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ABSTRACT. By using the notion of Carathéodory solution to differential equations, the present work stud-
ies the boundedness of solutions of discontinuous differential equations. For these discontinuous systems
determined by discontinuous differential equations, results are obtained that guarantee sufficient conditions
to boundedness of solutions in terms of nonsmooth Lyapunov functions.
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1 INTRODUCTION

Ordinary differential equations with the discontinuous right side, also called discontinuous
differential equations, determine discontinuous systems. The boundedness of solutions to
discontinuous systems determined by autonomous differential equations was studied by [2].

Motivated by the study of the boundedness of solutions for ordinary differential equations in
terms of smooth Lyapunov functions (see for instance [9] and [15]), this report studies the
boundedness of solutions of discontinuous systems determined by nonautonomous differential
equations.

The study carried out here makes use of the notion of Carathéodory solution for discontinuous
differential equations. In addition, nonpathological functions are used as Lyapunov functions.

Qualitative results via nonsmooth Lyapunov functions for solutions to discontinuous differential
equations can be found, for example, in [3,7,12,13]. By using the notion of Filippov solution, [13]
studies Lyapunov stability of equilibria of discontinuous systems. On the other hand, [3], [12]
and [7] address Lyapunov stability of equilibria of discontinuous systems by using the notion of
Carathéodory solution.

The discontinuous systems studied in this work are determined by

ẋ(t) = f (t,x(t)) (1.1)
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414 ON THE BOUNDEDNESS OF SOLUTIONS OF DISCONTINUOUS DIFFERENTIAL EQUATIONS

and by
ẋ(t) = g(x(t)) (1.2)

where f : R×Rn → Rn and g : Rn → Rn. For the study of the boundedness of solutions of
the system (1.1) and (1.2), it is assumed throughout the work that for every x0 ∈ Rn, each of
the differential equations given in (1.1) and (1.2) admit at least one Carathéodory solution with
the initial condition x(t0) = x0. It is also assumed that all Carathéodory solutions to (1.1) and
(1.2) satisfying x(t0) = x0, are defined on the interval [t0,+∞). The existence of Carathéodory
solutions for (1.1) has been treated in [5] and [8]. On the other hand, a study on the continuation
of solutions can be found in [14].

Thus, in the present study results are established (Theorems 3.1, 3.2, 3.3 and 3.4) that provide
sufficient conditions for the boundedness of solutions of (1.1) and (1.2) in terms of nonsmooth
Lyapunov functions. Theorems 3.1 and 3.3 establish results for the boundedness of solutions of
(1.1), while Theorems 3.2 and 3.4 establish results for the boundedness of solutions of (1.2).

2 PRELIMINARIES

In this section are considered basic concepts and results that will be used throughout the work.

2.1 Carathéodory solution

Solutions to the differential equation (1.1) will be understood as absolutely continuous func-
tions. A approach to absolutely continuous functions can be found in [10]. Below, the concept of
absolutely continuous function on an interval [a,b] is defined.

Definition 2.1. A function x : [a,b]→ Rn is said to be absolutely continuous if for any ε > 0,
there exists δ > 0 such that, for any countable collection of disjoint subintervals [ak,bk] of [a,b]
obeying

∑(bk−ak)< δ ,

implies that

∑ |x(bk)− x(ak)|< ε.

Let I ⊂ R be an interval. It is said that a statement P holds almost everywhere (a.e.) on I, if the
set N given by

N = {t ∈ I : P does not hold at t}

has Lebesgue measure zero. A more complete approach to Lebesgue measure can be found in
[11].

Definition 2.2. Let I ⊂R be an interval. A function x : I→Rn is a Carathéodory solution of (1.1)
on I if x(t) is absolutely continuous and ẋ(t) = f (t,x(t)) for a.e. t ∈ I.

Trends Comput. Appl. Math., 22, N. 3 (2021)
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Consider, for example, the following discontinuous differential equation

ẋ(t) = sgn(t) (2.1)

where sgn(·) is the sign function, that is,

sgn(t) =


1, t > 0
0, t = 0
−1, t < 0.

As discussed in [1], the Carathéodory solution of (2.1) that satisfies the condition x(0) = c is
given by x(t) = |t|+ c.

2.2 Nonpathological functions

The following is an approach on nonpathological functions. The considerations made here on
nonpathological functions are based on [3].

In the following, ∂V (x) denotes Clarke’s generalized gradient for the function V (x) at x. See [4]
for a better approach to generalized gradients.

Definition 2.3. Let V : Rn→ R be a locally Lipschitz function. The generalized gradient of V at
x is defined by

∂V (x) = co{lim∇V (xi)|xi→ x,xi 6∈ΩV}

where co denotes the closure of the convex hull, and ΩV is the set of measure zero (in the sense
of Lebesgue measure) such that the gradient of V is not defined.

From the previous definition, if V : R×Rn→ R is given by V (t,x) =V1(x), where V1 : Rn→ R,
then ∂V (t,x) = (0,∂V1(x)).

Definition 2.4. It is said that a function V : Rn→ R is nonpathological if it is locally Lipschitz
continuous and for every absolutely continuous function ϕ : I ⊂ R→ Rn and for a.e. t ∈ I, the
set ∂V (ϕ(t)) is a subset of an affine subspace orthogonal to ϕ̇(t).

The proposition stated below can be founded in [3].

Proposition 2.1. If V : Rn → R is nonpathological, and ϕ : R→ Rn is absolutely continuous,
then the set {p · ϕ̇(t) : p ∈ ∂V (ϕ(t))} is reduced to the singleton { d

dt V (ϕ(t))} for a.e. t.

Nonpathological derivative is defined below.

Definition 2.5. Let V : R×Rn→R be a nonpathological function and let AV be the set given by

AV = {(t,x) ∈ R×Rn : p1 · (1, f (t,x)) = p2 · (1, f (t,x)),∀p1, p2 ∈ ∂V (t,x)}.

If (t,x) ∈ AV , the nonpathological derivative of the map V with respect to (1.1) at (t,x) is the
number

V̇ f (t,x) = p · (1, f (t,x))

Trends Comput. Appl. Math., 22, N. 3 (2021)
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where p is any vector in ∂V (t,x).

From Proposition 2.1 follows the following corollary.

Corollary 2.0. Consider the nonpathological function V : R×Rn→R, and let ϕ be any solution
of (1.1). Then (t,ϕ(t)) ∈ AV and d

dt V (t,ϕ(t)) = V̇ f (t,ϕ(t)) for a.e. t.

In [3], nonpathological functions V : Rn→ R are used to study the autonomous system (1.2). In
this case, the set AV is defined as

AV = {x ∈ Rn : p1 ·g(x) = p2 ·g(x),∀p1, p2 ∈ ∂V (x)}.

If x ∈ AV , the nonpathological derivative of the map V with respect to (1.2) at x is defined by

V̇ g(x) = p ·g(x)

where p is any vector in ∂V (x).

The next corollary is stated in [3].

Corollary 2.0. Let the function V : Rn → R be nonpathological, and let ϕ be any solution of
system (1.2). Then ϕ(t) ∈ AV and d

dt V (ϕ(t)) = V̇ g(ϕ(t)) for a.e. t.

3 BOUNDEDNESS OF SOLUTIONS

In what follows are obtained the main results of the work, the Theorems 3.1, 3.2, 3.3 and 3.4.
Below are defined the concepts of boundedness that are used in the present work.

Suppose that the set of Carathéodory solutions of (1.1) with initial condition x(t0) = x0 is denoted
by S(x0, t0). Also suppose that for any initial conditions (x0, t0) the set S(x0, t0) is nonempty and
all solutions are defined on the interval [t0,∞). If x(t) ∈ S(x0, t0), the notation x(t, t0,x0) will also
be used to denote x(t).

Definition 3.6. A solution x(t) ∈ S(x0, t0) is bounded if there exists a β > 0 such that |x(t)|< β

for t ≥ t0, where β may depend on each solution.

Definition 3.7. The solutions of (1.1) are uniformly bounded if for any α > 0 and t0 ≥ 0, there
is a β = β (α) > 0 (independent of t0) such that |x0| < α implies |x(t)| < β for t ≥ t0 and
x(t) ∈ S(x0, t0).

Definition 3.8. The solutions of (1.1) are uniformly ultimately bounded (with bound L) if there
exists a L > 0 and if for any α > 0 and any t0 ≥ 0, there is a T = T (α) > 0 (independent of t0)
such that |x0|< α implies that |x(t)|< L for t ≥ t0 +T and x(t) ∈ S(x0, t0).

Similarly, the boundedness of solutions for (1.2) is defined.

It can be seen that the solutions of (2.1) are not bounded, or even uniformly bounded.

Trends Comput. Appl. Math., 22, N. 3 (2021)
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Theorems 3.1 and 3.3 and their proofs are similar to their smooth counterparts. The smooth
version of Theorem 3.1 can be founded in [ [9], Theorem 9.13] and [ [15], Theorem 10.2]. On
the other hand, the smooth version of Theorem 3.3 can be founded in [ [9], Theorem 9.14] and
[ [15], Theorem 10.4]. For completeness and ease of reading, the proofs of Theorems 3.1 and 3.3
will be played.

Before stating Theorems 3.1, 3.2, 3.3 and 3.4, the definitions of the functions of class K and
class K R are considered.

Definition 3.9. It is said that a continuous function ψ : [0,r1]→ [0,∞) (respectively, ψ : [0,∞)→
[0,∞)) belongs to class K , that is, ψ ∈K , if ψ(0) = 0 and if ψ is strictly increasing on [0,r1]

(respectively, on [0,∞)). It is said that a function ψ ∈K definided on [0,∞) belongs to class
K R if limr→∞ ψ(r) = +∞.

Theorem 3.1. Let V : R×Rn → R be a nonpathological function and let R > 0. Suppose that
there exist functions ψ1 and ψ2 ∈K R satisfying

ψ1(|x|)≤V (t,x)≤ ψ2(|x|)

for all |x| ≥ R and all t ≥ 0. If V̇ f (t,x) ≤ 0 for all (t,x) ∈ AV with |x| ≥ R and t ≥ 0, then the
solutions of (1.1) are uniformly bounded.

Proof. Take k > R and consider (t0,x0) ∈ [0,∞)×B(k) with |x0| > R, where B(k) is the open
ball of radius k centered at the origin. Now, let φ0(t) ∈ S(x0, t0) be denoted by φ(t, t0,x0) and
define v(t) by v(t) =V (t,φ0(t)) for as long as |φ0(t)|> R. Since v(t) is an absolutely continuous
function,

v(t) = v(t0)+
∫ t

t0
v̇(s)ds.

From Corollary 2.0, V̇ f (t,φ0(t)) = d
dt V (t,φ0(t)) for a.e. t, and using the hypothesis V̇ f (t,x)≤ 0,

it can be concluded that v(t)≤ v(t0). Hence,

ψ1(|φ0(t)|)≤ v(t)≤ v(t0)≤ ψ2(|x0|)≤ ψ2(k).

Since ψ1 ∈K R, its inverse exists and |φ0(t)| ≤ β := ψ
−1
1 (ψ2(k)) for as long as |φ0(t)|> R.

If |φ0(t)| starts at a value smaller than R or if it reaches a value less than R for some t > t0,
then φ0(t) can remain in B(k) for all subsequent t or else it may leave B(k) on a interval
t1 < t < t2 ≤+∞. On the interval I = (t1, t2), the aforementioned argument yields |φ0(t)| ≤ β on
I. Therefore |φ0(t)| ≤max{R,β} for all t ≥ t0. �

It is also possible to state a result analogous to the Theorem 3.1 for systems determined by
autonomous differential equations.

Theorem 3.2. Let V : Rn→ R be a nonpathological function and let R > 0. Suppose that there
exist functions ψ1 and ψ2 ∈K R obeying

ψ1(|x|)≤V (x)≤ ψ2(|x|)

Trends Comput. Appl. Math., 22, N. 3 (2021)
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for all |x| ≥ R. If V̇ g(x)≤ 0 for all x ∈ AV with |x| ≥ R, then the solutions of (1.2) are uniformly
bounded.

Theorem 3.3. Let V : R×Rn → R be a nonpathological function and let R > 0. Suppose that
there exist functions ψ1,ψ2 ∈K R such that

ψ1(|x|)≤V (t,x)≤ ψ2(|x|)

for all |x| ≥ R and all t ≥ 0. If in addition, there exists a function ψ3 ∈K satisfying V̇ f (t,x) ≤
−ψ3(|x|) for all (t,x) ∈ AV with |x| ≥ R and t ≥ 0, then the solutions of (1.1) are uniformly
ultimately bounded.

Proof. Consider k1 >R and let B> k1 be such that ψ2(k1)<ψ1(B). This is possible because ψ1 ∈
K R. Take k2 > B and let T = [ψ2(k2)/ψ3(k1)]+1. With B < |x0| ≤ k2 and t0 ≥ 0, let φ0(t) =
φ(t, t0,x0) ∈ S(x0, t0) and v(t) =V (t,φ0(t)). Since v(t) is a absolutely continuous function,

v(t) = v(t0)+
∫ t

t0
v̇(s)ds.

It follows from Corollary 2.0 that V̇ f (t,φ0(t)) = d
dt V (t,φ0(t)) for a.e. t, and then

v(t) = v(t0)+
∫ t

t0
V̇ f (s,φ0(s))ds.

The function |φ0(t)| must satisfy |φ0(t∗)| ≤ k1 for some t∗ ∈ (t0, t0 +T ), otherwise, suppose that
|φ0(t)|> k1 for all t ∈ (t0, t0 +T ). It follows from hypothesis V̇ f (t,x)≤−ψ3(|x|) that

v(t) = v(t0)+
∫ t

t0
V̇ f (s,φ0(s))ds≤ v(t0)−

∫ t

t0
ψ3(|φ0(s)|)ds

≤ ψ2(|x0|)−
∫ t

t0
ψ3(|φ0(s)|)ds≤ ψ2(k2)−

∫ t

t0
ψ3(k1)ds

= ψ2(k2)−ψ3(k1)(t− t0).

Hence, if t = T + t0,

0≤ ψ1(|φ0(T + t0)|)≤ v(T + t0)≤ ψ2(k2)−ψ3(k1)(T ) =−ψ3(k1)< 0.

So, t∗ must exist.

Now, suppose that |φ0(t∗)| = k1 and |φ0(t)| > k1 for t ∈ (t∗, t1), where t1 ≤ +∞. Since v(t) is
nonincreasing in t,

ψ1(|φ0(t)|)≤ v(t)≤ v(t∗)≤ ψ2(|φ0(t∗)|) = ψ2(k1)< ψ1(B)

for all t ≥ t∗. Thus, |φ0(t)|< B for all t ≥ t∗. �

Below is a result similar to the Theorem 3.3 for systems determined by autonomous differential
equations.

Trends Comput. Appl. Math., 22, N. 3 (2021)
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Theorem 3.4. Let V : Rn→ R be a nonpathological function and let R > 0. Suppose that there
exist functions ψ1,ψ2 ∈K R such that

ψ1(|x|)≤V (x)≤ ψ2(|x|)

for all |x| ≥ R. If in addition, there exists a function ψ3 ∈K obeying V̇ g(x) ≤ −ψ3(|x|) for all
x ∈ AV with |x| ≥ R, then the solutions of (1.2) are uniformly ultimately bounded.

As an example for the use of Theorem 3.2, consider the Artstein’s circles example{
ẋ = (x2− y2)u
ẏ = 2xyu

(3.1)

where u ∈ R. In the same way that [ [3], Example 1], let

u(x,y) =

{
1, x < 0
−1, x≥ 0.

Let V : Rn → R be the nonpathological function V (x,y) =
√

4x2 +3y2− |x|. Take (x,y) ∈ AV

arbitrary and consider V̇ g(x,y), where g(x,y) = ((x2 − y2)u,2xyu). If x 6= 0, then ∂V (x,y) =
∇V (x,y). Thence V̇ g(x,y)≤ 0, since

∇V (x,y) ·g(x,y) = −4|x|3−2|x|y2 +(x2− y2)
√

4x2 +3y2√
4x2 +3y2

≤ 0

whenever x 6= 0. Otherwise, suppose that x = 0. If y > 0,

(0,
3√
3
) ∈ ∂V (0,y) = {(s, 3√

3
) : s ∈ [−1,1]}

and if y < 0,

(0,− 3√
3
) ∈ ∂V (0,y) = {(s,− 3√

3
) : s ∈ [−1,1]}.

In its turn, if y = 0 then

(0,0) ∈ ∂V (0,0) = {(s,v) : s ∈ [−1,1],v ∈ [− 3√
3
,

3√
3
]}.

Anyways, if x = 0 it follows that g(x,y) = (−y2u,0) and so

V̇ g(x,y) = 0.

Hence V̇ g(x,y) ≤ 0 for all (x,y) ∈ AV . From Theorem 3.2 the solutions of (3.1) are uniformly
bounded.

Now, for the use of Theorem 3.1, it will be considered a system of differential equations treated
by [7]. In this way, consider the two dimensional system{

ẋ =−x f2(t,x,y)+ |y|
ẏ =−y f1(t,x,y)+ |x|

(3.2)

Trends Comput. Appl. Math., 22, N. 3 (2021)
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where f1, f2 : [0,∞)×R2 → R, f2(t,x,y) ≥ sgn(y) and f1(t,x,y) ≥ sgn(x). For the application
of Theorem 3.1, consider the function V : R×R2 → R given by V (t,x,y) = V1(x,y), where
V1(x,y) = |x|+ |y| is nonpathological. Take (t,x,y) ∈ AV arbitrary. Hence,

V̇ f (t,x,y) =
⋂

ξ∈∂V (t,x,y)

ξ · (1, f (t,x,y))

=
⋂

ξ∈(0,∂V1(x,y))

ξ · (1, f (t,x,y))

=
⋂

η∈∂V1(x,y)

η · f (t,x,y)

where f (t,x,y) = (−x f2(t,x,y) + |y|,−y f1(t,x,y) + |x|). If x 6= 0 and y 6= 0, it follows that
∂V (t,x,y) = (0,∇V1(x,y)) = (0,sgn(x),sgn(y)). Consequently V̇ f (t,x,y)≤ 0, since

(0,sgn(x),sgn(y)) · (1, f (t,x,y))

= sgn(x)(−x f2(t,x,y)+ |y|)+ sgn(y)(−y f1(t,x,y)+ |x|)
=−|x| f2(t,x,y)+ sgn(x)|y|− |y| f1(t,x,y)+ sgn(y)|x|
=−|x|( f2(t,x,y)− sgn(y))−|y|( f1(t,x,y)− sgn(x))≤ 0.

Now, suppose that y = 0. If x > 0,

(1,0) ∈ ∂V1(x,0) = {(1,s) : s ∈ [−1,1]}

and thus

V̇ f (t,x,0) = (1,0) · (−x f2(t,x,0), |x|)
=−x f2(t,x,0)≤ 0

seeing that f2(t,x,0)≥ sgn(0) = 0. If x < 0,

(−1,0) ∈ ∂V1(x,0) = {(−1,s) : s ∈ [−1,1]}

and thus

V̇ f (t,x,0) = (−1,0) · (−x f2(t,x,0), |x|)
= x f2(t,x,0)≤ 0.

On the other hand, suppose that x = 0. If y > 0,

(0,1) ∈ ∂V1(0,y) = {(s,1) : s ∈ [−1,1]}

and then

V̇ f (t,0,y) = (0,1) · (|y|,−y f1(t,0,y))

=−y f1(t,0,y)≤ 0

Trends Comput. Appl. Math., 22, N. 3 (2021)
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because f1(t,0,y)≥ sgn(0) = 0. If y < 0,

(0,−1) ∈ ∂V1(0,y) = {(s,−1) : s ∈ [−1,1]}

and then

V̇ f (t,0,y) = (0,−1) · (|y|,−y f1(t,0,y))

= y f1(t,0,y)≤ 0.

Lastly, if (x,y) = (0,0),

(0,0) ∈ ∂V1(0,0) = {(s,v) : s ∈ [−1,1],v ∈ [−1,1]}

and then V̇ f (t,0,0) = 0. Whence V̇ f (t,x,y) ≤ 0 for all (t,x,y) ∈ AV , and from Theorem 3.1 the
solutions of (3.2) are uniformly bounded.

Next, a fashion equation arising from the Physics of Fluids in the past 30 years is considered.
More specifically, consider Eq. (6.2) of paper [6] with N = 2,{

ṗ j = 2∑
2
k=1 p j pksgn(q j−qk)e−|q j−qk|

q̇ j = ∑
2
k=1 pke−|q j−qk|

(3.3)

where j ∈ {1,2}. The Eq. (6.2) of [6] is a discontinuous differential equation that is widely
studied. Note that Theorems 3.2 and 3.4 do not apply to (3.3), since p1(t)≡ 0, p2(t)≡ 1, q1(t)= t
and q2(t) = t provide a solution not bounded to (3.3).

4 CONCLUSIONS

The work contributes to the qualitative theory of discontinuous systems. More specifically, the
work studies the boundedness of solutions to discontinuous systems determined by discontinuous
differential equations. The boundedness results established here refer to the concepts of solutions
uniformly bounded and solutions uniformly ultimately bounded. The main results of the work
are stated in the Theorems 3.1, 3.2, 3.3 and 3.4. Theorems 3.1 and 3.3 establish boundedness
results to systems determined by nonautonomous differential equations, while Theorems 3.2 and
3.4 establish boundedness results to systems determined by autonomous differential equations.
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