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ABSTRACT. Portfolio selection is undoubtedly one of the most challenging topics in the area of finance.
Since Markowitz’s initial contribution in 1952, portfolio allocation strategies have been intensely discussed
in the literature. With the development of online optimization techniques, dynamic learning algorithms have
proven to be an effective approach to building portfolios, although they do not assess the risk related to each
investment decision. In this work, we compared the performance of the Online Gradient Descent (OGD)
algorithm and a modification of the method, that takes into account risk metrics controlling for the Beta of
the portfolio. In order to control for the Beta, each asset was modeled using the CAPM model and a time
varying Beta that follows a random walk. We compared both the traditional OGD algorithm and the OGD
with Beta constraints with the Uniform Constant Rebalanced Portfolio and two different indexes for the
Brazilian market, composed of small caps and the assets that belong to the Ibovespa index. Controlling the
Beta proved to be an efficient strategy when the investor chooses an appropriate interval for the Beta during
bull markets or bear markets. Moreover, the time varying Beta was an efficient metric to force the desired
correlation with the market and also to reduce the volatility of the portfolio during bear markets.

Keywords: online gradient descent, portfolio optimization, time varying CAPM.

1 INTRODUCTION

The portfolio selection problem (PSP) is a decisive process in which the investor must allocate a
quantity of wealth to a set of assets within a time horizon. To solve problems, the investor decides
how much of his wealth will go to each of the assets available in the market. Each asset represents
a distinct investment opportunity and a decision made for an allocation is a portfolio. In this
problem, the investor seeks to allocate his money in a stock market to get a good relationship
between expected return and risk. In general, higher return portfolios are associated with higher
risks.
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476 ONLINE PORTFOLIO OPTIMIZATION WITH RISK CONTROL

Choosing the optimal portfolio is as old a problem as the stock market itself. However, it was
from the work of Markowitz [23] in 1952 that this question became a mathematical problem.
The model proposed by Markowitz, known classically as Average Variance (MV), marks the
beginning of the modern Portfolio Theory, presenting risk and portfolio diversification as factors
inherent in investment decisions. Based on statistical assumptions, model MV aims to maximize
the return for a certain level of risk or minimize the risk for a certain level of return. However, in
practical applications, it is difficult to find adequate probability distributions to describe the price
of assets. As an alternative to this problem, Cover [8] proposed a portfolio optimization model
that did not rely on statistical assumptions. The Universal Portfolios (UP) algorithm, introduced
by Cover, marks the beginning of a new dynamic investment strategy called Online Portfolio
Selection (OPS).

Li and Hoi [19] point out that in recent decades, approaches based on machine learning
techniques have been intensively applied, becoming an important and active area of research.

For Dochow [11], there are two communities that differ considerably on the modeling of this
problem, namely: (i) the community of finance researchers, influenced mainly by Markowitz’s
work [23], which focused on the study of market risk, assessing performance through statistical
tools; (ii) the machine learning research community, influenced by Cover’s work [8], based on
the concept of competitive analysis, focuses on maximizing wealth at the end of the investment
horizon and avoiding regular statistical assumptions.

Dochow [11] classifies the interaction between the two lines, in relation to the works in the
literature, as low or nonexistent, and points out this lack of integration as the reason why risk
structure analysis in portfolios built through algorithms Online optimization still find itself as an
open question.

Online optimization algorithms only look at portfolio returns, but of course the decision to invest
in an asset is not only related to the total return obtained, the related risk must be evaluated, since
it is the combination of these two factors that have an effect on the value of the asset. In this sense,
this work combines strong features of the portfolio selection method developed by the finance
community, which consider risk aspects, with online methods that are by nature non-parametric,
highly adaptive and computationally efficient.

The proposed solution was to implement the Online Gradient Descent (OGD) algorithm and
modify the projection step of the algorithm to be considered important risk factors in the portfolio
composition. In particular, we used the Capital Asset Price Model (CAPM) model with time-
varying β coefficients in order to control the risk of the portfolio investments.

2 RELATED WORK

It in known [3, 5, 6, 18] that CRP portfolios are a strong benchmark for portfolio optimiza-
tion. Therefore, machine learning methods usually tracks the best constant rebalanced portfolio
(BCRP) as proposed by Cover [8].

Trends Comput. Appl. Math., 22, N. 3 (2021)
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Given the BCRP as a benchmark, a common metric to measure the efficiency of machine learn-
ing methods is to measure the loss in gain with resp to the BCRP. This defines an objective
function denoted as Regret. The goal of an online machine learning method is to minimize the
Regret over the investment horizon. According to Li and Hoi [19], under the prism of online ma-
chine learning, these strategies can be grouped into three categories, Follow-the-Winner (FTW),
Pattern-Matching Approache (PMA) and Meta-Learning Algorithms (MLA), according to the
approach used.

According to Hazan [16], FTW algorithms are most applicable to the portfolio selection context.
Basically, the algorithms that use this strategy aim to follow the BCRP increasing the weight of
the assets that concentrate the highest return. Cover and Ordentlich [9] proposed the Weighted
Universal Portfolio algorithm which has Regret O(logT ), and time complexity O(T n) , where
n is the amount of shares and T the number of periods analyzed. Since the complexity grows
exponentially with o number of stocks, this algorithm is usually infeasible in practice.

Helmbold et al. [17] introduced the Exponential Gradient Algorithm, a variation of the gradient
descent optimization method, which has linear processing complexity per asset but with Regret
O(
√

T ).

With a strategy similar to that used in [8], the Successive Constant Rebalanced Algorithm algo-
rithm proposed by Gaivoronski and Stella [13] discretizes the set of viable solutions in a simplex
by iteratively selecting the best portfolios each period. negotiation.

Zinkevich [25] has proposed the Online Gradient Descent algorithm which uses first order in-
formation, ie first derivatives, and therefore tries to approximate functions by linear functions,
reaching Regret O(

√
T ). The studies [2, 15, 22] use second-order information on the current re-

turn of each asset, thus exploiting the curvature of reward functions. This additional information
allows the Newton Step Online algorithm to get Regret O(logT ). Works such as [10,14,20] have
focused on considering transaction costs as a way to enable brokers and investors to use online
algorithms, but on the other hand, do not consider the risk of the built portfolio.

3 PROBEM SETTING

Before formulating the problem, let’s define the CRP portfolio. Due to daily financial market
movements, the portfolio will have a different allocation from the original asset allocation. CRP
is an investment strategy in which the portfolio is rebalanced in such a way that the proportion
allocated to each of the assets in the original portfolio is preserved.

In a CRP portfolio, each time period t is a buy and sell asset transaction so that the wealth
percentage remains constant. Let bt ∈ Rn

+ be a vector that denotes the percentage of wealth
allocated in the total number of available assets n and denote bit the i−th entry of the vector bt ,
i.e., bit is the percentage of wealth allocated in asset i at time t. Then, we have under the CRP
portfolio that bit = bi(t+1) = b for every i, t.

Trends Comput. Appl. Math., 22, N. 3 (2021)
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We also define rt ∈ Rn as the vector containing the return of each of the n assets at time t. Then,
under the CRP portfolio, the total wealth over an investment period T is given by,

ft(CRP(b)) =
T

∏
t=1

b> rt . (3.1)

Note that the previous function is linear with respect to b and therefore linear and continuous.
Let Sn denote the unit sphere in Rn. Imposing the additional assumption that ∑bi = 1, i.e., there
is no leverage and the total allocation must sum to one, we can formulate the problem of finding
the allocation portfolio b that maximizes the wealth of the CRP portfolio as

b? = arg max
b∈Rn

+∩Sd
=

T

∏
t=1

(b>rt), (3.2)

which is well defined since Rn
+∩Sd is a compact set the the maximum is achieved by Weierstrass

theorem. Moreover, The problem is a maximization problem of a concave function and can be
solved as a convex optimization problem. In what follows, we denote b? as the Best Constant
Rebalanced Portfolio (BCRP).

The challenge with the previous formulation is that it requires knowledge of all instances
rt , t = 1, · · · ,T . However, we are interested in the cases where the investment strategy is a nonan-
tecipative policy, and we can can use the information ri, i = 1, · · · , t − 1 in order to make a,
investment decision at t. Formally, we require the policy to be masurable with respect to the
information set available up to time t.

Now we introduce the investor’s (decision-maker’s) problem. In each trading period t, for t =
1, ...,T , an investor chooses an allocation strategy bt . At the end of that period, the investor
collects a return (possibly negative) of b′trt . In order to choose the allocation bt . We denote P as
the set of nonantecipative policies π such that π is measurable with respect to the past history of
returns r1, · · · ,rt−1. After T periods the accumulated wealth is given by ∏

T
t=1(b

>
t rt).

Now we define the main objective function that we use to quantify performance of some policy
π ∈P . As commonly done in the literature of online optimization, we define the Regret function
as the suboptimality with respect to some benchmark. In our case, we proceed as [2,9] and define
the benchmark is the BCRP. I.e., someone with hindsight over all the returns r1, · · · ,rT that has
to choose a fixed allocation b? for every time period. Minimizing the Regret with respect to the
BCRP is equivalent to minimize the Regret between the Log return of te BCRP and the investor’s
strategy. Then, we have that

Regret(Alg) =
T

∑
t=1

log((b?)>rt)−
T

∑
t=1

log(b>t rt) (3.3)

and our goal is to apply sublinear Regret algorithms for this objective function. In particular, if
the proposed policy is sublinear, then, on average, the asymptotic behavior of algorithm matches
the BCRP. In the next section, we review some aspect of asset pricing and risk measures before
we introduce the policies that we analyze.

Trends Comput. Appl. Math., 22, N. 3 (2021)
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4 RISK AND THE CAPM MODEL

This section is divided in three parts. First we review the standard CAPM model. Second, we
show how the Kalman Filter can be used to estimate time varying Betas modelling the CAPM
process with a hidden factor that describes the beta of the assets. Third, we introduce the risk
metrics VaR and CVaR that will be used to compare the risk among our proposed policies and
alternative portfolios that will be introduced later in the text. The reader familiar with the asset
pricing theory and risk metrics is invited to skip this section.

4.1 CAPM Model

Based on the classic model proposed by Markowitz in [23], the works [21, 24] started a capital
asset pricing model classically called CAPM (Capital Asset Price Model). Until the mid-1950s,
the consensus was that performance should be measured by return over a period without risk
adjustment. The CAPM introduced two new premises to Markowitz’s classic model: that of ho-
mogeneous expectations and risk-free rate. The assumption of homogeneous expectations says
that investors have the same perspectives on expected returns, standard deviation and covariance
of assets (efficient market assumption). The assumption of the free rate is that there is an in-
vestment in the market in which its remuneration is assured exactly as expected, economic and
cyclical factors do not have the ability to affect the liquidity of such an investment.

The model works as follows. Let ri denote the return of an asset i and r f denote the return of the
risk-free asset and rm denotes the return of the market. Then,

ri− r f = βi(rm− r f )+ εi, (4.1)

for

βi =
cov(ri,rm)

σ2
m

,

where ε is a idiosyncratic shock with Eεi = 0 and Eε2
i = σ2

i characterizes the systemic risk of
the asset i and σm is the market volatility.

This relationship between the return achieved versus risk incurred can be extended to assess
portfolio performance. To analyze its performance, it is necessary to compare the portfolio in
question with other alternatives available in the market.

Of course there are criticisms of the model, the most notable being the sensitivity of β in relation
to the estimation period. It is reasonable to assume that the risk of a particular company changes
over time, and that this investor perception is very difficult to predict.

To incorporate this aspect, some authors propose the use of structural models with β being a
latent variable in time. That is, not being observed directly and need to be estimated [7]. To esti-
mate such structural models, a widely used tool is Kalman filters, where under certain hypotheses
of normality of observations it is possible to propose a structure for the dynamics of β of assets
and extract it with optimization algorithms [12].

Trends Comput. Appl. Math., 22, N. 3 (2021)
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4.2 Time Varying βββ

In order to estimate the βi of each asset, we used a state-space model where the βi is a latent
variable or equivalently, a hidden factor. We assume that the β ′i s at each time is a random walk
with Gaussian shocks, generating a stochastic level model.

The problem is formulated as follows. The return of a specific asset i at period t is given by

ri,t = β
i
t rm,t + r f ,t + εi,t , (4.2)

where rm,t is the return of the market at period t and r f ,t is the risk-free rate at period t and εi,t is
an idiosyncratic shock at period t in asset i with zero mean and variance σ2

i that differs among
assets. Moreover, β i

t follows a random-walk process, i.e.

β
i
t+1 = β

i
t +ν

i
t , (4.3)

where νi is a gaussian random variable with zero mean and variance σ2
β ,i.

The parameters of the model σ2
i ,σ

2
β i and the initial condition β i

0 can be estimated by maximum
likelihood and the state vector β i

t of each asset i can be extracted using the Kalman filter recursive
equations.

For the proposed model, the Kalman-filter update equations will be given by

εi,t = ri,t − r̂i,t , (4.4)

Ft = Pt +σ
2
i , (4.5)

β
i
t|t = β

i
t +Ptrm,tF−1

t ε
i
t , (4.6)

Pt|t = Pt −PtF−1
t Pt , (4.7)

where Kt = PtF−1
t is the Kalman gain. The prediction equations are

β
i
t+1 = β

i
t|t , (4.8)

Pt+1 = Pt|t +σ
2
β ,i, (4.9)

r̂i,t+1 = β
i
t + r f ,t . (4.10)

and Pt ,Pt|tare the predicted, updated covariance of the state βt .

4.3 Risk Metric Performance

In order to compare the risk performance among different strategies, we will make use of two
measures widely applied in financial studies, the VaR and CVaR.

VaR is the assessment of the maximum potential loss that an investor would be exposed to over
a given time horizon, for a specified confidence interval (α confidence level), ie it attempts to
summarize the maximum expected loss in only one number. within a time horizon, to a certain
degree of statistical confidence. VaR can be interpreted as the amount by which losses will not

Trends Comput. Appl. Math., 22, N. 3 (2021)
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exceed (1−α)% of scenarios. Generally speaking, a portfolio’s VaR represents a higher quantile
of the portfolio’s estimated loss (or a lower return quantile). Artzner et al. [4] set VaR to 100.(1−
α)% bail level as:

VaR =−inf{r | P(R≤ r)> α}

Where r is the return pertaining to the portfolio distribution, in f{r|A} is the lower limit of r given
a A event, and in f{r|P(R≤ r)> α} indicates the smallest percentile of the return distribution.

CVaR is a measure that indicates the average loss that exceeds VaR, that is, given a probability α ,
CVaR is defined as the average of returns less than the (1−α) quantile of distribution of returns.

If all scenarios have the same probability of occurrence, CVaR is computed as the expected return
of the (1−α)% worst case scenario. The α level CVaR can be formalized as [1]:

CVaRα = E[r | r ≥VaRα(r)]

Where r represents the portfolio’s return set, and VaRα(r) is VaR with 100∗(1−α)% confidence
level.

5 IMPLEMENTATION DETAILS

5.1 Online Algorithms

In this work, we tested a direct implementation of the Online Gradient Descent algorithm and
also the Online Gradient Descent algorithm with constrains on the Beta of the portfolio.

As defined in equation 3.3, the Regret is given by

Regret(Alg) =
T

∑
t=1

log((b?)>rt)−
T

∑
t=1

log(b>t rt), (5.1)

where bt is the decision variable (allocation) at time t. Taking the derivative with respect to bt we
get that

∇Regret =− 1
log(r>t bt)

rt , (5.2)

which shows that the gradient direction is a normalized version of the observed returns for each
asset. Moreover, we define the set of possible allocations B as

B =

{
b ∈ Rn

∣∣∣∣ n

∑
i=1

bi = 1, b≥ 0

}
. (5.3)

thus, we are not allowing for short positions or leverage and all the wealth must be allocated in
every period. We highlight that the algorithm always has the option to allocate wealth in the risk-
free bonds, which implies that the allocation of all the wealth in all the periods is not restrictive
as it seems in a first look.

Trends Comput. Appl. Math., 22, N. 3 (2021)
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Algorithm 1
input : r = asset returns, b0 = initial allocation

1 for t = 1, . . . , T do
2 Update step xt = bt−1 − η∇Regrett−1 Project to feasible set bt = argminb∈B ||b− xt ||

Update the gradient ∇Regrett =− 1
log(r>t bt )

rt

3 end

The algorithm works as follows. At each step we update the gradient of the Regret function,
update the allocation vector and project it into the feasible set using an appropriate metric, in this
case, the Euclidean norm. The pseudo-code is presented in (1).

Note that at each time t, we iterate the current allocation by taking one step in the opposite
direction of that period regret. I.e., we take one step when one seeks to minimize log(r>t b?)−
log(r>t bt) with respect to bt . Note that in the next period, we are interested in minimizing the
loss log(r>t+1b?)− log(r>t+1bt), wich has a different shape since the returns change over time in a
nonantecipative fashion. Hence, it is not clear that at each time t we are interested in taking the
maximum amount of steps in the descent direction. It is actually the ballance of the changes in rt

over time and the fact that we take only one step in the descent direction that allow the investor to
achieve sublinear regret over time. For an in-depth discussion of the convergence rates of OGD
applied to online convex optimization, we refer to [15, 25].

For the Online Gradient Descent that controls the risk using the β of the portfolio, we assume
intervals [βmin,βmax] such that the portfolio must satisfy. Since the CAPM model is linear with
respect to the β of the assets, the β of the whole portfolio is a linear combination of the β of
each asset weighed by the respective invested amount. Therefore,

Bβ =

{
b ∈ Rn

∣∣∣∣ n

∑
i=1

biβ
i
t ∈ [βmin,βmax],

n

∑
i=1

bi = 1, b≥ 0

}
, (5.4)

where β i
t is the time varying Beta of the i-th asset at time t. It is important to note that it is not

clear that Bβ is nonempty. For instance, the intersection of the half-spaces ∑biβ
i
t ≤ βmax and

∑biβ
i
t ≥ βmin is empty if there is no asset i at period t such that β i

t ≥ βmin or there is no asset i at
period t such that β i

t ≤ βmax.

The OGD algorithm with risk control is presented in (2)

In order to remove any kind of look-ahead bias, the β i
t estimate for the investment in t + 1, can

use only the information available from t = 1, ..., t. Therefore, for each asset i at time t, we use
only the information given by {rt,τ}t

τ=1 in order to use the Kalman filter. Moreover, we used the
Kalman filter with exact diffuse initiation available in the package KFAS at the CRAN repository
for R. This allow us with the issue of initializing the paramaters of the filter in a efficient way.
For a discussion about Kalman filter algorithms, we refer to [12].

As a final comment, we start each algorithm with the UCRP allocation, i.e., bi,0 = 1
n and we

allocate an equal amount of wealth in every asset available. The choice for the initial allocation

Trends Comput. Appl. Math., 22, N. 3 (2021)
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Algorithm 2
input : r = asset returns, b0 = initial allocation

4 for t = 1, . . . , T do
5 Update step xt = bt−1−η∇Regrett−1 for i = 1, . . . , n do
6 Update β i

t−1|t−1 = β i
t−1 +Kt(ri,t−1−β i

t rm,t−1− r f ,t−1)

7 end
8 Project to feasible set bi = argminb∈Bβ

||b−xt || Update the gradient ∇Regrett =− 1
log(r>t bt )

rt

for i = 1, . . . , n do
9 Update Beta predictions β i

t = β i
t−1|t−1 Update Kalman-filter equations (4.4-4.7) using

ri,t

10 end
11 end

is because it do not take any information that might create some bias in the analysis and the
UCRP is a strong benchmark by itself since it eliminates the unsystematic risk by diversification.

5.2 Dataset

To evaluate the performance of the proposed algorithm, data from the Brazilian stock mar-
ket were used, from companies that were part of the theoretical portfolios of the Bovespa
(IBOVESPA) and Small Caps indices, collected through the Economática software database.
The IBOVESPA database contains observations of the stock returns of 59 companies, this num-
ber includes companies that are no longer part of the index, as well as companies that were
included in the index from January 1, 1998 to December 28, 1998. 2017. Since the Small Index
had no information since the beginning of the period, data were collected from 64 companies
from January 2, 2009 to December 28, 2017.

The IBOVESPA is the most traditional Brazilian index, having in its theoretical portfolio stocks
of companies with high trading volume. The Small Caps index is composed of shares of low
capitalization companies, having a low trading volume and consequently less liquidity.

To estimate the CAPM model for both IBOVESPA and Small shares, the weighted arithmetic
average of the intrinsic yield of the National Treasury Debt securities issued by the National
Treasury and held by the National Treasury was considered as risk free. of the Central Bank of
Brazil. As a market return, for the Small index shares, we consider the Ibovespa index, while for
the IBOVESPA shares, we use the IBrX-100.

6 RESULTS

6.1 Small Caps - full period

As an initial analysis we tested the performance of the OGD algorithm without controlling for
the Beta of the portfolio and compared with the index of small caps (SMALL) and the uniform

Trends Comput. Appl. Math., 22, N. 3 (2021)
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CRP (UCRP). Among the sets of possible assets, only the assets that belongs to the index and the
risk free asset are available. Similarly, the UCRP portfolio is constructed fixing a uniform weight
for each asset that belongs to the index small caps including the risk free asset. The results are
shown in Figure 1.
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Figure 1: a) Comparison among OGD portfolio, small caps Index and UCRP.; b) Time varying
Beta of the OGD portfolio.

We can see that the OGD algorithm outperformed both the index of small caps and the UCRP,
whereas the index had the worst performance. However, most of the time the performance of
the OGD algorithm is similar to the performance of the UCRP. In addition, we can see that the
Beta of the portfolio is correlated with the index IBrX-100 used as proxy for the market return,
varying between approximately 0.5 and 1.5 for the period of the investment.

In terms of risk metrics, we can see the comparison between the VaR and the CVaR of the OGD
portfolio and the benchmarks in Table 1. The OGD portfolio and the index small caps have a
similar risk profile, both higher than the UCRP portfolio.

Table 1: Comparison among risk metrics for the OGD portfolio.

OGD I SMALL UCRP
1% 5% 1% 5% 1% 5%

VaR -0.0465759 -0.0288123 -0.0482145 -0.0285919 -0.0451722 -0.0278665
CVaR -0.0706191 -0.0422679 -0.0707091 -0.0424577 -0.0666187 -0.0399955

In Figure 2, we can see the results for the OGD algorithm when we control for the Beta of the
portfolio. In this image, the Beta was chosen to be between −.3 and .1, forcing most of the
times a position that is against the index small caps. As a result, especially between 2010 and
2012, which is a period of a high valuation for the index small caps, that the OGD algorithm
with positions against the market suffers to make gains while the index values rapidly. However,
during the loss period between 2012 and 2016, the OGD portfolio that is against the market is
capable of maintain gains and has a higher accumulated return for the overall period.

Trends Comput. Appl. Math., 22, N. 3 (2021)
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Figure 2: a) Comparison among OGD portfolio with Beta between -3 and 0.1 and small caps
Index.; b) Time varying Beta of the OGD portfolio with Beta control.
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Figure 3: Portfolio evolution OGD Beta.

Looking into the behavior of the Beta in Figure 2 (b), we can see that most of the time the Beta is
in fact positive. Since we are not allowing the algorithm to assume short positions, it is difficult
to built portfolio with negative Beta. The reason is that the assets that belongs to the index small
caps have a positive correlation with the market most of the time, which makes the feasible set
Bβ unfeasible for some periods if we require strictly negative Betas.

Therefore, in order to reduce the positive correlation with the market, the algorithm invests most
of the money in the risk free asset, as we can see in Figure 3. We conjecture that allowing the
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Figure 4: a) Comparison among OGD portfolio with Beta between 1.5 and 3 and small caps
Index.; b) Time varying Beta of the OGD portfolio with Beta control.

algorithm to assume short positions should allow it to achieve even better results during bear
markets.

Table 2 shows that the risk metrics are substatially lower than the index small caps even though
the returns were also higher for the overall period. This result is expected due to the high
concentration of the risk free asset in the portfolio.

Table 2: Comparison among risk metrics for the OGD with Beta between -3 and 0.1.

OGD BETA I SMALL
1% 5% 1% 5%

VaR -0.0066861 -0.0038280 -0.0482145 -0.0285919
CVaR -0.0144839 -0.0066819 -0.0707091 -0.0424577

On the other hand, when forcing a positive correlation with the market it is possible to follow the
growth periods of the index, but when the index goes down, the OGD portfolio with high positive
Beta cannot adapt and suffer with the Bear Market as we can see in Figure 4. This suggests that in
order to achieve substantial gains with respect to the market, it is important to adapt the accepted
interval for the Beta of the portfolio to capture both bull periods and bear periods.

Since we are forcing a Beta larger than one, one also could expect an increase in the portfolio
risk, which indeed happened as we can observe in 3.

Table 3: Comparison among risk metrics for the OGD with Beta between 1.5 and 3.

OGD BETA I SMALL
1% 5% 1% 5%

VaR -0.077088 -0.0467464 -0.0482145 -0.0285919
CVaR -0.103223 -0.0673211 -0.0707091 -0.0424577
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6.2 Small Caps - Results for specific periods of time

In this subsection we are going to show that a suitable choice of the Beta interval leads to
improvements in the performance in periods of bull or bear markets.

In Figure 5 we can see that the cumulative return of the OGD when forcing a Beta larger than
the market leads to improvements both with respect to the index small caps and the benchmark
UCRP. This result is consistent with the positive correlation between the index small caps and
the market return used as reference (IBrX-100) and shows that a Beta grater than one indeed
leverages the market returns in a bull market.

Forcing the Beta of the portfolio to be high during the projection step, speed-up the process of
investing in companies riskier but correlated with the market, this allows the portfolio to achieve
greater returns than the portfolio OGD without control of the Beta.
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Figure 5: a) Comparison among OGD portfolio with Beta between 1.9 and 3, small caps Index
and UCRP.; b) Time varying Beta of the OGD portfolio with Beta control.

Since during all the time the OGD portfolio has a Beta between 0.5 and 1.5 (Figure 1), we can
see that the projection step tends to find portfolios in the lower bound of the allowed limit (Figure
5 b), and this leverage with respect to the market return indeed paid off during the bull market,
also highlighting that the time varying Beta for each asset indeed captures the correlation with
the market and is signifficant to predict future correlation.

According to the CAPM theory, if the portfolio is a linear function of the market return with
angular coefficient β , then, the variance of the portfolio, should be β 2 times the variance of the
market. Since we are forcing a high absolute value for the Beta of the portfolio, we should expect
an increase in the risk metrics used. This result is exposed in Table 4.

In Figure 6, it was forced a negative correlation with the market. Since the index small caps and
Ibovespa has a positive correlation, it is expected that the OGD portfolio is capable of moving
most of the investment to the risk free asset, avoiding the bear market.

Moreover, as discussed previously, since the algorithm is not allowed to assume short positions,
in order to satisfy the constrains of the projection step of Algorithm 2, the algorithm has to
speed up the process of quit positions in the market and increase the position on the risk free
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Table 4: Comparison among risk metrics for the OGD with Beta between 1.9 and 3.

OGD BETA I SMALL UCRP
1% 5% 1% 5% 1% 5%

VaR -0.0951314 -0.0525882 -0.0486287 -0.0237267 -0.0476879 -0.0240799
CVaR -0.1842483 -0.0909156 -0.1001490 -0.0445529 -0.1030247 -0.0447389
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Figure 6: a) Comparison among OGD portfolio with Beta between -3 and 0.1, small caps Index
and UCRP.; b) Time varying Beta of the OGD portfolio with Beta control.

asset, reducing the risk and avoid the Bear market.This behaviour is reflected in the Beta of the
portfolio, that goes toward zero as showed in Figure 6(b).

In terms of risk, we have a similar result than what was presented for the whole period. The
allocation in the risk free asset reduced considerably the risk of the portfolio, outperforming the
small caps index and the UCRP portfolio both in returns and in risk metrics by several times.

Table 5: Comparison among risk metrics for the OGD with Beta between -3 and 0.1.

OGD BETA I SMALL UCRP
1% 5% 1% 5% 1% 5%

VaR -0.0082738 -0.0050617 -0.0478774 -0.0335658 -0.0477659 -0.0320533
CVaR -0.0137089 -0.0077418 -0.0722964 -0.0440381 -0.0727766 -0.0439273

6.3 IBOV - General Results

Next we present the results using the stocks of the index Ibovespa (IBOV) as possible assets.
Again, we use the UCRP and the IBOV itself as benchmark. We kept the IBrX-100 as proxy for
the market return.

In Figure 7 (a) we can see that both the UCRP and OGD portfolio outperformed the index IBOV.
Moreover, the UCRP portfolio had a higher performance than the OGD portfolio. We can see
that most of the time the OGD portfolio tracks the UCRP returns, which is an indicator that the
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method is not being capable of selecting among the assets, and on average, the gradient has zero
mean in every coordinate leading to an almost constant position in the assets available.
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Figure 7: a) Comparison among OGD portfolio, bovespa Index and UCRP.; b) Time varying Beta
of the OGD portfolio.

In Figure 7 (b) we can see that the Beta of the portfolio OGD oscillate approximately between
0.5 and 1.3. On average, the Beta of the portfolio is close to one. This is reflected in a similar
risk between the OGD portfolio and the market itself. Since the IBOV is also a proxy for the
market return, we can see in Table 6 that the risk is similar among the OGD portfolio and the
benchmarks.

Table 6: Comparison among risk metrics for the OGD portfolio.

OGD BETA IBOV UCRP
1% 5% 1% 5% 1% 5%

VaR -0.0554984 -0.0332847 -0.0536764 -0.0308136 -0.0576220 -0.0333812
CVaR -0.0853633 -0.0502624 -0.0795072 -0.0468622 -0.0886123 -0.0514335

Next we evaluated the performance of our approach controlling for the level of risk of the port-
folio to see if it is possible to overcome the UCRP portfolio only controlling the risk of the
assets.

In 8 we can see the effectiveness of leveraging the market return forcing a high Beta for the OGD
algorithm with Beta control.The algorithm was capable of provide higher returns than the UCRP
or the index IBOV during the bull market and was the dominant strategy during almost all the
period.

As expected, we can see in Figure 8(b) that most of the time the projected step matches the lower
bound of the Beta interval used for the constrains in the portfolio.

As exposed in Table 7, forcing the Beta to be above 1.4 led to an increase in the risk metrics
of the portfolio. We can see that the OGD portfolio was approximately twice as riskier than the
benchmarks. However, as in the small caps case, the portfolio presented higher returns for all
periods in the bull period selected.
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Figure 8: a) Comparison among OGD portfolio with Beta between 1.4 and 3, bovespa Index and
UCRP.; b) Time varying Beta of the OGD portfolio with Beta control.

Table 7: Comparison among risk metrics for the OGD with Beta between 1.4 and 3.

OGD BETA IBOV UCRP
1% 5% 1% 5% 1% 5%

VaR -0.0848201 -0.0524012 -0.0429216 -0.0284614 -0.0521693 -0.0368487
CVaR -0.1381093 -0.0788993 -0.0778647 -0.0428889 -0.0881920 -0.0542163

During the bear market period, we can see that restricting the Beta of the portfolio between -3 and
0.1 makes the portfolio to avoid loss, mainly investing in the free risk asset since short positions
were not allowed (Figure 10). The results with the respective Betas are exposed in Figure 9.

Table 8: Comparison among risk metrics for the OGD with Beta between -3 and 0.1.

OGD BETA IBOV UCRP
1% 5% 1% 5% 1% 5%

VaR -0.0076789 -0.0053694 -0.0385298 -0.0260806 -0.0541532 -0.0362293
CVaR -0.0135781 -0.0074571 -0.0695045 -0.0362081 -0.0905884 -0.0499007

Similarly to the small caps case, the main consequence is the decrease of the risk metrics of the
portfolio, exposed in Table 8.

7 CONCLUSION

In this work we explored the benefits of combining a risk control of the portfolio together with
the OGD algorithm. Working with time-varying Betas was fundamental to capture properly the
correlation of each asset with the market.

There is not much gain in fixing the Beta of the portfolio for large periods of time. However, forc-
ing a positive Beta greater than one in bull markets or less than one in bear markets demonstrated
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Figure 9: a) Comparison among OGD portfolio with Beta between -3 and 0.1, bovespa Index and
UCRP.; b) Time varying Beta of the OGD portfolio with Beta control.
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Figure 10: Portfolio evolution OGD Beta.

to be an efficient way to improve the returns of the OGD algorithm since the time varying-Beta
is capable of predicting short-term correlations of the assets and the market.

During bear periods, forcing a negative or slightly positive Beta forces the algorithm to invest
most of the capital in the risk free asset, which avoid losses during this period.

The empirical results demonstrated robustness of the strategies when the portfolio of possible
assets was built with small caps index or assets that belongs to the Ibovespa index.

Trends Comput. Appl. Math., 22, N. 3 (2021)



i
i

“TEMA-A9-1444” — 2021/7/16 — 15:01 — page 492 — #18 i
i

i
i

i
i

492 ONLINE PORTFOLIO OPTIMIZATION WITH RISK CONTROL

As a direction of future research, one could propose time varying intervals for the allowed Beta
of the portfolio and extend the feasible set to allow for short positions.
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