applied in the definition (6.19)–(6.20) with the classical
binomial number representation, it follows that

zC ı
k =

(
z
k

)
ı
; ∀ k and z ∈Z . (6.21)

Figure 6 exemplifies some of the binomial values in ı.

Considering the same set of five properties established in Section 6.1, the composite extension,
elaborated from the T Sz transformations on the components (pi) and (ni) of the integer’s sequence
(i), yields the following results:

z+1C ı
k+1 = zC ı

k+1 + zC ı
k ; ∀ k 6=−1 and z 6=−1 ∈Z . (6.22)

zC ı
0 = 1; ∀ z ∈Z . (6.23)

zC ı
z = 1; ∀ z ∈Z . (6.24)

zC ı
z = zC ı

z−k ; ∀ k and z ∈Z . (6.25)
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Figure 6: Extension results of binomial numbers in ı. The thicker dashed line separates the values
obtained by the component (pi) from those that are computed using (ni), and the region contain-
ing values highlighted in white on a dark background is not necessarily null, differently from the
first extension. More results can be found in [9].

zC ı
k+1 = zC ı

k(z− k)/(k+1) ; ∀ k 6=−1 and z ∈Z . (6.26)

The domains verification in (6.22)–(6.26) can be found in [9].

By comparing the domains, it can be seen that the binomial numbers extension through compo-
nents transformations on sequences indexed by integers maintains the same validity domain of
the first extension and also eliminates the constraints of zC(i)k in the case of binomial numbers z
choose z and the symmetric binomials. So the validity domains of these properties are extended
to the best possible domain. In contrast, the Stifel relation becomes invalid in the case z = k = –1,
as can be seen from the set of the three central values of Figure 6:(

0
0

)
ı
6=
(
−1

0

)
ı
+

(
−1
−1

)
ı
. (6.27)

Although this is the only one discordant value, the remaining question is whether this is tolerable
or not, which must be solved by analyzing the specific application intended. In cases where it is
preferable to guarantee the relation of Stifel for all integer arguments instead of the unit value for
the binomial numbers zCı

0 and zCı
z, it will be more appropriate to use another extension, such as

the one presented in Section 4.
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6.3 Compact Representation for Binomial Numbers Through Component Transforma-
tions p and n of the Integer’s Sequence

Comparing the values in Figure 6 and Figure 4, it is verified that a large part of the zCı
k values is

equal to others of the binomial number’s first extension:

zC ı
k = (z− k+1) k−1

p+ ; ∀ k > 0 and z ∈Z . (6.28)

This type of representation is more simple than that which uses the sequence components and
has the additional advantage of involving only successive sums on the integers themselves. These
are supposedly known results, for example, from the first extension, so they do not need to be
recalculated. It is interesting to conjecture if a similar representation can be achieved for the
other results of this extension, that is, for integer arguments in z and negative integers in k. This
conjecture has been proved true in [9], during an investigation of the domain of validity of the
symmetry property in the extension zCı

k. Part of the results obtained is shown in Figure 7.

Figure 7: For negative k the symmetric binomials of the zC ı
k extension have values equal to those

obtained through the T Sz transformations on the sequence of the integers; however, these results
produce a generalization different from that obtained for positive k.
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Figure 8: Compact representation of zCı
k using the transformations T Sz applied on the integer’s

sequence instead of their application on the components p and n.

The possibility of representing zCı
k in terms of transformations by the successive sum on

integer’s sequence has been also confirmed in [9], then

zC ı
k =

(z
k

)
ı
=

 (z− k+1) k−1
p+ , if (z− k)> 0 ,

(k+1) z− k−1
p+ ; if (z− k)< 0; k andz ∈Z .

(6.29)

(6.30)

From (6.29) and (6.30) this extension has a simple representation like that of the first extension,
which can be seen by comparing Figures 8 and 6.

6.4 Binomial Numbers Extension Through Gamma Function Symmetries

The topic of binomial numbers extension is of great interest and the subject is far from being
exhausted. Some propositions have been made in the literature to extend the domain from natural
to the integer numbers, as in [6], using combinatorial arguments, and as in [7] and [12], dealing
only with the extension of the usual factorials; those extensions also lead to binomial numbers
extensions. To substantiate this importance, it will be detailed the following case. The binomial
numbers can be defined generically for complex arguments, from the gamma function, [1], by

xCy = Γ (x+1)/[Γ (y+1)Γ (x− y+1)] ; x and y ∈ C . (6.31)
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which produces the same results that can be obtained by expression (4.1) of nCk when x and y are
the natural numbers n and k respectively. Although this is an important extension, the question of
obtaining binomial numbers for x and y negative integers can not be solved by applying (6.31),
because the gamma function is not defined in Z, Q, R or C for those values.

In 2015 Kronenburg [8] proposed the extension zCκ
k of binomial numbers for any arguments in

Z, based on the symmetry properties of the gamma function:

1. For z positive integer and k any integer:

zC κ
k =

(z
k

)
=


z

−
·

(z− k)

−
· k

−
·

; (z− k)> 0; ∀ k and z ∈Z+.

0; in other cases .

(6.32)

(6.33)

2. For z negative integer and k any integer:

zC κ
k =

(z
k

)
=



(−1)k
(
−z+ k−1

k

)
; if k > 0; ∀ z ∈Z –.

(−1)z−k
(
−k−1
z− k

)
; if k 6 z ; ∀ z ∈Z –.

0; in other cases .

(6.34)

(6.35)

(6.36)

By comparison, it can be concluded that the results generated by (6.29)–(6.30), presented in
Figure 8, are equal to the results obtained by (6.32)–(6.36). However, it is possible to perceive
the following advantages when choosing to define and extend the binomial numbers through the
transformations T Sz:

1. the methodology using TSz transformations presented here avoid any use of complex numbers
to make binomial numbers extensions;

2. the definitions using TSz transformations require less amount of sentences than other
methodologies;

3. application of additions and subtractions instead of multiplications and divisions;

4. transformations by successive sum allow establishing easily an infinity of binomial numbers
and their extensions preserving the properties of interest for specific applications.

7 CONCLUSIONS

This paper presented a more general way to define binomial numbers through additions rather
than multiplications. The proposed alternative method made possible to extend the domain of
application of other binomials in the form zCε

k for all integer arguments.

By introducing the sequence transformations through the successive sum it was possible to es-
tablish binomial numbers through simple additions, dismissing multiplications and divisions of
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factorials, what made also possible to consider negative integer indexes as arguments without
difficulties.

The present methodology proposed an additional criterion for choosing the most appropriate
extension, since there is an infinity of possible results that could be obtained. Therefore, when
specifying the properties of interest, a filter was created to eliminate solutions until that it remains
only the ones that matter.

When it is not possible to satisfy some properties of interest for all the domain, it is already pos-
sible to employ more than one transformation by the successive sum. In this sense, the definition
of binomial numbers applying transformations by the successive sum on the integer’s sequence
components was applied with success. Other noticeable points regarding this extension are the
fact that, once more, the results are obtained simply by usual additions, differently from other
techniques available in the current literature, and it was possible to extend them to any integer
argument.

RESUMO. A definição clássica de números binomiais envolve fatoriais, tornando inviável
sua extensão para inteiros negativos. A metodologia empregada neste artigo permite esta-
belecer diversas novas extensões de números binomiais para domı́nios inteiros, reproduz
para argumentos inteiros extensões propostas em outros trabalhos e verifica, também, os
resultados dos números binomiais clássicos. Para isto, a impossibilidade de computar fato-
riais com argumentos inteiros negativos é eliminada pela substituição da definição clássica
dos binomiais por uma nova definição com base em operações recentemente propostas e,
até o momento, referidas como transformações pela soma sucessiva aplicada em sequências
indexadas por inteiros. Particularizando tais operações para sequências inteiras formadas
pelos próprios números inteiros, é possı́vel redefinir os números binomiais usuais para qual-
quer argumento inteiro, com a vantagem de que os valores são mais facilmente computados
pelo uso de adições em vez de multiplicações, divisões ou outras combinações mais elabo-
radas dessas operações, que poderiam requerer mais do que uma ou duas sentenças em suas
aplicações.

Palavras-chave: matemática discreta, estruturas algébricas, recursões, sequências, produto
sucessivo, soma sucessiva, números binomiais.
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