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Abstract. Expressing the lifetime behavior through its hazard enables us to de-
rive special classes of failure distributions according to the hazard pattern. The
usual lifetime distributions, as both exponential and Weibull models, accommo-
date constant (exponential) and increasing/decreasing (Weibull) hazard functions.
Nevertheless, in practice, it is common to find lifetime data with hazard function
of different types, for example, a U-shaped hazard function. In the present paper
we investigate the properties of the modified Weibull model [8], a three-parameter
model which allows U-shaped hazards to be accommodated. Inferences for this
model’s parameters based on both complete and censored samples are presented.
We discuss different parametrizations as well as the interval estimation for the
parameters of this model.

Keywords: Interval estimation, maximum likelihood estimation, Monte Carlo si-
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1. Introdution

The most commonly used models for accommodating U-shaped hazard functions
have initial structure based on the Weibull model, which can traditionally handle
constant, increasing, and decreasing hazard functions. These models can fit data
with U-shaped form hazard functions as well as specify a simple Weibull model.
Models presenting such property can be found in studies by [12], [11], [2], [10] for,
respectively, generalized Weibull model, exponentiated Weibull model, poly-Weibull
model, and polyhazard model. Lai, Xie and Murthy [8], considering a modified
Weibull distribution, showed, among other properties, its characteristic of model-
ling U-shaped hazard functions. Both modified Weibull [8] and bi-Weibull models
[2] accommodate situations where the failure rate has a U-shaped form. However,
such models present distinctive structures. Regarding the bi-Weibull model, it is
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438 Perdoná and Louzada-Neto

assumed that each hazard function requires two Weibull components, thus allowing
a flexibility for fitting decreasing hazard shape at first (by the first Weibull com-
ponent) and the increasing hazard shape later (by the second Weibull component).
The modified Weibull model contains a smaller number of parameters (three) than
the bi-Weibull (four), where the U-shaped failure rates can be naturally and par-
simoniously accommodated. The objective of the present study is to investigate
the properties of the modified Weibull model based on complete and random cen-
sored samples considering two different parametrizations. In Section 2 we show the
model formulation, in Section 3 we investigate the Coverage Probabilities (CP) of
the confidence intervals produced by considering asymptotic theory as well as the
bias and Mean Squared Error (MSE) [4] of the MLEs via a Monte Carlo simulation
study. Where CP is the chance of the procedure to produce an interval including
the true parameter value. The original and the logarithmic parametrizations are
considered. In Section 4, we describe an application to real data, whereas some
conclusions have been drawn in Section 5.

2. Model Formulation

Consider a sample of independent random variables, T1, ..., Tn, representing lifetimes
with a distribution given by the modified Weibull model, where the hazard function
at time t, is given by [8]

h(t) = α(β + λt)tβ−1 exp(λt), (2.1)

where α > 0, β ≥ 0 and λ ≥ 0.
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Figure 1: Hazard function for the modified Weibull model (1) λ = 0.1 (on the left)
λ = 0.5 (on the right).

This model has interesting properties regarding its formulation. The factor
“exp(λt)” can be viewed as an accelerator factor in function of time, meaning that
the parameter λ works as a lifetime fragility factor for a given individual as time
elapses. In addition, for particular values of the parameters λ and β, we retrieve
well-known models (in terms of their hazard functions). For λ = 0 in (2.1), we
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obtain the hazard function of the Weibull distribution in, whereas for β = 0 we
obtain the hazard function of extreme value distribution. Such characteristics enable
greater flexibility for this model. Also, by the hazard function (2.1), the model
accommodates increasing, decreasing, and non monotonous hazard curves, such as
the U-shaped one (Figure 1). The shape of h(t) depends only on the parameter β
in tβ−1. For β ≥ 1 the function (2.1) is increasing in t whereas for 0 < β < 1, the
function (2.1) initially decreases and then increases according to t, thus implying a
U-shaped hazard function. If β > 1, h(0) = 0, and h(0) = αβ if β = 1. For 0 < β <
1, the hazard function (2.1) tends to infinite when time t tends to either infinite

or zero and has a minimum value at t∗ =
√

β−β
λ

.Given a dataset, all information
regarding the parameters is contained in the likelihood function, which is derived
by considering a sample of independent random variables, X1, ...,Xn, associated
with survival times, and, C1, ..., Cn associated with censored times. By defining
Ti = min(Xi, Ci), δi = I(Xi ≤ Ci) denoting the censoring indicator variable and
considering the parameter vector θ′ = (α, β, λ), the likelihood function is given by
[9]

L(θ) =

n∏

i=1

h(ti; θ)
δiS(ti; θ), (2.2)

where S(t; θ) is the survival function. From (2.1) and since S(t) = exp(−αtβ exp(λt)),
the logarithm of the likelihood function (2.2) is given by

l(θ) =

n∑

i=1

δi [log(α) + log(β + λti) + (β − 1) log(ti) + λti] − α

n∑

i=1

tβi e(λti). (2.3)

The first partial derivatives regarding α, β and λ are given by

∂l(θ)

∂α
=

n∑

i=1

δi

α
−

n∑

i=1

te(λti), (2.4)

∂l(θ)

∂β
=

[
n∑

i=1

δi

β + λti
+

n∑

i=1

δi log(ti)

]
− α

n∑

i=1

tβi log(ti)e
(λti) (2.5)

and

∂l(θ)

∂λ
=

[
n∑

i=1

δiti
β + λti

+

n∑

i=1

δiti

]
− α

n∑

i=1

tβ+1
i e(λti). (2.6)

If the derivatives are equalled to zero, we can directly obtain the estimator for
α, α̂, as well as for β and λ, thus solving the equations numerically.

Inferences regarding θ
′

= (α, β, λ) can be based on the properties of the MLE
for large samples given by [4]

θ̂ ∼ N
(
θ, I−1(θ)

)
, (2.7)

where I(θ) is the Fisher information matrix, which is estimated by , I−1(θ̂), for θ
evaluated on the MLE θ̂.
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The observed Fisher information matrix for, α̂, β̂, λ̂, is given by

I∗ =





∑n

i=1 δi/α2
∑n

i=1 ui(ti; 1)eλti

∑n

i=1 ui(ti; 0)eλtiti∑n

i=1
δi

A2

i

+ αui(ti; 2)eλti

∑n

i=1
δiti

A2

i

+ αui(ti; 1)eλtiti
∑n

i=1
δit

2

i

A2

i

+ αui(ti; 0)eλtit2i





∣∣∣∣∣∣∣
θ=θ̂

,

(2.8)

where ub(ti; b) = tβi lnb(ti), for b = 0, 1, 2, and Ai = β + λti with i = 1, ..., n.
When we consider survival studies involving small and moderate datasets the

asymptotic theory may not be suitable and the MLE may be biased. In this context,
we investigate, in the next section, the asymptotic theory by using Monte Carlo
simulation.

3. Simulation Study

In this section we investigate the CP of the confidence intervals produced by con-
sidering asymptotic theory as well as the bias and MSE [4] of the MLEs by Monte
Carlo simulation for complete and randomly 10% and 20% censored samples deri-
ved from (2.1) with sizes 20, 40, 60, and 80 for two cases in particular. The first
case takes as parameter values α = 2, β = 0.8 and λ = 0.1, and corresponds to an
U-shaped hazard rate. The second case takes as parameter values α = 1, β = 1.4
and λ = 0.1 related to data with an increasing hazard rate. A particular study
is characterized by the sample size, the percentage of censoring and the shape of
hazard function. Overall 24 studies were considered and, for each one, 999 datasets
were simulated. According to [5] however 999 is the number of replications required
to get a critical level of 0.05 from the 0.95 percentile of the empirical distribution
of the test statistics (page 156 and 202). The nominal CP’s were fixed at 95%. For
each study, we considered three different parametrizations, the original (α, β, λ),
the logarithmic parametrization (log(α), log(β), log(λ)) and the logarithmic para-
metrization in α (log(α), β, λ).

Table 1 presents the empirical CP’s for the first case (α = 2, β = 0.8 and
λ = 0.1) for complete, 10% and 20% randomly censored samples. It was found
that, original parametrization (α, β, λ), the only parameter for which the the no-
minal CP is under and over and under estimated is the parameter α, particularly,
for 20% censored samples the underestimation is striking. As for logarithmic para-
metrization (log(α), log(β), log(λ)), which results are in parenthesis in Table 1, the
nominal CP’s are under estimated for the λ parameter. The results for the loga-
rithmic parametrization in α (log(α), β, λ) are not shown because they are equal
to the results of the original parametrization if we look at the CP’s for the para-
meter β and λ. But they lead to evidence that the empirical CP’s are close to the
nominal ones when the logarithmic parametrization in α is considered, particulary
in the presence of small samples with censored observations. Table 2 presents the
bias and MSE for the first case (α = 2, β = 0.8 and λ = 0.1) for complete, 10%
and 20% randomly censored samples, considering the original parametrization (α, β,
λ) and logarithmic parametrization (log(α), log(β), log(λ)), in parenthesis. The re-
sults concerning β and λ for the logarithmic parametrization were omitted since
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Table 1: Coverage probability observed (95%) for approximate confidence intervals
based on original parametrization and on the logarithmic parametrization, results
in parenthesis, for censored samples and fixed α = 2, β = 0.8 e λ = 0.1.

Cens 95%

n (%) α̂ β̂ λ̂

0 92.0 (98.7) 96.3 (99.8) 99.1 (73.8)
20 10 96.4 (97.7) 96.3 (99.5) 98.9 (72.3)

20 78.8 (96.1) 96.8 (99.7) 98.6 (71.2)
0 94.6 (98.3) 96.8 (98.7) 98.3 (76.8)

40 10 86.5 (97.2) 96.2 (98.9) 97.4 (74.3)
20 77.6 (91.9) 95.4 (98.9) 97.8 (74.8)
0 96.8 (99.9) 96.0 (98.8) 99.4 (74.3)

60 10 88.7 (96.2) 96.4 (98.6) 97.9 (74.5)
20 76.3 (90.4) 96.1 (98.6) 97.8 (75.5)
0 96.5 (99.8) 99.2 (99.9) 97.9 (79.6)

80 10 91.1 (97.2) 98.3 (99.8) 97.9 (79.4)
20 77.1 (88.8) 98.6 (99.5) 97.8 (79.6)

Table 2: Bias and MSE of α̂, β̂ and λ̂ for original parametrization as α = 2, β = 0, 8
and λ = 0, 1. Results in parenthesis correspond to logarithmic parametrization.

n Cens bα bβ bλ
(%) Bias MSE Bias MSE Bias MSE
0 -0.26 (-0.20) 0.43 (0.16) -0.055 0.029 0.34 0.24

20 10 -0.45 (-0.32) 0.53 (0.24) -0.057 0.031 0.37 0.28
20 -0.65 (-0.47) 0.70 (0.37) -0.057 0.036 0.40 0.34
0 -0.15 (-0.11) 0.22 (0.08) -0.025 0.017 0.21 0.11

40 10 -0.37 (-0.24) 0.33 (0.14) -0.033 0.018 0.24 0.13
20 -0.56 (-0.37) 0.48 (0.22) -0.035 0.020 0.24 0.14
0 -0.14 (-0.09) 0.15 (0.05) -0.018 0.010 0.17 0.07

60 10 -0.35 (-0.21) 0.24 (0.09) -0.022 0.011 0.18 0.08
20 -0.54 (-0.34) 0.40 (0.17) -0.024 0.013 0.19 0.09
0 -0.09 (-0.05) 0.10 (0.11) -0.008 0.001 0.12 0.05

80 10 -0.31 (-0.18) 0.17 (0.06) -0.014 0.001 0.14 0.06
20 -0.50 (-0.31) 0.33 (0.13) -0.016 0.001 0.15 0.06

they were equal to the results for the original parametrization. The results for the
logarithmic parametrization in α (log(α), β, λ) are equal to the ones obtained by
considering the logarithmic parametrization to α and the original parametrization
to β and λ, and are also not shown here. In general, the MLEs present smaller
bias and smaller MSE when the logarithmic parametrization in α is considered:
The bias increase according to the percentage of censoring and decrease according
to the sample size. We observed that the bias was greater for the λ parameter.
Mid-range of asymptotic intervals for α̂, β̂ and λ̂ in the original parametrization
and their standard deviations (SD) are presents on Table 3. Tables 4, 5 and 6 show
the results of the same analyzes presented in Tables 1, 2 and 3, that is, the CP, bias,
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Table 3: Mid-range of asymptotic intervals for α̂, β̂ and λ̂ in the original parame-
trization and their standard deviations(SD) for α = 2, β = 0.8 e λ = 0.1. Results
in parenthesis correspond to logarithmic parametrizationbα bβ bλ

n Cens(%) Mean SD Mean SD Mean SD
0 3.20 (1.81) 1.58 (0.38) 0.78 0.20 1.77 0.71

20 10 3.00 (1.92) 1.56 (0.42) 0.83 0.22 1.88 0.77
20 2.82 (2.06) 1.55 (0.50) 0.90 0.27 2.03 0.87
0 2.26 (1.22) 0.70 (0.20) 0.55 0.11 1.11 0.35

40 10 2.10 (1.29) 0.69 (0.22) 0.58 0.12 1.18 0.37
20 1.95 (1.36) 0.67 (0.24) 0.61 0.13 1.24 0.40
0 1.80 (0.97) 0.43 (0.15) 0.45 0.07 0.87 0.25

60 10 1.70 (1.03) 0.43 (0.16) 0.47 0.08 0.92 0.26
20 1.59 (1.09) 0.43 (0.17) 0.50 0.09 0.97 0.28
0 1.56 (0.82) 0.30 (0.12) 0.38 0.06 0.71 0.20

80 10 1.47 (0.87) 0.31 (0.13) 0.40 0.06 0.76 0.21
20 1.38 (0.92) 0.32 (0.14) 0.43 0.07 0.80 0.23

Table 4: Coverage probability observed (95%) for approximate confidence intervals
based on original parametrization and on the logarithmic parametrization, results
in parenthesis, for censored samples and fixed α = 1, β = 1.4 e λ = 0.1.

Cens 95%

n (%) α̂ β̂ λ̂

0 87.5 (98.3) 96.2 (99.0) 98.0 (75.0)
20 10 82.6 (98.3) 96.5 (99.0) 97.7 (73.5)

20 77.6 (96.8) 97.2 (99.0) 97.7 (74.0)
0 89.0 (99.5) 97.4 (99.0) 98.7 (76.3)

40 10 81.2 (96.5) 95.6 (98.8) 97.1 (73.3)
20 74.5 (94.0) 95.6 (98.6) 96.8 (73.1)
0 91.5 (98.5) 95.2 (98.1) 97.8 (72.3)

60 10 83.6 (96.5) 95.2 (98.1) 96.7 (72.8)
20 72.2 (90.5) 93.7 (97.1) 95.5 (70.4)

90.8 (97.5) 94.0 (98.1) 96.0 (73.5)
80 10 82.4 (93.3) 93.1 (96.4) 93.9 (74.3)

20 70.1 (87.9) 92.8 (95.7) 94.5 (72.0)

MSE and Mid-range but considering the second case (α = 1, β = 1.4 and λ = 0.1).
We observed almost the same results as to the first case, with a major exception.
In the first case, the bias and MSE for the parameter α are better if we use the
logarithmic parametrization in α (log(α), β, λ); in the second case, they are better
if we use the original parametrization (α, β, λ).
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Table 5: Bias and MSE of α̂, β̂, λ̂ in original parametrization for α = 1, β = 1.4
and λ = 0.1. Results in parenthesis correspond to logarithmic parametrization.

n Cens α̂ bβ bλ
(%) Bias MSE Bias MSE Bias MSE
0 -0.25 (-0.39) 0.16 (0.37) -0.17 0.14 0.40 0.30

20 10 -0.34 (-0.52) 0.20 (0.50) -0.18 0.14 0.41 0.32
20 -0.43 (-0.68) 0.25 (0.73) -0.17 0.16 0.43 0.36
0 -0.17 (-0.26) 0.10 (0.19) -0.11 0.07 0.25 0.15

40 10 -0.28 (-0.39) 0.14 (0.29) -0.13 0.09 0.28 0.17
20 -0.36 (-0.52) 0.18 (0.42) -0.13 0.10 0.29 0.18
0 -0.17 (-0.22) 0.08 (0.23) -0.10 0.06 0.22 0.11

60 10 -0.26 (-0.34) 0.11 (0.21) -0.10 0.06 0.23 0.11
20 -0.35 (-0.48) 0.16 (0.34) -0.11 0.08 0.25 0.13
0 -0.15 (-0.19) 0.06 (0.34) -0.07 0.05 0.19 0.08

80 10 -0.24 (-0.31) 0.09 (0.16) -0.08 0.06 0.20 0.08
20 -0.33 (-0.44) 0.14 (0.28) -0.10 0.07 0.21 0.10

Table 6: Mid-range of asymptotic intervals for α̂, β̂ and λ̂ in the original parame-
trization and their standard deviations(SD) for α = 1, β = 1.4 e λ = 0.1. Results
in parenthesis correspond to logarithmic parametrization.

n Cens(%) bα bβ bλ
Mean SD Mean SD Mean SD

0 1.93 (2.61) 0.94 (0.63) 1.89 0.58 2.17 0.69
20 10 1.79 (2.75) 0.89 (0.65) 1.99 0.62 2.28 0.71

20 1.66 (2.94) 0.90 (0.78) 2.15 0.74 2.45 0.83
0 1.43 (1.75) 0.49 (0.32) 1.31 0.29 1.43 0.34

40 10 1.31 (1.84) 0.47 (0.34) 1.38 0.35 1.50 0.36
20 1.22 (1.94) 0.47 (0.38) 1.46 0.37 1.58 0.39
0 1.15 (1.40) 0.32 (0.23) 1.07 0.20 1.14 0.24

60 10 1.09 (1.48) 0.32 (0.24) 1.13 0.22 1.20 0.26
20 0.99 (1.56) 0.31 (0.27) 1.19 0.26 1.26 0.29
0 1.01 (1.19) 0.24 (0.18) 0.93 0.16 0.97 0.19

80 10 0.94 (1.25) 0.25 (0.20) 0.97 0.18 1.01 0.21
20 0.87 (1.32) 0.25 (0.22) 1.02 0.203 1.07 0.23

4. Application

4.1. Example 1

In this section, the proposed methodology is applied to a real dataset extracted
from [6] referring to the ages of 18 patients classified as “other causes of death” in
a cancer study. A device called the total time on test (TTT) plot [1] is a technique
used for detecting which model is more suitable for data analysis according to the
hazard function behavior. This graph is obtained by plotting G( r

n
) = [(

∑n

i=1 Ti:n)
+ (n − r)Tr:n] / (

∑n

i=1 Ti:n) versus r/n [12], where r = 1, .., n e Ti:n, i = 1, ..n are
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the sample order statistics. A diagonal line in the resulting TTTplot indicates a
constant hazard function, whereas if it is a convex or concave curve it indicates,
respectively, a decreasing or increasing hazard function. In those cases, the simple
Weibull model might be applied for fitting the data. However, if it is convex and then
concave the hazard function is U-shaped, and a modified Weibull model could be
more suitable. Figure 2, left panel, shows the convexity and concavity of the curve
for the dataset, thus indicating a U-shaped hazard. Considering the logarithmic
parametrization in α (log(α), β, λ), we fit the modified Weibull model to the data.
The MLEs and their asymptotic 95% confidence intervals, in parenthesis, are given
by α̂ = 0.041 (0.0270; 0.0641), β̂ = 0.456 (0.3505 ; 0.5905) and λ̂ = 0.0138 (0.0012
; 0.0165).
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Figure 2: Empirical Scaled TTT-Tranforms (left) and empirical K-M and fitted
survival for the dataset [6] (right).

Figure 2, right panel, shows the Kaplan-Meier estimator and the fits of the sim-
ple Weibull and modified Weibull models indicating the suitability of the modified
Weibull model. This results are corroborated by the likelihood ratio statistic, which
is equal to 6.57.

4.2. Example 2

The data set refers to the serum-reversal time (days) of 368 children contaminated
with HIV from vertical transmission at the university hospital of the Ribeirão Preto
School of Medicine (Hospital das Cĺınicas da Faculdade de Medicina de Ribeirão
Preto) from 1986 to 2001 [13] born from untreated mothers follow-up by two years.
Serum-reversal is a process of disappearance of anti-HIV antibodies (antitoxin) in
blood (neutralization of anti-HIV serology) in an individual who previously showed
positive anti-HIV serology. Serum-reversal can occur in children born from mothers
infected with HIV. Their children are born with positive anti-HIV serology (vertical
HIV transmission), which can occur due to the intrauterine or intra-parturition
transplacental transmission of the mother’s antibodies to her baby during labor or
in the period following childbirth while the infant is breastfed. Thus the presence of
antibody by itself in an infant younger than 18 months is not diagnostic of infection
[3] [7], because after a few months, the mother’s antibodies are eliminated and the
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anti-HIV serology changes from positive to negative. In this dataset the infection
was confirmed with the polymerase chain reaction (PCR) assays for HIV-1 RNA in
plasma.

Considering again the logarithmic parametrization in α (log(α), β, λ), we fit
the modified Weibull model to the data. The MLEs and their asymptotic 95%
confidence intervals, in parenthesis, are given by α̂ = 0.0002 (0.00018; 0.0025), β̂ =

0.8392 (0.8047; 0.8751) and λ̂ = 0.00583 (0.0058 ; 0.0059).
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Figure 3: Empirical Scaled TTT-Tranforms (left) and empirical K-M and fitted
survival for the dataset [13] (right).

Figure 3 the empirical survival function and the estimated survival function of
the simple Weibull and modified Weibull models provides a good fit for the data of
the modified Weibull model. This results are corroborated by the likelihood ratio
statistic, which is equal to 35.45.

5. Final Comments

The modified Weibull model was found to be an alternative for fitting U-shaped
hazard data. Our Monte Carlo simulation study has shown that the asymptotic
confidence interval procedure can be straightforwardly used if a logarithmic para-
metrization in α is considered, even in the presence of a small dataset with censored
observations. The code related to the simulation study and to the application can
be obtained by emailing the authors.
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Resumo. Representar o tempo de vida pela função de risco nos permite traba-
lhar com especiais classes de distribuições de risco adequando-as a necessidade do
fenômeno. As distribuições de probabilidade de sobrevivência como exponencial,
Weibull, acomodam formas de risco constante (exponencial) e formas crescente e
decrescente (Weibull). No entanto, na prática, é comum encontrarmos dados com
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diferentes formas na representação do risco, por exemplo, uma função em forma
de U. Neste trabalho nós investigamos as propriedades do modelo modificado Wei-
bull [8], um modelo com três parâmetros que permite modelar funções de risco em
forma de U. Inferências dos parâmetros do modelo baseadas em dados completos
e censurados são apresentados. Discutimos diferentes parametrizações, bem como
estimativas intervalares para os parâmetros desse modelo.
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