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Abstract. In this work we establish existence, uniqueness and exponential decay
of energy for the solutions of a system of wave equations coupled with locally
distributed damping in a bounded smooth domain of any space dimension.

1. Introduction

Let Q@ C R", n > 1 be a bounded domain with smooth boundary 9. Let H!({2)
and L%(Q) = HY(Q) be the usual Sobolev spaces of Lebesgue square integrable
functions defined in Q with their usual norms (see[3]). Let Hg(£2) be the subspace
of HY(2) of the functions vanishing on 9. We consider the following system of
coupled wave equations

uy — Au+a(z)(uy—v) = 0 in Q x [0,00), (1.1)
v — Av+ a(z)(vg —ug) = 0 in Q x [0,00), (1.2)

u=v = 0in 09 x [0,00), (1.3)
u(z,0) = uo(x), u(xz,0) = wui(x) in Q, (1.4)
v(x,0) = vo(z), ve(z,0) = wv(z) in Q, (1.5)

where a(z) is a given function such that o € W% a(z) > 0 in Q and

ay = /ﬂa(x) dzx > 0. (1.6)

This means that a(z) can vanishes at some points of Q but the measure of its sup-
port is positive. Here A is the laplacian in the space variable x and sub-index ¢
denotes partial derivative with respect to t.
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We prove that the system (1.1)-(1.6) has a unique solution in the class

(u,v) € C°([0,00), Hy (2))* N C ([0, 00), L*(2))*.

For such solutions the total energy is defined by
1
E(t) = 5/ uel® + v + [Vul? + Vol da.
Q

Our main goal is to prove that there exist positive constants C' and w such that
E(t) < CE(0)e™ ™!, for every t > 0.

We obtain such exponential decay estimate by using tools of the semigroup the-
ory. A wave system with locally distributed damping coupled in parallel have also
been been considered in [8] for the space domain Q2 = (0,1) C R with friction coeffi-
cient o constant. Our result extend the one in [8] in the sense that we allow higher
dimension spaces and variable friction coefficient.

Stability for the one dimensional damped wave equation
U — Uge +(z)uy =0, x € (0,L), Vit>0,

has been studied by many authors. See, for instance, [4] and the reference cited
there. For similar results in higher dimension space we mention [5].

Stability for coupled wave system has been considered in [6], [1], [2] and [8]
among others. In [6], both wave equations are damped on the boundary and the
coupling is effected by compact operator. Exponential stability is obtained in [6]
when the boundary damping is linear. Boundary damping is also considered in [1]
and [2].

The rest of the paper is organized as follows. In the section 2 we prove existence
and uniqueness of solution in the class mentioned. The section 3 is devoted to prove
the exponential decay of the solutions.

2. Existence and Uniqueness of Solution

In order to make use of the Theory of Semigroups we write the system (1.1)-(1.5)
in the abstract form,

U,— AU = 0,
U(0) = U,

where U = (u, ¢,v, )T, ¢ = uy, ¥ = vy and A : [H} x L?])? — [H} x L?]? with
D(A) =[(H}nH?) x H})?, and

0 I 0 0
A A —ax)I 0 a«a@)l

0 0 0 I

0 alz)I A —oax)]
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In the space [ HE x L?]? we consider the canonical inner product, i.e., for

Uj:(u]aqb_]vv_]aw_j)’ .7:172

we have
<U1, U2> = / Vu1Vu2 + V”Uleg -+ ¢1¢2 -+ 1/}11[)2 d,fE
Q

The operator A has an important property; it is dissipative as state the following:

Proposition 2.1. The operator A is dissipative, i.e.,
(AU, U) <0,
for every U € [H} x L*]2.

Proof. Taking the inner product of AU and U we obtain,
(AU, U) = —/ () us — v |2dz, (2.7)
Q

showing that A is dissipative. O

For the sake of completeness we state the well known Lumer-Phillips theorem,
whose proof can be seen in [9].

Theorem 2.1. Let A be a linear operator with dense domain D(A) in a Hilbert
space H. If A is a dissipative operator and there is a A9 > 0 such that the
range, R(A\oI — A), of (Aol — A) is H, then A is the infinitesimal generator of
a Cy—semigroup of contractions on H.

The following corollary of the Lummer-Phillips Theorem will be used soon after.

Corollary 2.1. Let A be a linear operator with dense domain D(A) in a Hilbert
space H. If A is dissipative and 0 € p(A) = {\ € C : exist (\] — A)~'}, the
resolvent set of A, then A is the infinitesimal generator of a a Cy—semigroup of
contractions on H.

Proof. By the assumption 0 € p(A), A is invertible and A~! is compact in H. By
the contraction mapping theorem, it is easy to see that the operator A1 — A =
ANA~Y—1T) is invertible for 0 < X\ < |[|A™!]||. Therefore, it follows from the Lumer-
Phillips Theorem that A is the infinitesimal generator of a a Cp—semigroup of
contractions on H. O

Now we can prove the following theorem.

Theorem 2.2. The linear operator A generates a Co—semigroup of contractions
in [HY x L?)2.
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Proof. The operator is densely defined and dissipative. Hence, we just need to prove
0 € p(A). In order to do so, take

U = (u,¢,v,%)" € [H} x L*]* and F = (f1, f2, f3, f1)" € [H) x L*]?

and consider the equation AU = F| i.e.,

¢ fi

Au—a(z)(ug—v) | _ | f2

(4 I3

Av — o) (v — uy) f4)

Then, we have

b=t e H}, (2.8)
Au — a(x)(us — v) = fo € L?, (2.9)
¥ = f3 € Hy, (2.10)
Av — () (vy — ug) = f4 € L2 (2.11)

Using (2.8), (2.9) and (2.10) we obtain
Au = a(x)(f1 — f3) € Hy. (2.12)

From the standard Theory of Linear Elliptic Equations it follows that (2.12) has a
unique solution in Hi N H2.

Now, using (2.8), (2.10) and (2.11) we get the equation
Av = a(z)(fs — fr) € Hy, (2.13)
and by the same argument we see that (2.13) has a unique solution in H} N H2.

Hence U € D(A) and as a consequence 0 € p(A). This ends the proof. O

From the Theory of Semigroups, it follows that the problem (1.1)-(1.6) has a
unique solution with the following regularity;

(u,¢,v,9) € C2([0,00) : [(Hy N H?) x Hy ) N CH([0,00) : [Hy N L*]?).

Now, using some theorems of immersion from the classical theory of Sobolev Spaces
[3] it follows that the solution satisfy;

(u,v) € C°([0,00) : Hy(20)*) N C([0,00) : L*(20)%)),

as we stated in the introduction.
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3. Exponential Decay

We study now, the decay for the solutions (u,v) of the system (1.1)-(1.6). In this
sense consider the following theorem

Theorem 3.3. Let S(t) be a Cy-semigroup of contractions on a Hilbert space. Then
S(t) is exponentially stable if and only if

{iB: B e R} Cp(A), (3.1)

and
AT — A7 <C ¥V Re(\)>0. (3.2)
Proof. See [10]. 0

The main result of this note is the theorem 3.4 below. For the proof of this
theorem we will use the technique developed in [7] to prove the exponential decay
of the solution, in this sense, we will show the exponentially stability of the Cjp-
semigroup of contractions associated with the system (1.1)-(1.6).

Theorem 3.4. Let (u,v) be the solution of (1.1)-(1.6) with initial data in (H}(Q) x
L2((Q)))%. There exist positive constants C and w, independent of the initial data,
such that

E(t) < CE(0)e™ ", for every t > 0.

Proof. By theorem 3.3 it suffices to verify (3.1) and (3.2). To verify (3.1) we use
the contradiction argument. In this sense, if (3.1) is not true, then there must be a
B € R, such that 3 # 0 and i3 is in the spectrum of A. Since A~! is compact, i3
must be an eigenvalue of A. It turns out there is a vector function

U = (u,¢,v,9)" € D(A), [|U]|#0,
such that
iU — AU = 0. (3.3)

Taking the inner product of (3.3) with U in (H} x L?)? and taking its real part
yields

Re(iU — AU) = / afx)|¢ — |?dx = 0.
Q

From the following estimate

o (¢ — )| = [ 02(2)[6 — ¥[2dz < [|o]| /Qamw—wczx 0,

we have that
a(z)(¢p—1) =0 for all z € Q,

and then ¢ = 1 for all x € Q. A contradiction.
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For the proof of (3.2) notice that
A=A <C e ||[M—A)'F|| <||F|| for all F € (Hy x L*)*.  (3.4)
To prove (3.4) we used (3.1) and then there must be a A € p(A) such that
AU — AU =F for all F € (Hj x L?)?. (3.5)

Denoting F = (f1, f2, f3, f1)T, from (3.5) we obtain

Re(Mu—¢ = fi, (3.6)
Re(\é - Au+a(@)(@—¥) = fo (3.7)
Re(Mv =1 = [, (3.8)
R\ — Av+a(@)(b—¢) = fu (3.9)

multiplying (3.6), (3.7), (3.8), (3.9) respectively for —Au, ¢, —Av, 1) and adding,

we obtain
—Re(ANuAu—Re(N)vAv+Re(N)d2+Re(A)va+a(x) |¢—w|2—f1Au—f3Av+f2¢+f4w.

In the last expression, performing integration and using Green’s identity we have
ReI[UI? + [ a(@)lo = vds = (U.F).
and using Cauchy-Schwartz inequality we obtain
ReWIUIP + [ a(w)lo = vPde < |[U]||[F],

from where follows that [|[(A\] — A)~'F|| < C||F|| with C = [Re(\)]~!. The proof
of the theorem is complete. O

Resumo. Neste trabalho estabelecemos existéncia, unicidade e decaimento expo-
nencial de energia para as solugoes de um sistema de equagoes de onda acopladas
através de amortecimento distribuido, num dominio suave de qualquer dimenséao.
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