Projetos de Modulações sobre Superfícies via Sistema Integrado de Transmissão de Dados¹

J.D. LIMA², Departamento de Matemática e Estatística, DME, UERN, Cx.P. 70, 59633-010, 15054-000 Mossoró, RN, Brasil.

R. PALAZZO Jr.³, Departamento de Telemática, DT, UNICAMP, Cx.P. 6101, 13081-970 Campinas, SP, Brasil.

Resumo. Em um sistema integrado de transmissão de sinais [3], os componentes canal-modulação-codificação são projetados de forma dependentes, isto é, o projeto de modulação é o modelo topológico do mergulho de 2-células, sobre uma superfície Ω , do grafo associado ao canal e, o sistema de codificação é extraído de uma estrutura algébrica, o grupo de homologia de Ω . Neste trabalho, identificaremos modelos de modulações com padrões do sistema integrado, destacando aqueles com características de espaços de sinais geometricamente uniformes [2].

Palavras-chave. Modulação, canal discreto sem memória, mergulho de grafo.

1. Introdução

Um sistema de transmissão de sinais se diz integrado [3], quando o projeto de modulação é sobre um mergulho de 2-células do grafo associado ao canal sobre uma superfície Ω e a codificação é extraída diretamente de uma estrutura algébrica associada ao modelo deste mergulho (o grupo de homologia de Ω [3]). O propósito é eliminar distorções causadas pela escolha inadequada desses componentes. Em uma escolha aleatória, a modulação pode apresentar ambigüidades nas transições correspondentes ao canal, problema transferido ao projeto de codificação, exigindo do sistema, dispositivos adicionais para as correções de tais distorções.

Dado um grafo C associado a um canal DMC (*Discrete Memoryless Channel*), existe um conjunto de superfícies sobre as quais é possível mergulhar C como um mergulho de 2-células [6]. Obtido um modelo de mergulho de um grafo, tem-se, necessariamente, um projeto topológico de modulação. Algumas famílias de grafos, como os completos, biparticionados e triparticionados, possuem mergulhos mínimo e máximo "conhecidos", ou seja, sabe-se quem são seus sistemas de rotações e gêneros da superfícies sobre as quais C pode ser mergulhado, informações necessárias, mas não suficientes para se construir o mergulho de fato.

 $^{^1}$ Trabalho financiado pelo Programa Primeiros Projetos, MCT/CNPq/SINTEC 002/2003. 2 iddeus@uol.com.br

³palazzo@dt.fee.unicamp.br

Se o problema é construir o modelo planar ou espacial de um mergulho em que nada se sabe, em princípio, do gênero da superfície e do sistema de rotações, neste caso, o processo de construção é totalmente aleatório. Contudo, se é conhecido os tipos de modulações existentes sobre uma determinada superfície, podemos usar o método de construção em [5] para obter um modelo de modulação. Uma vez que os grafos completos biparticionados $K_{m,n}$ são os modelos de grafos mais freqüêntes associados a canais DMC, os nossos objetivos são: relacionar os projetos de modulações para espaços de n sinais, destacando às regulares, ou seja, àquelas que possuem características de espaços de sinais geometricamente uniformes (e.s.g.u.) [2], e identificar o número de modulações nos casos em que n = 2 e n = 4.

2. Mergulhos em Superfícies com Bordos

Mergulhos de grafos sempre se referem aos mergulhos em superfícies sem bordos. No entanto, será introduzido aqui o conceito de mergulho em superfícies com bordos e, como veremos em seguida, este conjunto contêm a maioria das modulações e.s.g.u.

No ambiente das variedades riemannianas, uma superfície de gênero m com r componentes de bordo é qualquer superfície homeomorfa a uma superfície de gênero m menos r pontos, onde cada ponto "retirado" representa, na superfície, a formação de uma componente de bordo, isto é, o bordo é uma curva homeomorfa a um círculo.

Como toda região de um mergulho de 2-células é homotópica a um ponto, topologicamente, a retirada de um ponto do interior de uma região, corresponde a remoção do seu interior. Assim mergulho com bordo será defindo como segue.

Definição 2.1. Seja $F_{mn} \equiv \Omega(\alpha) = \bigcup_{i=1}^{\alpha} R^i$ o modelo formado por α regiões geradas pelo mergulho do grafo $K_{m,n}$ sobre uma superfície compacta Ω . Chamaremos de **mergulho com r componentes de bordo** do grafo $K_{m,n}$, $r \leq \alpha$, sobre Ω_r , um mergulho obtido pela eliminação de r regiões de F_{mn} , denotado por $F_{mn}^r = \Omega_r(\alpha - r) = \bigcup_{i=1}^{\alpha - r} R^i$. Denominaremos o modelo $F_{mn} \equiv \Omega(\alpha)$ de **mergulho de origem** e, o modelo $F_{mn} \equiv \Omega_k(\alpha - k)$, de **mergulho derivado**.

Como no mergulho em superfície sem bordo $F_{mn} \equiv \Omega(\alpha)$, podemos remover k regiões, $k = 1, 2, \dots, \alpha$, então o número de mergulhos com bordos derivados é

$$\overline{|F}_{mn}| = \sum_{k=1}^{\alpha-1} \binom{\alpha}{k} = \alpha!.$$
(2.1)

Em um mergulho onde $\Omega(\alpha)$ contém k-regiões do mesmo tipo, pode-se remover $\alpha - k$ regiões para obter uma modulação e.s.g.u. sobre uma superfície com k regiões idênticas e $\alpha - k$ componentes de bordos, isto é, uma modulação da forma $\Omega_{\alpha-k}(k)$. Assim, o número de modulações e.s.g.u. é bem maior no universo das superfícies com bordos, o que as torna uma importante fonte geradora de modulações e.s.g.u.

Dado uma modulação (o modelo planar¹ do mergulho) sobre uma superfície

¹O esquema do mergulho $C \hookrightarrow \Omega$ de um grafo C sobre uma superfície Ω , tanto pode ser construído sobre o polígono n-gon $\equiv \Omega$, quanto sobre o modelo espacial de Ω . O modelo sobre n-gon é geralmente denominado de modelo planar.

sem bordo $F_{mn} \equiv \Omega(\alpha)$, o mergulho derivado com r componentes de bordos $F_{mn}^r = \Omega_r(\alpha - r)$ é obtido aplicando-se sucessivamente r-vezes os seguintes procedimentos.

Construção 1. Escolha uma região $R_i = (p, p_1, \dots, p_{i-1}) de \Omega(\alpha)$. Então,

- 1. se R_i possui um lado adjacente² a R_i em p que intercepta o bordo ρ do n-gon $\equiv \Omega \ em \ p_{\rho}, \ então,$
 - i) translade, no sentido horário, os vértices $p, p_1, \dots, p_{i-1}, p$ de R_i para o bordo ρ , fazendo coincidir o primeiro p da seqüência com o ponto p_{ρ} , criando uma componente de bordo $(p, p_1, \dots, p_{i-1}, p)$ no interior de ρ ;
 - ii) reproduza as demais conexões de F_{mn} para obter o mergulho derivado com uma componente de bordo $F_{mn}^1 \equiv \Omega_1 (\alpha 1) \equiv \Omega (\alpha 1) R_i$.
- se R_i não possui um lado adjacente interceptando o bordo de n-gon, translade vértices de C até que um lado adjacente de R_i intercepte o bordo de n-gon e aplique os procedimentos i) e ii) acima.

O translado de vértices consiste em mover um vértice e seus lados adjacentes, conservando o sistema de rotações. A Figura 1, contêm mergulhos mínimos nãoorientados do grafo $K_{4,4}$ associado ao canal 4-ário, C_4 , com sistema de rotações

$$Rot = \{0(1357), 1(1357), 2(0462), 3(0246), 4(1357), 5(0642), 6(1753), 7(0462)\}.$$
 (2.2)

Entenda por aplicações sucessivas da Construção 1, o ato de usar o mergulho sem bordo sobre Ω para construir um mergulho com uma componente de bordo Ω_1 ; em seguida, usar Ω_1 para obter um mergulho com duas componentes de bordos Ω_2 , e assim por diante, até obter o mergulho com k componentes de bordos, Ω_k , a partir de Ω_{k-1} . Os modelos na Figura 1, correspondem a mergulhos do grafo completo biparticionado $K_{4,4}$ sobre a superfície de Klein K (garrafa de Klein), uma superfície não-orientada. Contêm os modelos planos e espaciais dos mergulhos $K_{4,4} \hookrightarrow K(8), K_{4,4} \hookrightarrow K_1(7) \in K_{4,4} \hookrightarrow K_2(6)$, todos com sistemas de rotações iguais a (2.2), obtidos através dos procedimentos da Construção 1. São mergulhos mínimos compostos por 8, 7 e 6 regiões, todas quadrangulares, e portanto, projetos topológicos sobre superfícies não-orientadas de modulações e.s.g.u.

3. Modulações vindas de Grafos Biparticionado

No processo de identificação de modulações usaremos os seguintes resultados:

1. Seja G um grafo com v vértices, e lados e f faces e $G \hookrightarrow \Omega$, um mergulho de 2-células, então vale a fórmula da característica de Eüler de Ω é dada por

$$\chi(\Omega) = v - e + f. \tag{3.1}$$

Para as superfícies compactas com r componentes de bordos, temos

$$\chi(\Omega) = \begin{cases} 2 - 2m - r, \text{ se } \Omega \equiv mT_r \\ 2 - m - r, \text{ se } \Omega \equiv mP_r. \end{cases}$$
(3.2)

²Um lado a de C é adjacente a uma região R_i em p de $F_{mn} \equiv \Omega(\alpha)$ se, e somente se, a está conectado ao vértice p e não é um lado de R_i

Figura 1: Mergulhos mínimos do canal 4-àrio: $C_{4,4} \hookrightarrow K, C_{4,4} \hookrightarrow K_1 \in C_{4,4} \hookrightarrow K_2$

2. A característica¹ do grafo completo biparticionado $K_{m,n}$ é dada por

$$\gamma(K_{m,n}) = 2[(m+n-mn/2)/2], \qquad (3.3)$$

onde $[\alpha]$ denota o maior inteiro menor ou igual ao número real α .

3. O gênero mínimo [9] da superfície para o mergulho de $K_{4,4}$ é

$$\gamma_m(K_{m,n}) = \{ (m-2)(n-2)/4 \}, \qquad (3.4)$$

onde $m, n \ge 2$ e $\{a\}$ denota o menor inteiro maior ou igual ao número real a;

4. O gênero máximo [7] da superfície para o mergulho de $K_{4,4}$ é

$$\gamma_M(K_{m,n}) = \left[(m-1)(n-1)/2 \right], \tag{3.5}$$

onde $m, n \ge 1$ e [a] é o maior inteiro menor ou igual ao número real a;

- 5. Em toda superfície de gênero γ tal que $\gamma_m \leq \gamma \leq \gamma_M$, existe um mergulho de 2-células de $K_{m,n}$ [7];
- 6. Existe uma correspondência biunívoca entre cada sistema de rotações de um grafo G e um mergulho de 2-células de G [6].

O conjunto das modulações sobre Ω vindas de mergulhos do grafo $K_{m,n}$ será denotado por $\mathbb{M}_{m,n}$, se Ω é orientada e por $\overline{\mathbb{M}}_{m,n}$, se Ω é não-orientada. Das igualdades (3.4), (3.5) e ítem 4. dos resultados acima, deduzimos imediatamente que

$$\mathbb{M}_{m,n} = \{\gamma_m T, (\gamma_m + 1)T, \cdots, \gamma_M T\}.$$
(3.6)

¹Chama-se característica do grafo G, o inteiro $\gamma(G)$ correspondente ao valor máximo de $\chi(\Omega)$ dentre todas as superfícies orientadas Ω nas quais G tem um mergulho de 2-células

Para o caso não-orientado $\overline{\mathbb{M}}_{m,n}$, basta trocar, na fórmula (3.6), T por P. Temos que $|\mathbb{M}_{mn}| = \gamma_M(K_{m,n}) - \gamma_m(K_{m,n}) + 1$, onde |A| é o número de elementos do conjunto A. Pondo $m = 4t + a, n = 4s + b, a, b \in \{0, 1, 2, 3\}$, resulta que

$$|\mathbb{M}_{mn}| = \begin{cases} mn/4, \text{ se } (m,n) \equiv (0,0), \cdots, (0,3), (1,0), \cdots, (3,0), (2,2) \mod 4; \\ mn/4 + 1/2, \text{ se } (m,n) \equiv (1,2), (2,1), (2,3), (3,2) \mod 4; \\ mn/4 + 1/4, \text{ se } (m,n) \equiv (1,3), (3,1) \mod 4; \\ mn/4 - 1/4, \text{ se } (m,n) \equiv (1,1), (3,3) \mod 4, \end{cases}$$
(3.7)

onde $m, n \equiv (a_1, b_1), \dots, (a_s, b_s) \pmod{4}$ indica que $m \equiv a_1 \pmod{4}$ e $n \equiv b_1 \pmod{4}$, $\dots, m \equiv a_s \pmod{4}$ e $n \equiv b_s \pmod{4}$.

Em particular, para o grafo $K_{n,n}$, temos que

$$|\mathbb{M}_{n,n}| = \begin{cases} n^2/4, \text{ se, } n \equiv 0 \mod 2\\ n(n+2)/4, \text{ se } n \equiv 1 \mod 2. \end{cases}$$
(3.8)

3.1. Tipos de modulações

Os fatores que diferenciam uma modulação da outra são: a quantidade de sinais (igual ao número de regiões do mergulho), tipos de regiões de Voronoy, sistema de rotações de $K_{m,n}$ e o tipo de superfície Ω onde se encontra $K_{m,n}$ mergulhado.

Quanto às regiões de Voronoy, as modulações vindas de grafos $K_{m,n}$ apresentam sempre regiões com um número par de lados ≥ 4 , ou seja, para $t \in \mathbb{Z}$, têm-se

$$R_i \in K_{m,n} \hookrightarrow \Omega \Rightarrow i = 2t + 2, \ t \ge 2.$$
(3.9)

Por outro lado, da fórmula de Eüler (3.1) e da característica de $K_{m,n}$ em (3.3), segue que o número de regiões α de \mathfrak{F}_{mn} é dado por

$$\alpha = 2\left[\left(m + n - mn/2\right)/2\right] + mn - m - n.$$
(3.10)

Escrevendo m = 4k + a e n = 4t + b, $a, b \in \{0, 1, 2, 3\}$ e substituindo todos os casos possíveis para $m \in n$ na expressão de α em (3.10), obtemos

$$\alpha = \begin{cases} \frac{mn}{2}, \text{ se } (m,n) \equiv (0,0), (0,2), (1,2), (2,0) \cdots, (2,3), (3,2) \mod 4; \\ mn/2 - 1, \text{ se } (m,n) \equiv (0,1), (0,3), (1,0), (3,0) \mod 4; \\ mn/2 + 1/2, \text{ se } (m,n) \equiv (1,3), (3,1) \mod 4; \\ mn/2 - 3/2, \text{ se } (m,n) \equiv (1,1), (3,3) \mod 4, \end{cases}$$
(3.11)

onde $m, n \equiv (a_1, b_1), \dots, (a_s, b_s) \mod 4$. De uma análise em (3.11) deduzimos que:

i) Se $K_{n,n} \hookrightarrow \Omega(\alpha)$ é um mergulho mínimo, então,

$$\alpha = \begin{cases} n^2/2, se \ n \equiv 0 \mod 2\\ n^2/2 - 3/2, se \ n \equiv 1 \mod 2. \end{cases}$$
(3.12)

- ii) O número de regiões de $K_{m,n} \hookrightarrow \Omega(\alpha)$ é par se, e somente se, m e n são pares.
- iii) O número de regiões de $K_{n,n} \hookrightarrow \Omega(\alpha)$ é par se, e só se, n é um inteiro par.

4. Modulações com α Sinais

O mergulho $\mathfrak{F}_{mn} \equiv \Omega(\alpha)$ será denominado de modulação para um espaço de α sinais. O conjunto das modulações para espaço de α sinais será indicado por

$$\mathfrak{M}_{\alpha} = \{\mathfrak{F}_{mn} : \mathfrak{F}_{mn} \equiv \Omega\left(\alpha\right) \in K_{m,n} \hookrightarrow \Omega\}\}$$

$$(4.1)$$

onde $\mathfrak{F}_{mn} = \bigcup_{j=1}^{\alpha} R_{i_j}, i_1 \leq \cdots \leq i_{\alpha} \in R_{i_j}$ é uma região com i_j lados de $K_{m,n} \hookrightarrow \Omega_{\alpha}$.

Como $K_{m,n}$ tem mn lados e mn é par, então, *a cardinalidade de* \mathfrak{M}_{α} é igual ao número de soluções inteiras positivas da equações

$$2mn = 4F_4 + 6F_6 + 8F_8 + \dots e \sum_{i=0} F_{4+2i} = \alpha.$$
(4.2)

Sendo $\mathfrak{F}_{mn} = \bigcup_{j=1}^{\alpha} R_{i_j}$, segue imediatamente de (4.2) que $\sum_{j=1}^{\alpha} i_j = 2mn$, ou seja,

$$\mathfrak{F}_{mn} = R_{i_1} \cup \dots \cup R_{i_2} \Rightarrow i_1 + \dots + i_\alpha = 2mn.$$

$$(4.3)$$

Se $\mathfrak{F}_2^i = R_{i1} \cup R_{i2}$ é uma modulação sobre Ω , então, por (4.3), $i_1 + i_2 = 2mn$. Como $i_1, i_2 \in \{4, 6, \dots, mn\}$, então existem mn/2 - 1 modelos de modulações para \mathfrak{F}_2 . Logo, por (4.3), as modulações com duas regiões são da forma seguinte.

Teorema 4.1. \mathfrak{M}_2 tem mn/2 - 1 modulações. Mais precisamente,

$$\mathfrak{M}_2 = \{\mathfrak{F}_{mn}^1, \mathfrak{F}_{mn}^2, \cdots, \mathfrak{F}_{mn}^k, \cdots, \mathfrak{F}_{mn}^{mn/2-2}\}$$
(4.4)

onde $\mathfrak{F}_{mn}^1 = R_4 \cup R_{2mn-4}, \cdots, \mathfrak{F}_{mn}^{\frac{m_2}{2}-2} = R_{mn-2} \cup R_{mn+2}, \ \mathfrak{F}_{mn}^{\frac{m_2}{2}-1} = R_{mn} \cup R_{mn}.$

5. Modulações com 4 Sinais

Exibiremos somente a forma algébrica e o número de modulações existentes. Como forma algébrica de \mathfrak{F}_4 depende apenas do número de lados de $K_{m,n}$ e da fórmula de Eüler (3.1), não se sabe se o mergulho $K_{4,4} \hookrightarrow \Omega(4)$ é realizado em uma superfície orientada ou não-orientada. No modo algébrico, a modulação \mathfrak{F}_4 tem a forma

$$\mathfrak{F}_4 = R_{4+2i_1} \cup R_{4+2i_2} \cup R_{4+2i_3} \cup R_{4+2i_4} \tag{5.1}$$

onde $i_j \in \{1, 2, 3, \dots\}$, para todo $j = 1, 2, 3, 4 \in i_1 \le i_2 \le i_3 \le i_4$.

Por (5.1), o máximo de $4 + 2i_j$ é no caso de j = 4 na quádrupla (4,4,4,4 + $2i_4$). Logo, por (4.2), devemos ter $4 + 2i_4 = mn/2 - 6$. Assim, o problema consiste em determinar todas as combinações de quádruplas (i_1, i_2, i_3, i_4) , incluindo as com repetições, tais que, $i_1 \leq i_2 \leq i_3 \leq i_4$ para todo $j \in \{1, 2, 3, 4\}$ e $i_j \in \{4, 6, 8, \cdots, mn/2 - 6\}$. Para modulações com a primeira região fixa, vale o seguinte.

Proposição 1. Seja $\mathfrak{M}_4(\alpha)$ o conjunto de modulações de \mathfrak{M}_4 que fixam a primeira região $i_1 = \alpha$. Se $\alpha = 4, 6$, então,

$$|\mathfrak{M}_{4}(4)| = \begin{cases} \sum_{\substack{t=0\\mn/6-8/3}}^{mn/6-2} (4+6t), se mn \equiv 0 \pmod{3} \\ \sum_{\substack{t=0\\mn/6-7/3}}^{mn/6-8/3} (5+6t) + mn/2 - 3, se mn \equiv 1 \pmod{3} \\ \sum_{\substack{t=0\\mn/6-3}}^{mn/6-3} (3+6t) + mn/2 - 3, se mn \equiv 2 \pmod{3} \\ \\ \sum_{\substack{t=0\\mn/6-8/3}}^{mn/6-8/3} (3+6t) + mn/2 - 5, se mn \equiv 0 \pmod{3} \\ \sum_{\substack{t=0\\mn/6-7/3}}^{mn/6-8/3} (4+6t), se mn \equiv 1 \pmod{3} \\ \\ \sum_{\substack{t=0\\mn/6-7/3}}^{mn/6-7/3} (5+6t) + mn/2 - 5, se mn \equiv 2 \pmod{3} \end{cases}$$
(5.3)

Os procedimetos usados na obtenção das fórmulas (5.2) e (5.3) também aplicamse aos demais casos. A variação do índice i_3 controla a quantidade de subconjuntos distintos de \mathfrak{M}_4 cujos índices i_1 e i_2 são fixos.

5.1. Seqüência dos tipos de modulações com 4 sinais

No cálculo do número de modulações, as seqüências dos números de modulações que fixam a primeira região, representa um fator decisivo na questão da contagem.

Definição 5.1. Seja $\mathfrak{I}_1 = \{4, 6, \dots, mn/2\}$ o conjunto da variação do índice i_1 . Seja $\mathfrak{M}_4(\mu) = \{\mathfrak{F}_{mn} \in \mathfrak{M}_4 : \mathfrak{F}_{mn} = R_\mu \cup R_{i_2} \cup R_{i_3} \cup R_{i_4}, \mu \in \mathfrak{I}_1\}$ o conjunto de todos os modelos de \mathfrak{M}_4 que fixam $i_1 = \mu$. Chamaremos de **seqüência dos números de modelos que fixam** i_1 a seqüência $S_t(\mu) = (a_0, a_1, \dots, a_t), a_k = |\mathfrak{M}_4(4+2k)|$.

A ordem nos índices estabelecida em (5.1), induz necessariamente uma interdependência entre os mesmos a qual será estabelecida a seguir.

Definição 5.2. Se $K_{m,n} \hookrightarrow \Omega$ e $\mathfrak{F}_4 \equiv \Omega(\alpha)$, indicaremos por \mathfrak{I}_s , $s \in \{1, 2, \dots, \alpha\}$, o conjunto dos índices da região R_s de um modelo $\mathfrak{F}_4 \in \mathfrak{M}_{\alpha}$. Se s > 1, chamaremos de **índice mínimo relativo** $i_{s\min}^{rel}$ o menor índice do conjunto \mathfrak{I}_s relativo aos índices anteriores. Chamaremos de **índice máximo relativo** $i_{s\max}^{rel}$ o maior índice de \mathfrak{I}_s relativo aos demais índices.

Denotamos por \mathfrak{I}_2^{μ} o conjunto dos índices da segunda região de um modelo relativo à primeira região $i_1 = \mu$. Neste caso, $i_{2\min}^{\mu}$ é o índice mínimo para a segunda região relativa à primeira. Chamaremos de $i_3^{\mu,\eta}$ o índice da terceira região relativa às duas primeiras. Observe que o conjunto dos índices da *s*-ésima região é $\mathfrak{I}_s = \{4, 6, 8, \cdots, i_{s\max}\}$.

Das definições e resultados anteriores, deduz-se facilmente as propriedades enunciadas da seguinte forma:

Proposição 2. Se $\mathfrak{F}_4^i = R_{i_1} \cup R_{i_2} \cup R_{i_3} \cup R_{i_4} \in \mathfrak{M}_4$, então,

i)
$$i_{1\max} = mn/2$$
, $i_{2\max} = [(2mn-4)/3]$, $i_{3\max} = mn-4$, $i_{4\max} = mn-6$;

ii)
$$i_{s\min}^{rel} = i_{s-1} \ e \ i_{s\max}^{rel} = (2mn - \sum_{j=1}^{s-1} i_j)/(\alpha - s + 1);$$

- iii) O número de modulações com 4 regiões do conjunto $\mathfrak{M}_4 \notin |\mathfrak{M}_4| = \sum_{k=0}^{mn/4-1} a_k;$
- iv) O número de termos da seqüência $S_t(\mu) \notin mn/4$.

v)
$$a_k = \sum_{t=0}^{\left[(mn-4k-8)/3\right]} \left(\left[(mn-3t)/2\right] - 3 - 2k\right)$$

As formas dos modelos de modulações que fixam as duas primeiras regiões podem ser deduzidas de (5.1), (5.2) e Proposição 2(ii), conforme o enunciado da seguinte:

Proposição 3. As modulações de $\mathfrak{M}_4(\mu, \eta)$ assumem uma das duas formas:

$$\begin{array}{ll} R_{\mu} \cup R_{\eta} \cup R_{\eta} \cup R_{2mn-\mu-2\eta} & R_{\mu} \cup R_{\eta} \cup R_{\eta-\mu-2\eta} \\ R_{\mu} \cup R_{\eta} \cup R_{\eta+2} \cup R_{2mn-\alpha-2\eta-2} & R_{\mu} \cup R_{\eta} \cup R_{\eta+2} \cup R_{2mn-\mu-2\eta-2} \\ \vdots & \vdots & \vdots & \vdots \\ R_{\mu} \cup R_{\eta} \cup R_{\frac{2mn-\mu-\eta}{2}} \cup R_{\frac{2mn-\mu-\eta}{2}} & R_{\mu} \cup R_{\eta} \cup R_{\frac{2mn-\mu-\eta-1}{2}} \cup R_{\frac{2mn-\mu-\eta+1}{2}}, \end{array}$$

caso k seja par ou ímpar, respectivamente.

Proposição 4. Seja $S_h(\mu, \eta) = (b_0, b_1, \dots, b_h), b_j = |\mathfrak{M}_4(\mu, \mu + 4j)|, a seqüência de números de elementos do conjunto <math>\mathfrak{M}_4(\mu, \eta)$ que fixam $i_1 = \mu$ e $i_2 = \eta$, então

$$h = \begin{cases} \sum_{\mu \in \mathfrak{I}_{1}} (mn - 2\mu) / 3, \ se \ mn \equiv p(mod \ 3), \mu \equiv q(mod \ 3) \ e \ p + q \equiv 0 \ (mod \ 3), \\ \sum_{\mu \in \mathfrak{I}_{1}} (mn - 2\mu - 1) / 3, \ se \ mn \equiv p(mod \ 3), \mu \equiv q(mod \ 3) \ e \ p + q \equiv 1 \ (mod \ 3), \\ \sum_{\mu \in \mathfrak{I}_{1}} (mn - 2\mu - 2) / 3, \ se \ mn \equiv p(mod \ 3), \ \mu \equiv q(mod \ 3) \ e \ p + q \equiv 2 \ (mod \ 3) \end{cases}$$

Substituindo μ por 4 - 2j nas expressões de h da Proposição 4, e analisando os termos da seqüência $S_h(\mu, \eta)$, deduzimos os seguintes resultados.

Corolário 5.0.1. Se $S_h(\mu, \eta) = (b_0, b_1, \dots, b_h)$ é a seqüência de números de elementos do conjunto de modelos $\mathfrak{M}_4(\mu, \eta)$ que fixam $i_1 = \mu$ e $i_2 = \eta$, então,

i) O índice de variação h e o k-ésimo termo de $S_h(\mu, \eta)$, são:

$$h = \begin{cases} \sum_{\substack{j=0\\mn/4-2\\j\equiv0}}^{mn/4-2} (mn-8-4j) / 3, \ semn \equiv p \ (mod \ 3) \ , \ 4+2j \equiv q \ (mod \ 3) \ , \ p+q \equiv 0 \ (mod \ 3) \\ \sum_{\substack{j=0\\mn/4-2\\j\equiv0}}^{mn/4-2} (mn-9-4j) / 3, \ semn \equiv p \ (mod \ 3) \ , \ 4+2j \equiv q \ (mod \ 3) \ , \ p+q \equiv 1 \ (mod \ 3) \\ \sum_{\substack{j=0\\j=0}}^{mn/4-2} (mn-10-4j) / 3, \ semn \equiv p \ (mod \ 3) \ , \ 4+2j \equiv q \ (mod \ 3) \ , \ p+q \equiv 2 \ (mod \ 3) \end{cases}$$

$$b_{k} = \begin{cases} (mn - 2\mu - 3k)/2 + 1, se \ k \equiv 0 \ (mod \ 2) \\ (mn - 2\mu - 3k - 1)/2 + 1, se \ k \equiv 1 \ (mod \ 2). \end{cases}$$
(5.4)

ii) As seqüêcias $S_h^0(\mu,\eta) = (b_0, b_2, \cdots, b_{2p}) \ e \ S_h^1(\mu,\eta) = (b_1, b_3, \cdots, b_{2p+1}), \ dos$ termos pares e ímpares de $S_h(\mu,\eta)$, são progressões aritméticas decrescentes de razão 3.

Escrevemos $(m, n, p) \equiv (r, s, t) \pmod{3}$ para significar que $m \equiv r \pmod{3}$, $n \equiv s \pmod{3}$ e $p \equiv t \pmod{3}$.

Assim, a cardinalidade de $\mathfrak{M}_4(\mu,\eta)$ é a soma dos elementos da seqüência $S_h(\mu,\eta)$.

Teorema 5.1. Se $mn \equiv p \pmod{3}$ e $\mu \equiv q \pmod{3}$, então as seqüências de números de modulações do conjunto $\mathfrak{M}_4(\mu, \eta)$ que fixam $\mu \in \mathfrak{I}_1, \eta \in \mathfrak{I}_2$ é

 $S_{h}\left(\mu,\eta\right) = \begin{cases} (mn/2-\mu+1,mn/2-\mu-1,mn/2-\mu-2,\cdots,8,7,5,4,2,1) \,, \, se \, p+q \equiv 0 \, (mod \ 3) \\ (mn/2-\mu+1,mn/2-\mu-1,mn/2-\mu-2,\cdots,9,7,6,4,3,1) \,, \, se \, p+q \equiv 1 \, (mod \ 3) \\ (mn/2-\mu+1,mn/2-\mu-1,mn/2-\mu-2,\cdots,9,8,6,5,3,2) \,, \, se \, p+q \equiv 2 \, (mod \ 3) \,. \end{cases}$

Demonstração. Pondo $mn \equiv p \pmod{3}$ e $\mu \equiv q \pmod{3}$, analisando os 9 casos possíveis e aplicando Corolário 5.0.1(v).

Aplicando, ao Teorema 5.1, a Proposição $2(v) \in (5.4)$, resulta o seguinte

Corolário 5.1.2. Se $a_k \in S_t(\mu)$, então $a_k = \sum_{\eta \in \mathfrak{I}_2^{4+2k}} b_h, b_h \in S_h(4+2k,\eta)$.

Os termos de $S_t(\mu)$ são obtidos de $S_h(\mu, \eta)$ segundo a relação $a_k = \sum_{\eta \in \mathfrak{I}_2^{4+2k}} a_h$,

 $a_h \in S_h (4 + 2k, \eta)$. Pelo Corolário 5.1.2, a_k é a soma dos termos b_k 's da seqüência $S_h (\mu, \eta)$, cuja soma será obtida do arranjo triangular da Tabela 1.

Tabela 1: Triângulo ∇

$a_{h_4}^4$		a_{7}^{4}	a_6^4	a_5^4	a_4^4	a_3^4	a_{2}^{4}	a_1^4	a_0^2
÷	÷	÷	÷	÷	÷	÷	÷	÷	
11	9	8	6	5	3	2			
9	7	6	4	3	1				
7	5	4	2	1					
5	3	2							
3	1								
1									

5.2. Número das modulações para 4 sinais oriundas de $K_{m,n}$

A cardinalidade de $\mathfrak{M}_4(\mu)$ é igual ao somatório dos elementos de ∇ .

Teorema 5.2. Se $mn \equiv p \pmod{3}$ e $\mu \equiv q \pmod{3}$, então o número de elementos de $\mathfrak{M}_4(\mu)$ é igual a

$$\begin{cases} \sum_{\substack{t=0\\\frac{mn}{6}-\frac{\mu}{3}=2\\t=0}}^{\frac{mn}{6}-\frac{\mu}{3}=2} (1+3t) + \sum_{\substack{t=0\\\frac{mn}{6}-\frac{\mu}{3}-\frac{2}{3}=2\\t=0}}^{\frac{mn}{6}-\frac{\mu}{3}-\frac{2}{3}} (2+3t) + \sum_{\substack{t=0\\\frac{mn}{6}-\frac{\mu}{3}-\frac{1}{3}=2\\t=0}}^{\frac{mn}{6}-\frac{\mu}{3}-\frac{2}{3}=\frac{2}{3}} (3+3t) , se \ p+q \equiv 1 \ (mod \ 3) , \end{cases}$$
(5.5)

Demonstração. Consequências do Corolário 5.0.1 e Teorema 5.1.

Do Teorema 5.2, segue a forma simplificada do próximo corolário.

Corolário 5.2.3. Se $mn \equiv p \pmod{3}$ e $\mu \equiv q \pmod{3}$, a classe de congruência módulo 3, então o número de elementos do conjunto $\mathfrak{M}_4(\mu)$, de modelos com 4 regiões que fixam a primeira região μ , é igual a

$$\begin{split} &\sum_{\substack{t=0\\\frac{mn}{6}-\frac{\mu}{3}-2\\\frac{mn}{6}-\frac{\mu}{3}-\frac{2}{3}}} (3+6t)+mn/2-\mu+1, \; se\; p+q \equiv 0 \; (mod\; 3) \\ &\sum_{\substack{\frac{mn}{6}-\frac{\mu}{3}-\frac{2}{3}\\\frac{mn}{6}-\frac{\mu}{3}-\frac{4}{3}}} (4+6t) \, , \; se\; p+q \equiv 1 \; (mod\; 3) \\ &\sum_{\substack{t=0\\t=0}}^{\frac{mn}{6}-\frac{\mu}{3}-\frac{4}{3}} (5+6t)+mn/2-\mu+1, \; se\; p+q \equiv 2 \; (mod\; 3) \, . \end{split}$$

Teorema 5.3. O número de elementos de \mathfrak{M}_4 é

$$|\mathfrak{M}_{4}| = \begin{cases} \sum_{\substack{i=1\\mn/4-1}}^{mn/4-1} i^{2} + \sum_{\substack{i=1\\mn/4-1}}^{mn/12-1} (3i)^{2}, \ se \ mn \equiv 0 \ (mod \ 3) \\ \sum_{\substack{i=1\\mn/4-1}}^{mn/12-4/3} i^{2} + \sum_{\substack{i=0\\mn/12-5/3}}^{i=0} (1+3i)^{2}, se \ mn \equiv 1 \ (mod \ 3) \\ \sum_{\substack{i=1\\i=1}}^{mn/12-5/3} i^{2} + \sum_{\substack{i=0\\i=0}}^{mn/12-5/3} (2+3i)^{2}, se \ mn \equiv 2 \ (mod \ 3) . \end{cases}$$

Demonstração. Segue da soma dos elementos da Tabela 1.

A Tabela 2 contém o número de modulações de \mathfrak{M}_4 , $m \in \{2, 4, \dots, 12\}$ e $n \in \{4, 6, \dots, 10\}$. E usando as fórmulas (3.1) e (3.2), identificamos, na Tabela 3, as modulações regulares com quatro sinais, ou seja, do tipo e.s.g.u.

	4	6	8	10
2	1	5	15	34
4	15	64	169	351
6	64	249	632	1285
8	169	632	1575	3169
10	351	1285	3169	6336

Tabela 2: Cardinalidade de \mathfrak{M}_4

Tabela 3: Modulações e.s.g.u. de \mathfrak{M}_4

m	n	v	e	l	$K_{m,n}$	$\chi\left(\Omega ight)$	αT	βP
2	3	5	6	4	$K_{2,3}$	-3	Ø	Ø
2	4	6	8	4	$K_{2,4}$	2	S	Ø
2	5	7	10	4	$K_{2,5}$	1	T	P
2	6	8	12	4	$K_{2,6}$	0	T	2P
2	7	9	14	4	$K_{2,7}$	-1	2T	3P
2	8	10	16	4	$K_{2,8}$	-2	27	4P
2	9	11	18	4	$K_{2,9}$	-3	Ø	5P

6. Conclusão

As modulações visadas atendem aos requisitos de um sistema integrado de transmissão de dados [3], os quais são planejados a partir do modelo de grafo associado ao canal DMC. Desse modo, o processo mais natural de identificação parte do canal e, por isso, o nosso objetivo foi relacionar os projetos de modulações para espaços de α sinais destacando às regulares, ou seja, àquelas com características e.s.g.u.

Se o objetivo é optar por uma particular modulação, a Proposição 3 irá dizer se ela existe e, a Tabela 3, identifica a superfície sobre a qual o projeto é realizado. Quanto a construção, o processo em [5] encarrega-se do mergulho em superfície sem bordos e a Construção 5.0.1, do mergulho em superfície com bordos.

O número de elementos de \mathfrak{M}_4 na Tabela 2 , já é expressivo, mas não é só isto, da condição (2.1), segue que o número de modulações em superfícies com bordos é 24 vezes maior do que o apresentado na Tabela 1.

Agradecimentos

À Maria Zuleica Oriá Lima (esposa) e ao Prof. Elder Lacerda Queiroz, Faculdade de Filosofia - UERN, pelas assessorias prestadas no texto e na tradução.

Abstract. In a transmission system of digital signals [3], the components channelmodulation-codification are projected by the following way: the modulation is the topological model of 2-cells embedding on surface Ω of complete bipartite graphs $K_{m,n}$, associated to the discrete memoryless channels. The main focus is to identify the modulation models with integrated systems patterns, emphasizing the geometrically uniform signal spaces [2].

Keywords. Modulations, discrete memoryless channel, surface, graph embedding.

Referências

- P.A. Firby, C.F. Gardiner, "Surface Topology", Ellis Horwood Limited, England, 1991.
- G.D. Forney Jr., Geometrically Uniform Codes, *IEEE Trans. Inform. Theory*, 37 (1991) 1241-1260.
- [3] J.D. Lima, "Identificação e Estrutura Algébrica das Superfícies Compactas com e sem Bordos, Provenientes de Mergulhos de Canais Discretos sem Memória", Tese de doutorado, FEEC, UNICAMP, 2002.
- [4] J.D. Lima, R. Palazzo Jr., Grupo de homologia, uma fonte natural de códigos corretores de erros, em submissão, Mossoró, 2007.
- [5] J.D. Lima, R. Palazzo Jr., Projetos topológicos de modulações sobre superfícies, em submissão, Mossoró, 2007.
- [6] R.D. Ringeisen, Determining all compact orientable 2-manifolds upon which $K_{m,n}$ has 2-cell embeddings. Journal Combinatorial Theory, **12** (1972) 101-104.
- [7] R.D. Ringeisen, Survey of results on the maximum genus of a graph, *Journal of Graph Theory*, 3 1979 1-13.
- [8] H. Seifert, W. Threlfall, "Leciones de Topologia", Madrid, 1951.
- [9] S. Stahl, A survey of the embeddings of a graph, Journal of Graph Theory, 2 (1978) 275-298.
- [10] J.M. Wozencraft, I.M. Jacobs, "Principles of Comunication Engineering", New York, 1965.