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ABSTRACT. The aim of this paper is to present, in a broad context, a proposal of mathematical foundation
that serves as framework for the development of the electronic structure calculation methodology called
“Density Matrix Tight Binding method (DMTB)”, which was originally presented in the literature by the
group led by physicist David Vanderbilt in 1993 [9], as well as its relationship to the computational modeling
that can be chosen for its implementation. The approach adopted makes it clear that the final mathematical
formulation of this methodology is completely dependent on the computational strategies chosen for its
effective implementation. Thus, we put the DMTB as a mathematical-computational model of variable final
formulation. Finally, we propose an implementation based on the nonlinear conjugate gradient method.
The final model obtained is slightly different from the DMTB that was originally presented in 1993, in
agreement with the version presented by Millam and Scuseria in 1997 [11]. The approach used develops
the mathematical aspects, aiming at the effective computational implementation of the methodology.

Keywords: tight-binding density matrix, mathematical and computational modeling, Lagrange multipliers.

1 INTRODUCTION

In general, poly-electronic systems have a rather intricate mathematical structure and quan-
tum mechanical equations can only be solved using simplifying hypotheses such as the Born-
Oppenheimer approximation and the independent electron approximations. Currently the the-
oretical investigations of electronic properties are made through computational simulations of
mathematical models based on the basic methodologies of the quantum condensed matter theory:
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the semi-empirical and first principles methodologies. Many proposals for solving mathemati-
cal models that have quantum description in their formulations, run into the high computational
complexity of the algorithms involved. This limits the application of these models to systems
with many atoms, preventing more realistic simulations. Several mathematical-computational
strategies with order complexity O(N) have been proposed, where N is the number of atoms in-
volved. One is the semi-empirical methodology called the Tight-Binding Density Matrix Method
(DMTB). Density matrix based methods for obtaining the ground state energy were proposed
simultaneously in 1993 by Li, Nunes and Vanderbilt [9] and Daw [3] (based on different argu-
ments and techniques), where the crystalline electronic states can be explicitly described in terms
of atomic orbitals and the crystalline Hamiltonian can be constructed from semi-empirical pa-
rameters and thus only implicitly dependent on atomic orbitals. This methodology presents the
possibility of computational implementation of linear complexity in relation to the number of
electrons of the modeled system. DMTB has been widely used successfully for the study of elec-
tronic structure in the last two decades with methodological formulations different from those
presented in the original article. An example can be seen in [11], for example.

This paper presents, in a broad context, a proposal of mathematical foundation for the DMTB.
The approach used develops the mathematical aspects aiming the effective computational imple-
mentation of the methodology. In this construction, the final mathematical formulation of this
method is completely dependent on the computational strategies chosen for its implementation.
Thus, here, the DMTB is established as a mathematical-computational model of final variable
formulation.

2 METHODOLOGY

Let’s consider the representation of crystal structures by supercells. We can then formulate the
problem we are interested in as follows: Given a structure generated by repeating a supercell
with N atoms and M electronic orbitals per atom, we obtain the quantum mechanical energy of
the ground state of this structure.

The quantum mechanics described by the formalism of quantum mechanical states is based di-
rectly on the Schrödinger equation. However, there is a more general formulation, using a tech-
nique called the Density Operator (or Density Matrix). This is a deep topic that we cannot address
here. For an initial reading, we recommend chapter 9 of [1]. We will simply say that, in that ap-
proach, the concept of quantum state is generalized to elements of a new vector space over C,
where states can be seen as particular cases, and the ρ density matrix is an projection operator
onto subspace of the Occupied States of the H.

In this formalism, the Electronic Density Operator is given by

ρ = ∑
n

fn |ψn〉〈ψn|

where n is the Hamiltonian discrete spectrum index, fn is the occupancy number and the sym-
bolism introduced by Dirac is used, in which the symbol | 〉 , called ket, represents a vector of

Trends Comput. Appl. Math., 22, N. 3 (2021)
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the vector space of quantum states, and the symbol 〈 | , called bra, represents a vector of the dual
topological of this space. For this symbolism, we recommend [4], on page 18, and [7], on page
32.

Writing the quantum states as a linear combination of the finite base of the Tight-Binding method
gives the operator matrix ρ, called the electron density matrix ρe. Assuming that the orbital base
forms an orthonormal set, we can write the number of electrons - Ne - and the total electronic
energy of the system E as a function of the density matrix ρe, using the matrix trace operator

Ne = tr(ρe) = ∑
i

ρeii; E = tr(ρeH) = ∑
i, j

ρei jH ji.

Also, since the density operator is a projector, the density matrix is idempotent

ρ
2
e = ρe.

Recalling that in this type of methodology (Tight-Binding + Density Matrix) the total energy of
a system with Ne electrons is usually given by:

Etot = E +Erep +E0N, (2.1)

where Erep represents the repulsive potential, N is the number of system atoms and E0 is an
energy constant per atom. For a presentation of the Tight-Binding method using the Electronic
Density Operator formalism, as well as the demonstrations of the above identities, we recom-
mend [12]. In the approach of this reference, as in ours, the results were obtained assuming that
the orbital base forms an orthonormal set.

3 PROBLEM FORMULATION

Since the quantum ground state is the minimum energy state, and since the ground state energy is
a function of electron density (E = tr(ρeH)), we can now reshape the problem we are attacking:
given a structure generated by repeating a supercell with N atoms and M electronic orbitals
per atom with a Hamiltonian matrix H (order square NM), get the ρe electron density matrix
that minimizes E(ρ) = tr(ρH). Note that we are considering energy as a real matrix variable
function. From now on, we will be identifying the square matrix space Mn(R) (n = NM2) with
the space Rn2

and thus the energy E(ρ) will be considered a scalar field in Rn2
.

3.1 The Unrestricted Minimization Model

The minimization indicated in the formulation above cannot be done unrestrictedly. As we said,
the quantum mechanics used in constructing the problem imposes that the number of electrons
present in our structure must be reproduced by the ground state density matrix. In addition,
the ground state density matrix must be idempotent. Finally, the electron density matrix must
commute with the tight-binding Hamiltonian matrix. Given the computational strategies of inter-
est, our goal is to obtain an unrestricted minimization problem. The electron number bond was
introduced in the model through the Lagrange Multiplier Theorem:

Trends Comput. Appl. Math., 22, N. 3 (2021)
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Theorem 3.1. (Lagrange’s Theorem) Suppose that f : U → R belongs to Class function Ck

(k ≥ 1) in the open set U ⊂ Rn+1, and M = g−1(0) a hyper face contained in U, inverse image
of the regular value 0 by a function g : U → R, also class Ck. Then p ∈M is a critical point of
f |M if and only if there is a real number µ (called a Lagrange multiplier) such that

∇ f (p)+µ∇g(p) = 0.

Considering the identification of Mn(R) (n = NM2) with the space Rn2
, the previous theorem

guarantees us the following: ρ0 is a critical point of the function E(ρ) = tr(ρH), surface re-
stricted g−1(0) = {ρ ∈ Mn(R); tr(ρ)−Ne = 0}, if, and only if, there is a real number µ that
makes the gradient of the function null in ρ0

Ω(ρ) = tr(ρH)+µ(tr(ρ)−Ne), (3.1)

as long as the g link gradient is not null at ρ . In addition, the g gradient can be easily obtained:

∇(g(ρ)) = ∇((tr(ρ)−Ne)) = It = I,

showing that the use of Lagrange Multipliers is allowed.

It is worth noting here that Vanderbilt’s group originally conceives scalar µ as a potential chem-
ical in [9]. Thus, some procedure is necessary to update the chemical potential value during the
search for the density matrix. In contrast, in our approach, the interpretation of µ as a Lagrange
multiplier, which has the role of selecting arrays that reproduce the correct number of electrons,
allows us to use the combination of computational implementation based on nonlinear conju-
gate gradient method, which was reported in [5], requiring physical consistency for the number
of electrons, to explicitly determine the µ multiplier as a function of ρ in each iteration step.
Therefore, as we will see, in the above model, µ will not be an independent unknown. This same
interpretation for µ is also reported in [11].

The constraint of idempotence was roughly and implicitly imposed by the so-called “McWeeny
purification transformations” [10], defined in the square matrix space, as follows. Consider the
mapping

F(X) = 3X2−2X3,

defined in square matrix space. It is evident that every idempotent matrix is a fixed point of this
mapping, and it is easy to see that if λ is an eigenvalue of an array X , then f (λ ) is eigenvalue of
F(X), where f is the polynomial f (x) = 3x2−2x3.

As we know, the eigenvalues of an idempotent matrix belong to the set {0,1}. Let B be a ”approx-
imately idempotent” matrix with an absolute maximum error of the order of O(ε), in the sense
that that for a certain ε > 0, its eigenvalues are given by h or 1+ h, with h ∈ and 0 < |h| < ε.

With that, eigenvalues of F(B) are f (h) or f (1+h). From Taylor’s development of order 1 to f ,
we see that the matrix F(B) will be approximately idempotent with absolute maximum error of

Trends Comput. Appl. Math., 22, N. 3 (2021)
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the order of O(ε2). Therefore, using F(ρ) instead of ρ in the equation (3.1) presents a proposal
for the implicit and approximate introduction of the idempotency link in our model.

The mapping F is known as the MacWneey Purification Transformation [10] and was incorpo-
rated into the Vanderbilt group model. Analyzing the purification polynomial f , we see that with,
the eigenvalues of a matrix in the range [−0.5,1.5], the eigenvalues of the purified matrix will
remain in the range [0,1].
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1

2

3

4

5

x

f(
x)

Figure 1: The purifying polynomial f (x) = 3x2−2x3.

With this, the function that will be minimized, unrestrictedly, is given by

Ω(ρ) = tr([3ρ
2−2ρ

3]H)+µ(tr(ρ)−Ne), (3.2)

where the multiplier µ will be defined next.

Still considering the matrix space identification and considering Ω also as a scalar field, we get
that

∇Ω = 3(Hρ +ρH)t −2(Hρ
2 +ρHρ +ρ

2H)t +µI, (3.3)

which is fundamental to the computational methods of unrestricted optimization.

3.2 Computational Strategies

In the basic algorithms of unrestricted scalar field optimization Ω(ρ) (steepest descent, Newton,
Quasi-Newton, etc.) line search routines produce an iterative sequence that converges to the
wanted stationary point

ρk+1 = ρk +αDk,

Trends Comput. Appl. Math., 22, N. 3 (2021)
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where α is the step taken in the search direction Dk. In our context, we must require that in
each iteration the number of electrons system is kept constant, that is, for every k, we have to
tr(ρk+1) = tr(ρk). So let’s impose, for every k, that

tr(Dk) = 0.

Without going into too much detail, a nonlinear conjugate gradient method (NLCG) solves the
problem of unrestricted minimization of a differentiable function Ω : Rd → R building a vector
sequence using line search

ρk+1 = ρk +αkDk, (3.4)

with search direction defined by

Dk =

{
−∇Ω(~xk), k = 1

−∇Ω(~xk)+βk~dk−1, k ≥ 2,
(3.5)

where βk are real numbers. There are several (not equivalent) proposals for the βk scalar reported
in the Numerical Optimization literature. Each proposal generates a different NLCG method.
There are several proposals for choosing the NLCG step reported in the literature and this is still
the subject of scientific discussions (see, for example, [14], [2], [16] e [17]). Linear searches have
an influence on theorems of global convergence for NLCG algorithms. The global convergence
study for the NLCG still receives many current contributions. It is a β -dependent study. In addi-
tion, the β parameter is critical for updating direction dk. There are several choices for the beta
parameter, being the [13] and [6] the most classic ones. Fixing an NLCG algorithm, using the
(descent) search direction definition given in (3.5) and our physical requirement that tr(Dk) = 0,
along with the gradient given in (3.3) we find that we must define

µk =
6

Ne
[tr(ρ2

k H)− tr(ρkH)]. (3.6)

NLCG-based methods have been applied in Mathematical and Computational Modeling of Con-
densed Matter Physics phenomena since at least the 1980s (see [15], for example). The conjugate
gradient method (nonlinear) has some implementation possibilities with linear complexity. The
canonical isomorphism between the matrix space and the Euclidean space Rd has computational
complexity of the order d2. This complexity can be reduced to linear complexity by using a cut-
ting radius for the density matrix , as suggested in [9], as follows. Assuming a Rd implementation
for NLCG containing d steps (asymptotically optimal algorithm), taking into account our iden-
tification between arrays and vectors, the DMTB-adapted version would use d2 steps, since, for
the calculation of the system energy, in principle it would be necessary to compute all elements
of the density matrix. However, it is known that

lim
Ri j→∞

ρi j = 0,

where Ri j is the distance between the i and j orbitals ( [9]). This convergence to zero has order
of polynomial convergence in metals and exponential in insulators. Given this fact, Vanderbilt’s

Trends Comput. Appl. Math., 22, N. 3 (2021)
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group proposed introducing a Rc > 0 cutting radius so that if Ri j > Rc then ρi j = 0. Thus, fixed an
atom in the lattice, let L be the number of lattice atoms contained in the radius sphere Rc, centered
on the atom that was previously fixed (due to lattice symmetry, L does not depend on the fixed
atom then being a constant for each choice of cutting radius). With that, to form an element ρi j

eventually not null, i may occupy any of the NM positions available, but j must range from LM
positions. Hence, if we consider only these eventually non-null elements of the density matrix,
our matrix vectoring process produces a vector with NLM2 coordinates. Having this vector as
input, the CG algorithm would use NLM2 steps, thus presenting complexity O(N). Of course, Rc

must be chosen to obtain density matrices close to true densities. In the implementation of [5]
M = 4 (one s orbital and three p orbitals) was used.

4 FINAL CONSIDERATIONS

For this µ (equation (3.6)) construction to have the effect we want, it is critical that the initial ρ0

matrix already has the correct number of electrons in the supercell. Thus, the expression

µ(tr(ρ)−Ne),

that was already null in ρ0, remains null throughout the process. So the expression of the
functional Ω becomes just

Ω(ρ) = tr((3ρ
2−2ρ

3)H).

With this approach, the Lagrange multiplier has no effect on the functional objective Ω. Its effect,
however, manifests itself in the gradient ∇Ω with each new iteration.

Therefore, the final problem is the unrestricted minimization (via nonlinear conjugate gradient
algorithms) of

Ω(ρ) = tr((3ρ
2−2ρ

3)H),

using the equations (3.3) and (3.6).

Finally, Quantum Mechanics still requires us to have the commutativity of the product ρH, when
ρ = ρe is the true density matrix. This property directly affects the choice of stopping criteria for
our NLCG-based algorithm. In fact, assuming that the built arrays are becoming approximately
idempotent enough that we can consider µ = 0, we see that the gradient becomes

∇Ω = (Hρ +ρH−2ρHρ)t .

Of course, if ρ and H switch, then ∇Ω = 0. On the other hand, let’s assume that ∇Ω = 0. Then,

Hρ +ρH = 2ρHρ.

Multiplying this equation by ρ on the left, we see that

ρHρ +ρ
2H = 2ρ

2Hρ.

Trends Comput. Appl. Math., 22, N. 3 (2021)
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Considering ρ2 = ρ, we get ρH = ρHρ. Similarly, doing the right multiplication now gives
Hρ = ρHρ. And so ρH = Hρ. With this, we see that ρ will be a critical point of Ω if, and
only if, it switches with the Hamiltonian Tight-Binding matrix. This leads us to conclude that we
should not use a maximum number of iterations in our algorithm. The stopping criterion should
only be linked to the value tolerance ||∇Ω||.

Below is the pseudo-code based on the NLCG methodology for minimizing the functional Ω(ρ)

used in [5].

Algorithm 1 NLCG for energy functional (Polak-Ribière-type)
Data: Ω,∇Ω,ρ0, tol, itmax {energy gradient, functional gradient, initial estimate for density

matrix and maximum number of iterations }
Result: electron density matrix ρ for ground state

1 begin
2 it← 0;

~d0←−∇Ω(~x0);
ρ ← ρ0;
~d← ~d0;
G← ~d0;
while ‖G‖> tol e it < itmax do

3 G0← ∇Ω(ρ0);
Find α Using Line Search
ρ ← ρ +α~d;
Find Lagrange multiplier µ;
G← ∇Ω(ρ);
β ← tr(G(G−G0)

t )
tr(G0Gt

0)
;

d←−G+βd;
ρ0← ρ;
it← it +1;

4 end
5 end
6 return ρ

It is therefore an iterative process that builds the density matrix of the ground state. ρe.

These calculations are performed with parametrized tight-binding Hamiltonian for specific
atomic species. It should be clear that, although based on NLCG, this computational approach
does not fit the general definition of conjugate gradient methods, since the gradient of the field in
question is updated with each iteration of the process. Therefore, the known global convergence
theorems for this category of algorithms cannot be applied. Thus, the correctness of the algo-
rithm (in the computers science sense) based on this proposal is a mathematical challenge to be
solved. In addition to the issue of proposed iterative process for the minimization, the algorithm
depends on the parametrization of the Hamiltonian that is used and, as we know, the accuracy and

Trends Comput. Appl. Math., 22, N. 3 (2021)
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applicability of Hamiltonian parametrizations is quite relative. Therefore, the numerical method-
ology proposed here it lacks Numerical Analysis and we believe that the formalism developed
is adequate to receive such treatment. However, the convergence and validation of the results of
a particular case can be appreciated in [5], where the implementation with silicon crystals was
made rigorously along the lines of the present work, using the Kwon’s Hamiltonian [8]. The
computational implementation was done in C++, under the object-oriented paradigm.

For silicon, many measurements, obtained experimentally and obtained by ab initio methods,
are in agreement with the predictions obtained by DMTB. Without going into too much detail,
the validation type proposed in the reference [5] was as follows: we can take the experimental
lattice parameter of Si crystals. It is known that this lattice parameter is worth approximately
5.43 angstroms. Therefore, the DMTB algorithm applied to silicon (ie, with a Si parametrized
Tight-Binding Hamiltonian), when fed with this grid parameter value, must have full energy
(Etot ) lower than the other values for this parameter. More precisely, the total energy given by
the equation (2.1), seen now as a function of the lattice parameter, should be a minimum of 5.43
Å. Since both the crystalline Hamiltonian matrix and Erep are given in a parametrized form, this
type of validation is not only linked to the DMTB, but also to the chosen Hamiltonian. Below is
the graph obtained using Kwon’s Hamiltonian [8].

Figure 2: Experimental Lattice Parameter Calculation.

For this graph, 10 values for energy were obtained from DMTB powered with lattice parameter
values ranging from 5.20 to 5.65, from 0.5 Å to 0.5 Å. Then we adjusted the points by least
squares to get a parabolic function. The minimum of the parabola occurs at 5.44 AA. Thus, we
see that the relative error is approximately 0.2 %. For further details on this result, see [5].

Still on the issue of computational complexity, we see that, even with the use of the cutting
radius, the above algorithm has no linear complexity because, in line 13, we have the product
trace of two matrices. However, there are well-established parallel programming proposals for
this operation. In addition, manipulation methods for sparse arrays are required. Therefore, the
final analysis of algorithmic complexity must be done under all these considerations.

Trends Comput. Appl. Math., 22, N. 3 (2021)
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