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ABSTRACT. We seek investigate the use of fractional derivatives, both analytically and through simula-
tions. We present some models and perform investigations about them, starting with the classic model and
the basic definitions to discuss difficulties in constructing a non-artificial fractional model. Also, we analyze
the COVID-19 pandemic using a fractional epidemiological SIR model carefully constructed and present
numerical results using MATLAB.
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1 INTRODUCTION

Throughout history, epidemics have devastated a large percentage of humanity. Important ques-
tions can be worked out through mathematical modeling: mathematicians study their evolution
and try to elucidate essential questions, such as when the peak of the disease is expected and how
many people will be infected in total.

The coronavirus disease 2019 (COVID-19) is a respiratory disease that spreads from person
to person. As of July 28, 2020, the reported cases of COVID-19 on the planet exceeded 16
million [25]. Person-to-person spread is thought to occur mainly via respiratory droplets, as the
spread of influenza [22]. This suggests that the use of the epidemiological model SIR (Susceptible
- Infected - Removed) is reasonable for understanding the spread of COVID-19.

As fractional calculus has proven to be a faithful tool in capturing the dynamics of the physical
process of many scientific objects, being its most striking features the memory effect, here we
revisit much of the mathematical and epidemiological theory in order to improve understanding
of fractional models. The tool has already been used to model the dynamics of the new coro-
navirus in interesting works, such as [21, 31]. In this work, we are concerned with the precise
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2Instituto de Ciências Exatas, Departamento de Matemática, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora,
MG, Brazil E-mail: sandro.mazorche@ufjf.edu.br https://orcid.org/0000-0002-6863-3723



i
i

“A1-1494-8322” — 2021/5/11 — 17:43 — page 158 — #2 i
i

i
i

i
i

158 FRACTIONAL DERIVATIVES APPLIED TO EPIDEMIOLOGY

construction of a fractional model following the seminal ideas of the SIR model creators. We an-
alyze problems and difficulties that occur when simply replacing derivatives of whole order with
derivatives of fractional orders and correcting the dimension artificially, such as, for example, the
unexplained change in the total population. It was in Angstmann, Henry & McGann [5] that we
found solid steps that could explain why and where fractional derivatives can arise, paying atten-
tion to the precise definition of each parameter and the dimensioning. We revisited the authors’
work and, in addition to starting the discussion of the reproduction number for their model, we
applied the model to the data of the Brazilian and Italian COVID-19 pandemic.

We intend that the work will attract readers’ attention to the care with the use of fractional
derivatives, presenting a non-artificial construction for an epidemiological model and its appli-
cation. For this aim, in Chapter 2 we offer a re-presentation of the classic SIR model proposed
by Kermack & McKendrick in 1927 [20], continuing with special attention to the case of con-
stant parameters and the definition of the number of reproduction of an infectious disease. In
Chapter 3, we offer fractional calculus preliminaries and establish difficulties in defining the
fractional model. In Chapter 4, we present a physical derivation of a fractional model, follow-
ing the steps of Angstmann, Henry & McGann [5], where they use the probabilistic language of
the Continuous-Time Random Walks (CTRW) and the Riemann-Liouville fractional derivative.
Finally, in Chapter 5 we display several numerical results.

2 THE SIR MODEL

In 1927, the SIR (Susceptible-Infected-Removed) model was introduced in a remarkable way
in a work proposed by Kermack & McKendrick [20]. The authors concluded that, although the
causative agent does not lose its infectiousness and the population is not entirely infected, the
end of an epidemic may result from a special relationship between population density, infectivity
and rates of recovery and death. We present below a brief adaptation of this work.

2.1 General Theory

Initially, we uniformly discretize time considering ∆T = 1 and we assume that people are infected
only when passing from one interval to another, not during the interval itself. We denote the
number of infected at time t who have been infected for θ intervals by vt,θ . The total number
of infected at time t is therefore It = ∑

t
θ=0 vt,θ . The notation vt is also used to indicate the rate

of new infections in time t . In general, vt =
vt,0

∆T
, except at the origin, when a population of

infectious I0 , regardless of the model to be developed, is inserted into the total population. Thus,
v0,0 = v0∆T + I0 .

If ψ(θ) = ψθ denotes the rate of removal of the infectious compartment at the age of infection
θ (that is, the sum of recovery and death rates), so the number removed from each θ− group is

given by ψθ vt,θ =
vt,θ − vt+1,θ+1

∆T
. Therefore, it follows that vt,θ = vt−1,θ−1(1−ψ(θ − 1)∆T ).

Proceeding, we obtain
vt,θ = vt−θ ,0 Bθ , (2.1)

Trends Comput. Appl. Math., 22, N. 2 (2021)
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where Bθ = (1−ψ(θ−1)∆T )(1−ψ(θ−2)∆T ) · · ·(1−ψ(0)∆T ). It is important to note that, in
order not to overload the notation, we write time t +1 , θ −2 , etc., instead of t +∆T , θ −2∆T
and so on.

Now, if φ(θ) = φθ denotes the infectivity rate of an infected person who has been infected for θ

stages, the rate of new infected vt should be equal to St ∑
t
0 φθ vt,θ , where St denotes the number

of people not yet infected/ immunized at time t. Clearly,

St = N−
t

∑
0

vt∆T − I0, (2.2)

where N is the total population. If Rt denotes the number of removed (by recovery or death),
then, disregarding vital dynamics processes, St + It +Rt = N. We have

It =
t

∑
0

vt,θ =
t

∑
0

Bθ vt−θ ∆T +Bt I0. (2.3)

Also note that, from Eq. 2.1, we have

vt = St

t

∑
1

φtvt,θ = St

( t

∑
1

Aθ vt−θ ∆T +At I0

)
, (2.4)

where we define Aθ = φθ Bθ and assume φ0 = 0 , that is, a person is not infective at the moment

of the infection. By other hand, for t > 0 , we have vt =
St −St+1

∆T
. Therefore, it follows from Eq.

2.4 that
St −St+1

∆T
= St

( t

∑
1

Aθ vt−θ ∆T +At I0

)
. (2.5)

Finally, we note that
Rt+1−Rt

∆T
=

( t

∑
1

Cθ vt−θ ∆T +Ct I0

)
, (2.6)

where we define Cθ = ψθ Bθ .

Allowing ∆T → 0, we get the relationship vt = −dSt/dt and the three equations that define the
SIR model

dSt

dt
=−St

(∫ t

0
Aθ vt−θ dθ +At I0

)
; (2.7)

It =
∫ t

0
Bθ vt−θ dθ +Bt I0; (2.8)

dRt

dt
=
∫ t

0
Cθ vt−θ dθ +Ct I0, (2.9)

where we have, by the property of the product integral [32], Bθ = exp
(
−
∫

θ

0 ψ(a)da
)
. It is

observed that the upper limit t must be divided by the unit of time considered, becoming scalar.

The reader will be able to verify that
dSt +dIt +dRt

dt
= 0 , which means that the population is

kept constant, regardless of the functions ψ,φ .

Trends Comput. Appl. Math., 22, N. 2 (2021)
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2.2 Constant rates

The analysis of the case in which the φ ,ψ rates are constants β ,γ , respectively, provides insights
for understanding epidemics. In this case, the system 2.7 - 2.9 becomes, omitting the t index for
simplicity

dS
dt

=−βSI; (2.10)

dI
dt

= βSI− γI; (2.11)

dR
dt

= γI. (2.12)

So dR/dt = γ(N− S−R) . In addition, dS/dR = −(β/γ)S , a separable equation that leads to
the result log(S0/S) = (β/γ)R . Therefore, S = S0 exp(−(β/γ)R) , following that

dR
dt

= γ(N−S0 exp(−(β/γ)R)−R). (2.13)

From Eq. 2.13, we can obtain the total number of infected throughout the course of the disease
by studying dR∞/dt = 0 , which is equivalent to N−S0 exp(−(β/γ)R∞)−R∞ = 0 . Considering
S0 6= 0 , we get

R∞ = N +
γ

β
W0

(
−S0βe−Nβ/γ

γ

)
, (2.14)

where W0 represents the principal branch of the Lambert W function [9], not used by the classical
authors [20]. We note that if the disease is early, S0≈N and the epidemic does not occur if N ≤ γ

β

, that is, if N
β

γ
≤ 1 . In fact, in this case W0

(
−S0βe−Nβ/γ

γ

)
≈W0

(
−Nβ

γ
e−Nβ/γ

)
= −Nβ/γ

e R∞ ≈ 0 . The constant N
β

γ
is equivalent, in this model, to the so-called basic reproduction

number, to be presented in the next section. It is possible to obtain some other results for small
epidemics, which are not of interest to us here, but have been studied in the main reference [20].

2.3 The Basic Reproduction Number

The reproduction number ℜ reflects how infectious a disease is in a given context. This constant
is often confused with the basic reproduction number, ℜ0, which represents the reproduction
number when there is no immunity or deliberate intervention in the transmission of the disease.
On the other hand, ℜ is the effective reproductive number and is modified both by the decreasing
of susceptible population and by the implementation of interventions and the infectivity changes
that the virus may suffer. Under conditions of homogeneous population, ℜ is defined as the
average number of infections that a single individual can generate during his infectious period [7].
In traditional models, epidemics of an infection cannot occur when the ℜ0 is less than 1 and
established outbreaks will disappear if interventions or depletion of the susceptible part of the
population are sufficient to keep ℜ below 1. Also according to [7], it is important to keep in mind

Trends Comput. Appl. Math., 22, N. 2 (2021)
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that the ℜ0 of an infection depends on the population analyzed, because the rates of contact
between people may differ due to differences in population density and culture. The ℜ at a given
time can also vary from place to place, as communities may differ in their levels of immunity
and intervention.

3 APPLICATIONS OF FRACTIONAL DERIVATIVES TO SIR TYPE MODELS

Currently, fractional calculus has proven to be a faithful tool in capturing the dynamics of the
physical process of many scientific objects, such as biological or ecological phenomenas and
control systems [34]. One of its most striking features is the memory effect. Over the years,
varied fractional operators have been defined with different focuses and applications. Although it
is not used in this work, we highlight the recent introduction of the ψ-Hilfer fractional derivative,
a fractional derivative with respect to a function ψ which incorporates a large class of fractional
derivatives as particular cases [10, 11, 12].

The fractional calculus has already been used to model the dynamics of the new coronavirus in
interesting works, such as [21, 31]. Here, we related the memory effect to potential laws regard-
ing the infectiousness (transmission) of the infected patient and the removal rate. That is, the
longer infected, the less infectious and the more likely he will be removed from the infectious
compartment. This effect is important and is not captured by classic models. We intend to study
the orders of derivatives that best reproduce the data of the pandemic considering the variation
in infectivity and removal rate. It is important to mention that the memory effect decreases when
the fractional orders tend to 1 [33].

3.1 Preliminaries of Fractional Calculus

The Mittag-Leffler functions are of important use in the theory of fractional calculus. We present
the following definition [8]:

Definition 1. (Two and Three-parameter Mittag–Leffler function) Let z ∈ C, with α,β ,ρ ∈ C
three-parameters such that Re(α) > 0, Re(β ) > 0,Re(ρ) > 0. We define the three-parameter
Mittag–Leffler function via the power series

Eρ

α,β (z) =
∞

∑
k=0

(ρ)k

Γ(αk+β )

zk

k!
, (3.1)

where (ρ)k is the Pochhammer symbol. Particularly, when ρ = 1, we have the two-parameter
Mittag–Leffler function, denoted simply by Eα,β (z). Note that this function generalizes the
exponential function, being equal to the exponential when α = β = 1.

The following results are worth:

Proposition 1. The Laplace transform of the function tβ−1Eρ

α,β (atα) is given by:

L [tβ−1Eρ

α,β (atα)](s) = s−β (1−as−α)−ρ , (3.2)

Trends Comput. Appl. Math., 22, N. 2 (2021)
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where Re(s)> 0 and |as−α |< 1.

Proposition 2. (Three-parameter Mittag-Leffler function derivative) The following identity is
valid:

dk

dxk Eρ

α,β (z) = (ρ)kEρ+k
α,β+αk(z). (3.3)

The proofs of the propositions can be found at [8]. Below we consider [a,b] ⊂ R,α > 0, a
function f ∈ Lp[a,b], p ≥ 1, and n− 1 < α < n, with n ∈ N. Also, Γ is the gamma function.

Definition 2. The Riemann-Liouville fractional integral of order α is defined for t ∈ [a,b] by:

aJα
t f (t) =

1
Γ(α)

∫ t

a
(t−θ)α−1 f (θ)dθ . (3.4)

Proposition 3. (Fractional integral of the three-parameter Mittag-Leffler function [8]) We have
the following identity:

0Jν
t [t

β−1Eρ

α,β (atα)] = tν+β−1Eρ

α,ν+β
(atα). (3.5)

Definition 3. The Riemann-Liouville fractional derivative of order α is defined for t ∈ [a,b] by:

R−L
a Dα

t f (t) =
1

Γ(n−α)

(
dn

dtn

)∫ t

a
(t−θ)n−α−1 f (θ)dθ . (3.6)

In other words,
R−L
a Dα

t f (t) = Dn[aJn−α
t f (t)], (3.7)

with Dn representing the integer order derivative.

Definition 4. The Caputo fractional derivative of order α is defined for t ∈ [a,b] by:

C
a Dα

t f (t) =
1

Γ(n−α)

∫ t

a
(t−θ)n−α−1 dn

dθ n f (θ)dθ . (3.8)

In other words,
C
a Dα

t f (t) = aJn−α
t [Dn f (t)]. (3.9)

The Riemann-Liouville fractional integral is the inverse to the right of both the
Riemann-Liouville and the Caputo fractional derivatives [26], that is,

C
a Dα

t aJα
t f (t) = R−L

a Dα
t aJα

t f (t) = f (t). (3.10)

Trends Comput. Appl. Math., 22, N. 2 (2021)
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The Definition 2 can be seen as an application of the Laplace transform and the Convolution
Theorem. In what follows, we use the notation Jα for 0Jα

t . Using Laplace transform properties,
we can write, to n ∈ N, L {(Jn f )(t)}= s−nL { f (t)}. Therefore, it is reasonable to assume that,
for fractional α , it also holds:

(Jα f )(t) = L −1
(

s−αL { f (t)}
)
. (3.11)

Considering p(t) = tα−1, we have L {p(t)}= s−α Γ(α). Therefore, by the convolution equation
and by the linearity of the transform:

(Jα f )(t) =
1

Γ(α)
L −1{L {p(t)}L { f (t)}}= 1

Γ(α)
(p∗ f ) =

1
Γ(α)

∫ t

0
(t−θ)α−1 f (θ)dθ ,

(3.12)
as in Definition 2. Is important to note that when the fractional order tends to the integer order,
the fractional derivative tends to the same result as the ordinary derivative. This is known by
backward compatibility and this property for the Grünwald–Letnikov, Riemann–Liouville and
Caputo fractional derivatives can be seen on [27].

3.2 Difficulties in Defining the Fractional Model

We studied some models in which authors generalize classic first order ODE’s by replacing the
integer derivative on the left side with fractional derivatives, usually the Caputo one, once it
allows conventional initial conditions and its derivative of a constant is bounded (specifically,
equal to 0) [28]. We found that these models can produce very good estimates, as well as inter-
esting equations from a mathematical point of view. However, we are interested in the following
question: does the change in the order of derivatives automatically establish consistent models,
with respect to the definition of parameters, units and balance? In 2010, an interesting article was
published [13] proving that, in general, this cannot happen.

In the literature on the use of fractional derivatives in SIR-type models, we find some more
common versions. Based on the model 2.10 - 2.12 or its various extensions, some authors (eg.
[3, 30]) replace the derivative on the left side with the Caputo fractional derivative of order α ,
keeping the same parameters as the model with an integer derivative. For example, for the SIR
model, it is considered

Dα S(t) =−β I(t)S(t) (3.13)

Dα I(t) = β I(t)S(t)− γI(t) (3.14)

Dα R(t) = γI(t), (3.15)

when β and γ are positive constants defined as in the system 2.10-2.12. The first difficulty noted
with this definition concerns units. We note that Dα f (t) has unit [time]−α . Therefore, the right
side of the equation must have this unit. Just abolishing the units does not solve the problem.
According to [13], the units actually help to reveal the issue: a 1 order rate, for example, is a

Trends Comput. Appl. Math., 22, N. 2 (2021)
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different type of that of order 1/2, in the same way that, in classical physics, the rate of order 1,
velocity, is different from that corresponding to the order 2, the acceleration.

Other authors (eg. [2, 19]) correct the dimension by multiplying time constants or raising the
parameters to α . In this last case, the fractional SIR model could be written as follows

Dα S(t) =−β
α I(t)S(t) (3.16)

Dα I(t) = β
α I(t)S(t)− γ

α I(t) (3.17)

Dα R(t) = γ
α I(t). (3.18)

Finally, we read authors (eg. [1, 15, 16, 17]) who, intending to extend the fractional models, seek
a system with multiple orders, which, if on the one hand is of great mathematical interest, on the
other hand makes the analysis even more complicated. More than the parameter definitions and
the dimensional difficulty, the relationship between different orders can influence the total mass
or population. The article [13] demonstrates, in a simple two-compartment system, that the use of
different fractional orders without proper care leads to the violation of mass balance. The authors
defend, in an article of the same year [14], that, both in the context of the pharmacokinetics then
considered and in analog systems, an outgoing mass flow defined as a fractional order rate cannot
appear as an inflow into another compartment, with a different fractional order, without violating
the mass balance.

We will analyze the relationship between orders and the total population N of the fractional SIR
model defined as

Dα1S(t) =−β1I(t)S(t) (3.19)

Dα2 I(t) = β2I(t)S(t)− γ2I(t) (3.20)

Dα3R(t) = γ3I(t). (3.21)

The fractional derivative is in Caputo sense and α1,α2,α3 ∈ (0,1], as most of the authors we had
access considered. We define the parameters in some way that balances the units, for instance,
βi = β αi and γi = γαi for i ∈ {1,2,3}. Applying Laplace transform and performing operations on
the equations 3.19 - 3.21, we obtain

L {S+ I +R}= S0 + I0 +R0

s
+

[
β2

sα2
− β1

sα1

]
L {SI}+

[
γ3

sα3
− γ2

sα2

]
L {I}. (3.22)

Applying the inverse transform, we finally write

N = N0 +

[
β2tα2−1

Γ(α2)
− β1tα1−1

Γ(α1)

]
∗SI +

[
γ3tα3−1

Γ(α3)
− γ2tα2−1

Γ(α2)

]
∗ I, (3.23)

that is,

N = N0 +
∫ t

0

[
β2(t−θ)α2−1

Γ(α2)
− β1(t−θ)α1−1

Γ(α1)

]
S(θ)I(θ)dθ

+
∫ t

0

[
γ3(t−θ)α3−1

Γ(α3)
− γ2(t−θ)α2−1

Γ(α2)

]
I(θ)dθ

. (3.24)

Trends Comput. Appl. Math., 22, N. 2 (2021)
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Note that, if α1 = α2 = α3, the integrals in Eq. 3.24 become nulls, that is, the population remains
constant, but the same may not be true in other cases. For example, if α1 < α2 < α3, the popula-
tion goes up to large t. Conversely, if α1 > α2 > α3, the population decreases to large t. The big
problem is not to change the population, which can happen due to vital dynamics, migration etc.,
but to justify the change. In this case, without migration or dynamics, people could not disappear
or appear as illustrated in the Fig. 1-2.

0 50 100 150 200

t in days

0

0.5

1

1.5

2

2.5

S
(t

)(
g
ra

y
) 

, 
I(

t)
(b

la
c
k
) 

, 
R

(t
)(

-.
)

N
(t

)=
S

(t
)+

I(
t)

+
R

(t
) 

(-
-)

, 
N

0
 (

:)

#10 8

C.I.: S0=210147124 ; I0=1 ; R0=0

 Parameters: -=1.3/N0 ; .=0.3

 ,
1

= 0.55 ; ,
2

=0.6 ; ,
3

=0.5

Figure 1: Oscilation of N(t).
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Figure 2: The R compart. exceed N0.

Finally, we note that Eq. 3.19, 3.20 and 3.21 have different parameters. This indicates that the

ℜ0 of the SIR model, classically given by the constant N
β

γ
, is not trivial on the fractional case.

4 DERIVATION OF THE FRACTIONAL MODEL

In the previous section, we presented fractional models commonly used by authors in the field
and made some considerations. Still other questions arise: can we replace the entire order with
fractional orders on the left based on some mathematical theorem? If there are two different
orders (say, coming from potential laws on infectiousness and recovery/removal), these should be
considered in the equations of which compartments among the three or four used? In addition to
the adequacy of the units, is there an epidemiological explanation for multiplying time constants
or raising the parameters to the order used? We have not yet obtained precise justifications,
although we have verified, through published works and simulations that we carry out, that these
models are capable of representing reality with a good degree of precision.

As already mentioned, we believe that the emergence of fractional derivatives in models similar
to the original comes from considering the functions of infectiousness and removal derived from
potential laws. Next, we present a physical derivation of a fractional model, following the steps of
Angstmann, Henry & McGann [5], where they use the probabilistic language of the Continuous-
Time Random Walks (CTRW).

Trends Comput. Appl. Math., 22, N. 2 (2021)
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4.1 Model Derivation

Consider an individual infected since the time t ′. If there are S(t) susceptible in time t, this in-
fected person has a probability S(t)/N that his contact is susceptible, considering the population
homogeneous. Therefore, in the period of t to t +∆T , the expected number of new infections per

infected individual is given by σ(t, t ′)
S(t)
N

∆T . The transmission rate per infectious individual

σ(t, t ′) depends both on the age of the infection, t− t ′, and on the present time, t, which, among
others, influences the amount of contacts of the infectious.

The probability that an individual infected at the moment t ′ is still infected at the moment t is
given by the survival function Φ(t, t ′). Therefore, the flux of individuals to the I compartment at
time t is recursively given by

q+(I, t) =
∫ t

−∞

σ(t, t ′)
S(t)
N

Φ(t, t ′)q+(I, t ′)dt ′. (4.1)

The initial condition is obtained by the number of individuals infected at the time 0 and con-
sidering the time in which each individual has become infected. This is given by the function
i(−t ′,0) which represents the number of individuals who are still infectious at time 0 and who
were originally infected at some point earlier t ′ < 0. Then q+(I, t ′) = i(−t ′,0)/Φ(0, t ′) for t ′ < 0.
For simplicity, we consider i(−t,0) = i0δ (−t), where δ (t) is the Dirac delta function. So,

q+(I, t) =
∫ t

0
σ(t, t ′)

S(t)
N

Φ(t, t ′)q+(I, t ′)dt ′+ i0σ(t,0)
S(t)
N

Φ(t,0). (4.2)

The infection rate σ(t, t ′) is assumed to be a function of both the current time (due, for example,
to containment measures), having an extrinsic infectivity ω , and the age of infection t−t ′, having
an intrinsic infectivity ρ . So we can write

σ(t, t ′) = ω(t)ρ(t− t ′). (4.3)

Assuming that the natural death and the removal of an infected individual are independent
processes, we can write the survival function as

Φ(t, t ′) = φ(t− t ′)θ(t, t ′), (4.4)

where φ(t− t ′) is the probability that an individual infected since t ′ has not yet recovered or been
killed by the disease at time t. Also, θ(t, t ′) is the probability that an infected individual since t ′

has not yet died of natural death (that is, independent of the disease) until time t. The θ function
is constructed similarly to the B function in Section 2.1, given by

θ(t, t ′) = e−
∫ t
t′ γ(u)du, (4.5)

where γ is the death rate. Notice that

θ(t, t ′) = θ(t,u)θ(u, t ′), ∀t ′ < u < t. (4.6)

Trends Comput. Appl. Math., 22, N. 2 (2021)
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Individuals in the I compartment at time t must have entered this compartment at some time
before and remained in it until t. Therefore, we can express the number of infected individuals
as follows:

I(t) = I0(t)+
∫ t

0
Φ(t, t ′)q+(I, t ′)dt ′. (4.7)

The I0(t) function provides the number of individuals who were infected at 0 and remain
infectious at t. This function can be written as follows:

I0(t) =
∫ 0

−∞

Φ(t, t ′)
Φ(0, t ′)

i(−t ′,0)dt ′ =
Φ(t,0)
Φ(0,0)

i0 = Φ(t,0)i0. (4.8)

With this information we can build the principal equations of the model. We start by deriving Eq.
4.7 through the Leibniz Rule, obtaining

dI(t)
dt

= q+(I, t)−
∫ t

0
ψ(t− t ′)θ(t, t ′)q+(I, t ′)dt ′

−γ(t)
∫ t

0
φ(t− t ′)θ(t, t ′)q+(I, t ′)dt ′+

dI0(t)
dt

,
(4.9)

where ψ(t)=−dφ(t)
dt

. This ψ has an important relationship with the continuous random variable
X that provides the time of removal of the individual from the infectious compartment. The
cumulative distribution of X , namely F defined by F(t) = P(X ≤ t), is such that F(t) = 1−φ(t).

Therefore, the probability density function of X is ψ(t) =−dφ(t)
dt

.

Using Eq. 4.2 - 4.7, Eq. 4.9 can be rewritten as

dI(t)
dt

= ω(t)
S(t)
N

(∫ t

0
ρ(t− t ′)Φ(t, t ′)q+(I, t ′)dt ′+ρ(t)Φ(t,0)i0

)
−
∫ t

0
ψ(t− t ′)θ(t, t ′)q+(I, t ′)dt ′− i0ψ(t)θ(t,0)− γ(t)I(t)

. (4.10)

In what follows, we will remove the dependency of q+(I, t ′) from Eq. 4.10 by defining infectivity
and recovery memory kernels. We will henceforth consider i0 = 1 for simplicity. We can rewrite
Eq. 4.7 as

I(t)
θ(t,0)

−φ(t) =
∫ t

0
φ(t− t ′)

q+(I, t ′)
θ(t ′,0)

dt ′. (4.11)

The right side is now in convolution form. Taking the Laplace transform, we get

L

{
I(t)

θ(t,0)
−φ(t)

}
= L {φ(t)}L

{
q+(I, t)
θ(t,0)

}
. (4.12)

The first integral of Eq. 4.10 is the product of θ(t,0) with an integral that can be rewritten using

the Laplace transform in the form L {ρ(t)φ(t)}L
{

q+(I, t)
θ(t,0)

}
. We can write, by Eq. 4.12,

L {ρ(t)φ(t)}L
{

q+(I, t)
θ(t,0)

}
=

L {ρ(t)φ(t)}
L {φ(t)}

L

{
I(t)

θ(t,0)
−φ(t)

}
= L

{∫ t

0
KI(t− t ′)

(
I(t ′)

θ(t ′,0)

)
dt ′−ρ(t)φ(t)

}
,

(4.13)
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where we define the infectivity memory kernel by:

KI(t) = L −1
{

L {ρ(t)φ(t)}
L {φ(t)}

}
. (4.14)

Similarly, the second integral of Eq. 4.10 is the product of θ(t,0) with an integral that can be
rewritten using Laplace transform in the form

L {ψ(t)}L
{

q+(I, t)
θ(t,0)

}
=

L {ψ(t)}
L {φ(t)}

L

{
I(t)

θ(t,0)
−φ(t)

}
= L

{∫ t

0
KR(t− t ′)

(
I(t ′)

θ(t ′,0)

)
dt ′−ψ(t)

}
,

(4.15)

where we define the recovery memory kernel by

KR(t) = L −1
{

L {ψ(t)}
L {φ(t)}

}
. (4.16)

Replacing Eq. 4.13 and 4.15 in Eq. 4.10, we get

dI(t)
dt

= ω(t)
S(t)
N

(
θ(t,0)

∫ t

0
KI(t− t ′)

(
I(t ′)

θ(t ′,0)

)
dt ′−θ(t,0)ρ(t)φ(t)+ρ(t)Φ(t,0)

)
−θ(t,0)

∫ t

0
KR(t− t ′)

(
I(t ′)

θ(t ′,0)

)
dt ′+θ(t,0)ψ(t)−ψ(t)θ(t,0)− γ(t)I(t)

.

(4.17)

Finally, we simplify the set of equations for the SIR model:

dS(t)
dt

= γ(t)N−ω(t)
S(t)
N

θ(t,0)
∫ t

0
KI(t− t ′)

I(t ′)
θ(t ′,0)

t ′dt ′− γ(t)S(t); (4.18)

dI(t)
dt

= ω(t)
S(t)
N

θ(t,0)
∫ t

0
KI(t− t ′)

I(t ′)
θ(t ′,0)

t ′dt ′

−θ(t,0)
∫ t

0
KR(t− t ′)

I(t ′)
θ(t ′,0)

dt ′− γ(t)I(t);
(4.19)

dR(t)
dt

= θ(t,0)
∫ t

0
KR(t− t ′)

I(t ′)
θ(t ′,0)

dt ′− γ(t)R(t), (4.20)

where we consider the same rate γ(t) of natural mortality in each compartment, with the birth
rate equal to that. In this case the population remains constant.

We incorporate fractional derivatives into the model by choosing ψ(t) with potential law and
ρ(t) related to the choice of ψ(t). In particular, we use the Mittag-Leffler function, according to
Definition 1:

ψ(t) =
tα−1

τα
Eα,α

(
−
(

t
τ

)α)
, (4.21)

for 0 < α ≤ 1, where τ is a scale parameter. The asymptotic expansion of the Mittag-Leffler
function [6] allows to affirm that ψ(t) = O(t−1−α) for t→ ∞.

Trends Comput. Appl. Math., 22, N. 2 (2021)
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It is not difficult to prove that Eα,α

(
−
(

t
τ

)α)
= αE2

α,1+α

(
−
(

t
τ

)α)
. Thus, by Eq. 3.3, the

correspondent survival function is

φ(t) = Eα,1

(
−
(

t
τ

)α)
. (4.22)

Using Eq. 3.2, we can calculate the Laplace transform of the recovery memory kernel with
Mittag-Leffler distribution, obtaining

L {KR(t)}=
L {ψ(t)}
L {φ(t)}

= s1−α
τ
−α . (4.23)

On the other hand, we have L {R−L
0 D1−α

t f (t)} = s1−αL { f (t)}−0 Jα f (t) |t=0+ . We consider
here 0Jα f (t) |t=0+= 0, as in [4]. Hereafter, for simplicity, we write D1−α in place of R−L

0 D1−α .
From these considerations, a convolution with the recovery memory kernel can be written as∫ t

0
KR(t− t ′)

I(t ′)
θ(t ′,0)

dt ′ = τ
−α D1−α

(
I(t)

θ(t,0)

)
. (4.24)

A fractional derivative can also be incorporated into the infectivity memory kernel. Note that Eq.
4.14 has a Laplace transform similar to Eq. 4.23 and it is interesting to consider

ρ(t) =
1

φ(t)
tβ−1

τβ
Eα,β

(
−
(

t
τ

)α)
. (4.25)

As ρ(t) ≥ 0 is required, we must have 0 < α ≤ β ≤ 1. Using Eq. 4.25, we obtain the Laplace
transform of the infectivity kernel:

L {KI(t)}= s1−β
τ
−β , (4.26)

following that ∫ t

0
KI(t− t ′)

I(t ′)
θ(t ′,0)

dt ′ = τ
−β D1−β

(
I(t)

θ(t,0)

)
. (4.27)

Replacing Eq. 4.24 and 4.27 in the model 4.18 - 4.20, we obtain a fractional SIR model:

dS(t)
dt

= γ(t)N− ω(t)S(t)θ(t,0)
Nτβ

D1−β

(
I(t)

θ(t,0)

)
− γ(t)S(t); (4.28)

dI(t)
dt

=
ω(t)S(t)θ(t,0)

Nτβ
D1−β

(
I(t)

θ(t,0)

)
− θ(t,0)

τα
D1−α

(
I(t)

θ(t,0)

)
− γ(t)I(t); (4.29)

dR(t)
dt

=
θ(t,0)

τα
D1−α

(
I(t)

θ(t,0)

)
− γ(t)R(t). (4.30)

Note that if α = β = 1 and γ(t)≡ γ,ω(t)≡ ω are considered constant, we get the model 2.10 -
2.12, added only by the vital dynamics:

dS(t)
dt

= γN− ωS(t)I(t)
Nτ

− γS(t); (4.31)

Trends Comput. Appl. Math., 22, N. 2 (2021)
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dI(t)
dt

=
ωS(t)I(t)

Nτ
− 1

τ
I(t)− γI(t); (4.32)

dR(t)
dt

=
1
τ

I(t)− γR(t). (4.33)

Finally, note that the probability distribution F(t) = 1− φ(t) is a Mittag-Leffler distribution

F(t;α,τ) = 1−Eα

(
−
(

t
τ

)α)
. If α = β = 1, we have an exponential distribution and the

expectation (first moment) of the random variable X exists, with τ being exactly the average
recovery time.

4.1.1 The Reproduction Number

The effective reproduction number ℜ(t ′) at time t ′ can be understood as the expected number of
individuals that will be infected by an individual infected since t ′. So, we can calculate

ℜ(t ′) =
∫

∞

t ′
σ(t, t ′)

S(t)
N

Φ(t, t ′)dt =
∫

∞

t ′
ω(t)ρ(t− t ′)φ(t− t ′)θ(t, t ′)

S(t)
N

dt. (4.34)

If we consider that during the infeccious period of the individual we have
S(t)
N
≈ S(t ′)

N
, we obtain

from Eq. 4.25

ℜ(t ′) =
S(t ′)

N

∫
∞

t ′
ω(t)θ(t, t ′)

(t− t ′)β−1

τβ
Eα,β

(
−
(
(t− t ′)

τ

)α)
dt. (4.35)

As an example, we consider γ(t) ≡ γ > 0 and an exponential decay of ω over time: ω(t) =
ω · e−t/a. So,

ω(t)θ(t, t ′) = ω · e−(γ+1/a)(t−t ′)e−t ′/a. (4.36)

Therefore,

ℜ(t ′) =
S(t ′)ω

Nτ
e−t ′/a

∫
∞

t ′
e−(γ+1/a)(t−t ′)

(
(t− t ′)

τ

)β−1

Eα,β

(
−
(
(t− t ′)

τ

)α)
dt. (4.37)

We simplify it by changing t := t − t ′. Verifying that the integral is in the form of a Laplace
Transform, we use Eq. 3.2, finally obtaining

ℜ(t ′) =
S(t ′)ω
Nτβ

e−t ′/a (γ +1/a)α−β

(γ +1/a)α + τ−α
. (4.38)

Particularly, if S0 ≈ N,

ℜ0 =
ω(γ +1/a)α−β

τβ (γ +1/a)α + τβ−α
. (4.39)
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We note that if a→∞, then ω(t)≈ω for every t and the expression of ℜ0 becomes the expression
given by [5] for the case ω(t)≡ ω constant,

ℜ0 =
ωγα−β

τβ γα + τβ−α
. (4.40)

It is interesting to note that, in fractional order simulations with different orders or variable ω ,
the peak of infectious may no longer occurs when ℜ(t ′) = 1. Moreover, it is very important to

states that the approximation
S(t)
N
≈ S(t ′)

N
is really crude and should be explored in our future

works.

5 APPLICATIONS TO THE COVID-19 PANDEMIC

We constructed a slightly modification of the L1-scheme [24] to discretize the fractional SIR
model 4.28-4.30. Then, according to available data from the COVID-19 pandemic on Brazil and
Italy, we apply through MATLAB the Least Squares Method using the FDIPA [18] algorithm in
order to minimize the function f (ω,τ) = ||AI− I||2 + ||AR−R||2, where AI is a vector formed
by the data of the infected being monitored and, AR, by the data of those removed (recovered +
deaths).

5.1 Discretization of the fractional order derivative

The fractional order 1−α is assumed in the range [0,1). The time interval [0, t] is discretized
as 0 = t0 < t1 < · · · < tn = t, where the time steps ∆T have the same size. Since we wanted to
compare the model to the daily data, we choose each time step with size ∆T = 1. In particular,
ti = i∆T = i (unit [time]) for all i ∈ {0,1, · · · ,n}, so we performed the following discretization
for the Riemann-Liouville derivative, with unit [time]1−α

D1−α f (t j) =
1

Γ(α +1)

(
d

dt j

)∫ t j

0
(t j−θ)α−1 f (θ)dθ

' 1
Γ(α +1)

[ j−1

∑
k=0

f (k)[( j− k+1)α −2( j− k)α +( j− k−1)α ]+ f ( j)
]

=
1

Γ(α +1)

[ j−1

∑
k=0

[ f (k+1)− f (k)][( j− k)α − ( j− k−1)α ]+ f (0)[( j+1)α − jα ]

]
.

(5.1)

5.2 Parameters

In the 4.28 - 4.30 system, the parameter ω(t) is related to contagion, being strongly affected by
government measures, such as quarantine, as well as hygiene and readaptation measures in times
of pandemic, both social and physical. Thus, we consider three situations in the simulations: 1)
Constant value ω(t)≡ω , as considered in most models; 2) Exponential decay in value over time:
ω(t) = ω · e−t/a; 3) Exponential decay with oscillations, representing relaxation and periodic
hardening of the containment measures: ω(t) = ω · e−t/a · cos2(tπ/b).

Trends Comput. Appl. Math., 22, N. 2 (2021)



i
i

“A1-1494-8322” — 2021/5/11 — 17:43 — page 172 — #16 i
i

i
i

i
i

172 FRACTIONAL DERIVATIVES APPLIED TO EPIDEMIOLOGY

The Brazilian population is given by N = 210147125 inhabitants and the initial stage by
(S, I,R) = (N− 1,1,0). As said, applying the Least Squares Method through the FDIPA algo-
rithm we seek to minimize the function f (ω,τ) = ||AI− I||2 + ||AR−R||2. It is noted that the
absence of data about recovered in the first two months of the Brasilian pandemic prejudices the
model.

5.3 Results

Initially we fixed α = β = 1 and ω(t) ≡ ω , considering a classic SIR model with constant
parameters. The results are obtained in Fig. 3 (comparison between model and real data) and
Fig. 4 (projection of the peak of infection). The data was updated until 07/25/2020 and the ℜ

showed is the effective reproduction number on this date with the approximations 4.37-4.38.
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Figure 3: Model X Real data.
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Figure 4: Projection of the peak.

We observed that, even though ℜ0 is small, the I and R curves do not tend to equilibrium as fast
as the real curves. We believe that this is due to the fact that we disregard the laws of infection
and recovery and, above all, because we take constant ω .

Next, in Fig.5-10, we consider ω with exponential decay, a = 70 and different orders α,β . We
emphasize that, as α decreases, the right tail of the I compartment becomes heavier. In Fig.11
and Fig.12, we take an oscilating exponential decay for ω , with a = 140,b = 110 and orders
α = 0.8,β = 0.9. In this test we approximate the ℜ0 as in the last case, but we do not calculate
the ℜ.

Finally, we used the orders α = 0.9,β = 0.95 to carry out a test in relation to the Italian pandemic,
which has the important characteristic of having its curve of infected individuals declining since
the last week of April. The results of the comparisons between the models and the actual data [23]
are shown in Fig. 13 and 14. For Italy, we use a = 40 and γ = 2.92 ·10−5 [35]. The available data
has visible outliers.
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Figure 5: Model X Real data.
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Figure 6: Projection of the peak.
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Figure 7: Model X Real data.

0 100 200 300 400

t in days -26-Feb-2020 to 20-Feb-2021

0

0.5

1

1.5

2

2.5

3

I(
t)

 , 
R

(t
)(

--
)

#10 6

COVID-19. Brazil. I.C.: S0=210147124; I0=1; R0=0
 Parameters: !=7.88 ; ==26.6617 ; .=6.08e-05

<
0

=5.5451 ; ,=0.9 ; -=0.9

Highest Peak of Infection

764441 ,

20-Jul-2020

0.36%.

Figure 8: Projection of the peak.
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Figure 9: Model X Real data.
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Figure 10: Projection of the peak.
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Figure 12: Projection of the peak.
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Figure 13: Model X Real data.
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Figure 14: Projection.

6 DISCUSSION AND CONCLUSIONS

We investigated the use of fractional derivatives, both analytically and through simulations. We
present models and perform investigations about them, discussing difficulties and differences
between classic and fractional models. Also, we analyzed the COVID-19 pandemic using a frac-
tional epidemiological SIR model carefully built and performed a numerical solution using dis-
cretization and implementation in MATLAB. We observed that, among others effects, the use of
fractional orders allows us accentuate the asymmetry of the curve (slow decline). This effect is
being observed in the real data of many countries [29].

We reiterate that the work is not in disagreement with any research cited. On the contrary, we
respect the models obtained by the literature review, believing that they contribute with equations
of great interest to Mathematics. Also, it is possible that some authors write their equations as
mentioned in section 3.2 for reasons that we do not perceive or that are in literature that we do
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not access. Our goal is only to present questions and calculations that we believe to be of both
pure and applied interest, as the definition of parameters and the units and population balances.

We emphasize that the choice of the Riemann-Liouville fractional derivative was due to the
application that arose during the construction of the model, with attention to Eq.4.23. In the
future we want to extend the mathematical discussion on the parameters effects (including the
cases when α is close to 0, what corresponds to too heavy right tail on I compartment), more
accurate discretizations and also on the use of different types of fractional operators. Moreover,
we intend to discuss equilibrium points and better calculations for the reproduction number. A
better understanding in this area can be useful not only for epidemiology, but also for the other
applied areas in which fractional derivatives are used, such as thermoelasticity and diffusion.
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