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Abstract. In this work we establish existence, uniqueness and exponential decay

of energy for the solutions of a system of wave equations coupled with locally

distributed damping in a bounded smooth domain of any space dimension.

1. Introduction

Let Ω ⊂ R
n, n ≥ 1 be a bounded domain with smooth boundary ∂Ω. Let H1(Ω)

and L2(Ω) = H0(Ω) be the usual Sobolev spaces of Lebesgue square integrable
functions defined in Ω with their usual norms (see[3]). Let H1

0 (Ω) be the subspace
of H1(Ω) of the functions vanishing on ∂Ω. We consider the following system of
coupled wave equations

utt − ∆u+ α(x)(ut − vt) = 0 in Ω × [0,∞), (1.1)

vtt − ∆v + α(x)(vt − ut) = 0 in Ω × [0,∞), (1.2)

u = v = 0 in ∂Ω × [0,∞), (1.3)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω, (1.4)

v(x, 0) = v0(x), vt(x, 0) = v1(x) in Ω, (1.5)

where α(x) is a given function such that α ∈W 1,∞, α(x) ≥ 0 in Ω and

α0 =

∫

Ω

α(x) dx > 0. (1.6)

This means that α(x) can vanishes at some points of Ω but the measure of its sup-
port is positive. Here ∆ is the laplacian in the space variable x and sub-index t

denotes partial derivative with respect to t.
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We prove that the system (1.1)-(1.6) has a unique solution in the class

(u, v) ∈ C0([0,∞),H1

0 (Ω))2 ∩ C1([0,∞), L2(Ω))2.

For such solutions the total energy is defined by

E(t) =
1

2

∫

Ω

|ut|
2 + |vt|

2 + |∇u|2 + |∇v|2dx.

Our main goal is to prove that there exist positive constants C and w such that

E(t) ≤ C E(0)e−w t, for every t > 0.

We obtain such exponential decay estimate by using tools of the semigroup the-
ory. A wave system with locally distributed damping coupled in parallel have also
been been considered in [8] for the space domain Ω = (0, 1) ⊂ R with friction coeffi-
cient α constant. Our result extend the one in [8] in the sense that we allow higher
dimension spaces and variable friction coefficient.

Stability for the one dimensional damped wave equation

utt − uxx + α(x)ut = 0, x ∈ (0, L), ∀ t > 0,

has been studied by many authors. See, for instance, [4] and the reference cited
there. For similar results in higher dimension space we mention [5].

Stability for coupled wave system has been considered in [6], [1], [2] and [8]
among others. In [6], both wave equations are damped on the boundary and the
coupling is effected by compact operator. Exponential stability is obtained in [6]
when the boundary damping is linear. Boundary damping is also considered in [1]
and [2].

The rest of the paper is organized as follows. In the section 2 we prove existence
and uniqueness of solution in the class mentioned. The section 3 is devoted to prove
the exponential decay of the solutions.

2. Existence and Uniqueness of Solution

In order to make use of the Theory of Semigroups we write the system (1.1)-(1.5)
in the abstract form,

Ut −AU = 0,

U(0) = U0,

where U = (u, φ, v, ψ)T , φ = ut, ψ = vt and A : [H1
0 × L2 ]2 → [H1

0 × L2 ]2 with
D(A) = [ (H1

0 ∩H2) ×H1
0 ]2, and

A =









0 I 0 0
∆ −α(x) I 0 α(x) I
0 0 0 I

0 α(x) I ∆ −α(x)I









.
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In the space [H1
0 × L2 ]2 we consider the canonical inner product, i.e., for

Uj = (uj , φj , vj , ψj), j = 1, 2

we have

〈U1,U2〉 =

∫

Ω

∇u1∇u2 + ∇v1∇v2 + φ1φ2 + ψ1ψ2 dx.

The operator A has an important property; it is dissipative as state the following:

Proposition 2.1. The operator A is dissipative, i.e.,

〈AU,U〉 ≤ 0,

for every U ∈ [H1
0 × L2 ]2.

Proof. Taking the inner product of AU and U we obtain,

〈AU,U〉 = −

∫

Ω

α(x)|ut − vt|
2dx, (2.7)

showing that A is dissipative.

For the sake of completeness we state the well known Lumer-Phillips theorem,
whose proof can be seen in [9].

Theorem 2.1. Let A be a linear operator with dense domain D(A) in a Hilbert
space H. If A is a dissipative operator and there is a λ0 > 0 such that the
range, R(λ0 I − A), of (λ0 I − A) is H, then A is the infinitesimal generator of
a C0−semigroup of contractions on H.

The following corollary of the Lummer-Phillips Theorem will be used soon after.

Corollary 2.1. Let A be a linear operator with dense domain D(A) in a Hilbert
space H. If A is dissipative and 0 ∈ ρ(A) = {λ ∈ C : exist (λ I − A)−1}, the
resolvent set of A, then A is the infinitesimal generator of a a C0−semigroup of
contractions on H.

Proof. By the assumption 0 ∈ ρ(A), A is invertible and A−1 is compact in H. By
the contraction mapping theorem, it is easy to see that the operator λ I − A =
A(λA−1−I) is invertible for 0 < λ < ||A−1||. Therefore, it follows from the Lumer-
Phillips Theorem that A is the infinitesimal generator of a a C0−semigroup of
contractions on H.

Now we can prove the following theorem.

Theorem 2.2. The linear operator A generates a C0−semigroup of contractions
in [H1

0 × L2 ]2.
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Proof. The operator is densely defined and dissipative. Hence, we just need to prove
0 ∈ ρ(A). In order to do so, take

U = (u, φ, v, ψ)T ∈ [H1

0 × L2 ]2 and F = (f1, f2, f3, f4)
T ∈ [H1

0 × L2 ]2.

and consider the equation AU = F, i.e.,









φ

∆u− α(x)(ut − vt)
ψ

∆v − α(x)(vt − ut)









=









f1
f2
f3
f4)









.

Then, we have

φ = f1 ∈ H1

0 , (2.8)

∆u− α(x)(ut − vt) = f2 ∈ L2, (2.9)

ψ = f3 ∈ H1

0 , (2.10)

∆v − α(x)(vt − ut) = f4 ∈ L2. (2.11)

Using (2.8), (2.9) and (2.10) we obtain

∆u = α(x)(f1 − f3) ∈ H1

0 . (2.12)

From the standard Theory of Linear Elliptic Equations it follows that (2.12) has a
unique solution in H1

0 ∩H2.

Now, using (2.8), (2.10) and (2.11) we get the equation

∆v = α(x)(f3 − f1) ∈ H1

0 , (2.13)

and by the same argument we see that (2.13) has a unique solution in H1
0 ∩H2.

Hence U ∈ D(A) and as a consequence 0 ∈ ρ(A). This ends the proof.

From the Theory of Semigroups, it follows that the problem (1.1)-(1.6) has a
unique solution with the following regularity;

(u, φ, v, ψ) ∈ C0([0,∞) : [ (H1

0 ∩H2) ×H1

0 ]2) ∩ C1([0,∞) : [H1

0 ∩ L2 ]2).

Now, using some theorems of immersion from the classical theory of Sobolev Spaces
[3] it follows that the solution satisfy;

(u, v) ∈ C0([0,∞) : H1

0 (Ω0)
2) ∩ C1([0,∞) : L2(Ω0)

2)),

as we stated in the introduction.
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3. Exponential Decay

We study now, the decay for the solutions (u, v) of the system (1.1)-(1.6). In this
sense consider the following theorem

Theorem 3.3. Let S(t) be a C0-semigroup of contractions on a Hilbert space. Then
S(t) is exponentially stable if and only if

{iβ : β ∈ R} ⊂ ρ(A), (3.1)

and

||(λ I −A)−1|| ≤ C ∀ Re(λ) ≥ 0. (3.2)

Proof. See [10].

The main result of this note is the theorem 3.4 below. For the proof of this
theorem we will use the technique developed in [7] to prove the exponential decay
of the solution, in this sense, we will show the exponentially stability of the C0-
semigroup of contractions associated with the system (1.1)-(1.6).

Theorem 3.4. Let (u, v) be the solution of (1.1)-(1.6) with initial data in (H1
0 (Ω)×

L2((Ω)))2. There exist positive constants C and w, independent of the initial data,
such that

E(t) ≤ C E(0)e−w t, for every t > 0.

Proof. By theorem 3.3 it suffices to verify (3.1) and (3.2). To verify (3.1) we use
the contradiction argument. In this sense, if (3.1) is not true, then there must be a
β ∈ R, such that β 6= 0 and iβ is in the spectrum of A. Since A−1 is compact, iβ
must be an eigenvalue of A. It turns out there is a vector function

U = (u, φ, v, ψ)T ∈ D(A), ||U|| 6= 0,

such that

iβU −AU = 0. (3.3)

Taking the inner product of (3.3) with U in (H1
0 × L2)2 and taking its real part

yields

Re(iβU −AU) =

∫

Ω

α(x)|φ− ψ|2dx = 0.

From the following estimate

||α (φ− ψ)||2 =

∫

Ω

α2(x)|φ− ψ|2dx ≤ ||α||L∞

∫

Ω

α(x)|φ− ψ|2dx = 0,

we have that
α(x)(φ− ψ) = 0 for all x ∈ Ω,

and then φ = ψ for all x ∈ Ω. A contradiction.
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For the proof of (3.2) notice that

||(λ I −A)−1|| ≤ C ⇔ ||(λ I −A)−1F|| ≤ ||F|| for all F ∈ (H1

0 × L2)2. (3.4)

To prove (3.4) we used (3.1) and then there must be a λ ∈ ρ(A) such that

λU −AU = F for all F ∈ (H1

0 × L2)2. (3.5)

Denoting F = (f1, f2, f3, f4)
T , from (3.5) we obtain

Re(λ)u− φ = f1, (3.6)

Re(λ)φ− ∆u+ α(x)(φ− ψ) = f2, (3.7)

Re(λ)v − ψ = f3, (3.8)

Re(λ)ψ − ∆v + α(x)(ψ − φ) = f4. (3.9)

multiplying (3.6), (3.7), (3.8), (3.9) respectively for −∆u, φ, −∆v, ψ and adding,
we obtain

−Re(λ)u∆u−Re(λ)v∆v+Re(λ)φ2+Re(λ)ψ2+α(x)|φ−ψ|2−f1∆u−f3∆v+f2φ+f4ψ.

In the last expression, performing integration and using Green’s identity we have

Re(λ)||U||2 +

∫

Ω

α(x)|φ− ψ|2dx = 〈U,F〉,

and using Cauchy-Schwartz inequality we obtain

Re(λ)||U||2 +

∫

Ω

α(x)|φ− ψ|2dx ≤ ||U|| ||F||,

from where follows that ||(λI − A)−1F|| ≤ C ||F|| with C = [Re(λ)]−1. The proof
of the theorem is complete.

Resumo. Neste trabalho estabelecemos existência, unicidade e decaimento expo-

nencial de energia para as soluções de um sistema de equações de onda acopladas

através de amortecimento distribúıdo, num domı́nio suave de qualquer dimensão.
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