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ABSTRACT. We propose a compartmental SIRD model with time-dependent parameters that can be used
to give epidemiological interpretations to the phenomenological parameters of the Richards growth model.
We illustrate the use of the map between these two models by fitting the fatality curves of the COVID-19
epidemic data in Italy, Germany, Sweden, Netherlands, Cuba, and Japan, up to July 30, 2020.
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1 BACKGROUND

The pandemic of the novel coronavirus disease (COVID-19) has created a major worldwide
sanitary crisis [21, 22]. Developing a proper understanding of the dynamics of the COVID-19
epidemic curves is an ongoing challenge. In modeling epidemics, in general, compartmental
models [11] have been to some extent the tool of choice. However, in the particular case of
the COVID-19 epidemic, standard compartmental models, such as SIR, SEIR, and SIRD (with
time-independent parameters), have so far failed to produce a good description of the empirical
data, despite a great amount of intensive work [1, 2, 3, 7, 14, 16, 24, 25]. In this context, phe-
nomenological growth models have met with some success, particularly in the description of
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cumulative death curves [8, 17, 23]. The recent discovery, within the context of a generalized
growth model known as the beta logistic model [18], of a slow, power-law approach towards the
plateau in the final stage of the epidemic curves is another remarkable example of this qualitative
success. Growth models, however, have the drawback that their parameters may not be easily in-
terpreted in terms of standard epidemiological concepts [20], as can the parameters of the usual
compartmental models.

As a concrete example, consider the transmission rate parameter β of the SIR model [11]. It
can be easily interpreted as the probability that a contact between a susceptible individual and
an infective one leads to a transmission of the pathogen, times the number of contacts per day.
Although the value of β cannot be measured directly in a model-independent way, and it is
probably not even constant in the COVID-19 epidemic curves, the epidemiological meaning of
the parameter is nonetheless easy to grasp conceptually. As a result, models that incorporate
such parameters in their basic equations are sometimes regarded as “more epidemiological,” so
to speak, than others that do not use similar parameters. This state of affairs creates a some-
what paradoxical scenario, in which we have, on the one hand, the striking empirical success of
phenomenological growth models sometimes being downplayed, owing to the lack of a simple
epidemiological picture of the underlying mechanism [20], and, on the other hand, the failure
of traditional epidemiological compartmental models (say, with a few number of compartments
and constant parameters) to produce good quantitative agreement with the empirical COVID-19
data. A glaring instance of the inadequacy of standard compartmental models for the COVID-
19 epidemic is their inability to predict the power-law behavior often seen in the early-growth
regime as well as in the saturation phase of the accumulated death curves—a feature that is well
captured by growth models [18], as already mentioned.

It is clear that a kind of compromise is highly desirable, in which we get the benefits of the accu-
racy of the growth models in describing the epidemic, along with a reasonable epidemiological
interpretation of their free parameters. An attempt in this direction was presented by Wang [20],
where an approximate map between the Richards growth model [20] and the accumulated num-
ber of cases of a SIR model was proposed. The two free parameters of the Richards model were
expressed as a function of the epidemiological based parameters of the SIR model. Here we
improve on this analysis in two ways: (i) we extend the SIR model to a SIRD model by incorpo-
rating the deceased compartment, which is then used as the basis for the map onto the Richards
model; (ii) the parameters of the SIRD model are allowed to have a time dependence, which is
crucial to gain some efficacy in describing realistic cumulative epidemic curves of COVID-19.

2 DATA

It is in general very hard to estimate the actual number of infected people within a given popula-
tion, simply because a large proportion of infections go undetected. This happens largely because
many carriers of the coronavirus are either asymptomatic or develop only mild symptoms, which
in turn makes the number of confirmed cases for COVID-19 a poor proxy for the actual number
of infections. This issue is well known in the literature and referred to as the “under-reporting

Trends Comput. Appl. Math., 22, N. 4 (2021)
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problem” [6,19]. With this in mind, and in the absence of more reliable estimates for the number
of infected cases, we shall here focus our analysis on the fatality curves, defined as the cumulative
number of deaths as a function of time.

In the present study we considered the mortality data of COVID-19 from the following coun-
tries: Italy, Germany, Sweden, Netherlands, Cuba, and Japan. The data used here were obtained
from the database made publicly available by the Johns Hopkins University [10], which lists in
automated fashion the number of the confirmed cases and deaths attributed to COVID-19 per
country. We have used data up to July 30, 2020.

3 METHODS

3.1 The Richards Growth Model

The time evolution of the number of cases/deaths in an epidemy can be modelled by means of
the Richards model (RM), defined by the following ordinary differential equation [9, 15]:

dC
dt

= rC(t)
[

1−
(

C(t)
K

)α]
, (3.1)

where C(t) is the cumulative number of cases/deaths at time t, r is the growth rate at the early
stage, K is the final epidemic size, and the parameter α measures the asymmetry with respect to
the s-shaped curve of the standard logistic model, which is recovered for α = 1. In the present
paper we shall apply the RM to the fatality curves of COVID-19, so that C(t) will always rep-
resent the cumulative numbers of deaths at time t, where t will be counted in days from the first
death.

Equation (3.1) must be supplemented with a boundary condition, which can be either the initial
time, t = 0, or the inflection point, t = tc, defined by the condition C̈(tc) = 0, where dot denotes
time derivative. A direct integration of (3.1) yields the following explicit formula:

C(t) =
K

{1+α exp [−αr(t− tc)]}1/α
, (3.2)

which will be the basis of our analysis.

Trends Comput. Appl. Math., 22, N. 4 (2021)
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3.2 SIRD model with constant parameters

We start by recalling the standard Susceptible (S)-Infected (I)-Recovered (R)-Deceased (D)
epidemiological model

dS(t)
dt

=−βS(t)I(t)
N

(3.3)

dI(t)
dt

=
βS(t)I(t)

N
− (γ1 + γ2)I(t) (3.4)

dR(t)
dt

= γ1I(t) (3.5)

dD(t)
dt

= γ2I(t), (3.6)

where S(t), I(t), R(t), and D(t) are the number of individuals at time t in the classes of suscepti-
ble, infected, recovered, and deceased respectively; while N is the total number of individuals in
the population. i.e., N = S(t)+ I(t)+R(t)+D(t). The initial values are chosen to be S(0) = s0,
I(0) = i0, with s0+ i0 = N, and R(0) = 0 = D(0). The parameters γ1 and γ2 are the rates at which
infected individual becomes recovered or deceased, respectively.

We then consider the following modified SIRD model, where in (3.3) and (3.4) we follow Ref.
[20] and replace N with only the partial population in the S and I compartments, which takes
into account the fact that the recovered (assuming they become immune) and the deceased will
restrict their social activities and thus they cannot contribute to the transmission. We thus find

dS
dt

=− βS(t)I(t)
I(t)+S(t)

(3.7)

dI
dt

=
βS(t)I(t)
I(t)+S(t)

− (γ1 + γ2)I(t) (3.8)

dR
dt

= γ1I(t) (3.9)

dD
dt

= γ2I(t). (3.10)

A fundamental quantity in epidemiology is the basic reproductive ratio, R0, which is defined as
the expected number of secondary infections caused by an infected individual during the period
this individual remains infectious within a population consisting solely of susceptible individuals.
In this model, R0 can be calculated using the next generation method [4, 5] and is given by

R0 =
β

γ1 + γ2
(3.11)

Next, we define y(t) = S(t)+ I(t) and divide (3.8) by (3.7) to obtain

dy
y

=
1

R0

dS
S
. (3.12)

Integrating both sides of (3.12), and inserting the result into (3.7), yields a growth equation of
the Richards type:

dS
dt

=−βS(t)
[

1−
(

S(t)
L

)α]
, (3.13)

Trends Comput. Appl. Math., 22, N. 4 (2021)
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where α = 1−1/R0 and L = (i0 + s0)
1/α s1−1/α

0 .

We now seek to approximate the curve of accumulated death D(t), obtained from the modified
SIRD model, with the Richards function C(t), as defined in (3.2). To this end, we first impose the
boundary conditions K = D(∞) and tc = ti, where ti is the inflection point of D(t). By definition
D̈(ti) = 0, which implies from (3.10) that İ(ti) = 0. Using the condition İ(ti) = 0 in the modified
SIRD equations (3.7)-(3.10), we find

S(ti) = LR−1/α

0 , (3.14)

I(ti) = (R0−1)S(ti). (3.15)

From the solution of (3.13) we may calculate an explicit expression for ti (see Appendix for
details). Furthermore, we require that at t = ti both C(t) and its derivative Ċ(t) respectively match
D(t) and Ḋ(t), thus

C(tc) = D(ti), (3.16)

Ċ(tc) = Ḋ(ti). (3.17)

Using equations (3.16) and (3.17), we finally obtain the connection between the parameters (r,α)

of the RM and the parameters (β ,γ1,γ2) of the modified SIRD model

rα

1+α
= γ2

I(ti)
D(ti)

(3.18)

1
(1+α)1/α

=
D(ti)
D(∞)

, (3.19)

which are the central equations of this paper.

We can estimate the precision of the above ‘map’ between the RM and the modified SIRD model
via the relative error function:

η(t) =
|C(t)−D(t)|

D(t)
. (3.20)

We have verified numerically that
sup

α,r∈[0,1]
[η(t)]≤ ε, (3.21)

where ε is typically of order 0.1. A typical example of the agreement between the modified
SIRD model, for a given set of parameters (β ,γ1,γ2), and the RM with the parameters obtained
from the map described by (3.18) and (3.19), is illustrated in Figure 1. In Figure 2 we show
the simple monotonic dependence of the Richards parameters (r,α) on the parameter β of the
modified SIRD model, for the biologically relevant interval 0 ≤ r,α ≤ 1. The values of α and r
shown in Figure 2 were obtained by numerically solving the map equations (3.18) and (3.19), as
a function of β for fixed values of γ1 and γ2. We also show, for comparison, the behavior of the
basic reproduction number R0, obtained from equation (3.11).

The unsuitability of the SIRD model with constant parameters to describe the COVID-19 fatal-
ity curves is exemplified in Figure 3, where we show the numerical fit to the mortality data of

Trends Comput. Appl. Math., 22, N. 4 (2021)
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Figure 1: Illustrative picture (left panel) of the map between the Richards model and the modified
SIRD model with constant parameters. The relative error function between the two models is
shown in the right panel.

Figure 2: Behavior of the Richards parameters (r,α) and the basic reproduction number R0 as a
function of the parameter β of the modified SIRD model. The values of α and r were obtained
by numerically solving the map equations, (3.18) and (3.19), as a function of β for fixed values
of γ1 and γ2. The basic reproduction number R0, was calculated from equation (3.11).

Trends Comput. Appl. Math., 22, N. 4 (2021)
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Sweden (up to July, 30, 2020) as provided by the standard SIRD model given in (3.3)-(3.6). Note
that the SIRD model (black curve) not only rises very fast after a certain characteristic time, but
it also exhibits an exponentially rapid saturation towards the plateau; contrarily to the empirical
data that tend to display both a slow (polynomial) rise and a slow (power-law) approach to the
plateau [18]—a behavior that SIRD models with constant parameters cannot replicate. The main
epidemiological reason behind the shortcomings of the SIRD model is that non-pharmacological
interventions, such as lockdown protocols and other control measures, can alter the epidemio-
logical parameters of a given population group, thus making them variable in time. In the next
section we will introduce a SIRD model with time-dependent parameters that seeks to address
this limitation.

Figure 3: Cumulative number of deaths (red circles) attributed to COVID-19, up to July 30,
2020, for Sweden. The solid black curve is the best fit by the standard SIRD model with constant
parameters. The parameter estimates for the fit are given in the inset.

3.3 Modified SIRD model with time-dependent parameters

The standard SIRD model, and its modified version, with constant parameters proved to be in-
sufficient to accommodate properly the human intervention biased dynamics of the COVID-19
epidemics. The main reason for this, as anticipated above, is that non-pharmacological interven-
tions can decrease the number of contacts per person per unit time during the epidemic, which in
turn decreases the value of the parameter beta as a function of time. The simplest way to accom-
modate such an effect is to allow the epidemiological parameter β to change in time according
to the following differential equation [2]:

dβ

dt
=

1
τ1

[β0β1−β (t)] , t ≥ τ0, (3.22)

Trends Comput. Appl. Math., 22, N. 4 (2021)
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where τ0 is the starting time of the intervention and τ1 is the average duration of interventions.
Furthermore, β0 is the initial transmission rate of the pathogen and the product β0β1 represents
the transmission rate at the end of the epidemic. The solution of equation (3.22), with initial
condition β (τ0) = β0, is given by

β (t) =


β0, t < τ0

β0

(
β1 +(1−β1)e

− (t−τ0)
τ1

)
, t ≥ τ0,

(3.23)

Remarkably, the central map equations, (3.18) and (3.19), are still valid, although ti is no longer
given by (.4) and should be determined from the maximum of the curve I(t) obtained from
the numerical solution of the modified SIRD equations, with the parameter β replaced by the
function β (t).

4 APPLICATIONS AND DISCUSSION

In Figure 4 we demonstrate some applications of the modified SIRD-RM map by showing the
cumulative number of deaths (red circles) attributed to COVID-19 for the following countries:
Italy, Germany, Netherlands, Sweden, Japan, and Cuba, up to July 30, 2020. In all shown fig-
ures, the continuous (black) curve is the numerical fit to the empirical data, as produced by the
modified SIRD model with the time-dependent parameter β (t) given in (3.23), and the dashed
(bright green) curve is the corresponding theoretical curve predicted by the RM, with the pa-
rameters as obtained from the map (3.18) and (3.19). The statistical fits were performed using
the Levenberg-Marquardt algorithm [12], as implemented by the lmfit Python package [13], to
solve the corresponding non-linear least square optimization problem. In other words, the lmfit
package was applied to each empirical dataset to determine the parameters (β0,β1,γ1,γ2,τ0,τ1)

of the modified SIRD model described in Secs. 3.2 and 3.3.

One can see from Figure 4 that the agreement between the RM and the modified SIRD model
is very good in all cases considered, which satisfactorily validates the map between these two
models. This result thus shows, quite convincingly, that the parameters of the Richards model do
bear a direct relationship to epidemiological parameters, as represented, say, in compartmental
models of the SIRD type. Although the interpretation of the Richards parameters (r,α) are less
obvious, in that they involve a nonlinear relation with the probability rates used in compartmental
models, these parameters should nonetheless be regarded as bonafide epidemiological parame-
ters. Furthermore, it is important to emphasize the flexibility of the RM: this model, which has
only two time-independent parameters, is equivalent (in the sense of the map discussed above)
to a modified SIRD model with time dependent parameters. In other words, the two constant
parameters of the RM are sufficient to characterize, to a rather good extent, the entire evolution
of the COVID-19 epidemic in a given location.

For a given empirical curve to be fitted, the errors for the parameters of the Richards model
obtained from the map (3.18) and (3.19) are computed via a sort of bootstrap method, as follows.
We first consider the extreme values of the parameters (β0,β1,γ1,γ2,τ0,τ1), as obtained from the

Trends Comput. Appl. Math., 22, N. 4 (2021)
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Cumulative number of deaths (red circles) attributed to COVID-19, up to July 30,
2020, for (a) Netherlands, (b) Italy, (c) Germany, (d) Cuba, (e) Sweden, and (f) Japan. The solid
black curves are the best fits by the modified SIRD model with a time-dependent β (t), where
the parameter estimates are given in the inset. The bright green dashes curve is the theoretical
curve obtained from the Richards model, with the parameters computed from the numerically
determined parameters of the modified SIRD model via the map (3.18) and (3.19).

Trends Comput. Appl. Math., 22, N. 4 (2021)
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fit by the modified SIRD model. That is, we consider the values χ ± δ χ , where χ represents
the estimated value for a given parameter from the SIRD fit and δ χ denotes its error. We then
integrate the ODEs of the modified SIRD model for each combination (there are 64 of them)
of these extreme values and apply the map (3.18) and (3.19) to determine the corresponding
parameters (r,α) of the Richards model. These parameters are kept (for the error statistics) if
they fall within the acceptable range of the model, namely 0 < r,α ≤ 1 [17]. The errors for
the parameters r and α quoted in Figure 4 were then obtained as the average of the absolute
differences of the values for each ‘bootstrap run’ and the reference values obtained in the original
map.

It is worth pointing out that the discovery of power-law behaviors in the early-growth regime as
well as in the saturation phase of the accumulated death curves, both of which are well described
by the beta logistic model (BLM) [18], brings about the challenge to accommodate power laws
into a compartmental model. A preliminary analysis [18] shows that substantial modifications in
the SIRD equations may be required to achieve power law-behavior in the short-time and long-
time regimes of the epidemic curves. The possibility of a map between the BLM and a modified
SIRD model with time-dependent parameters is currently under investigation.

5 CONCLUSION

The present paper provides a map between a modified SIRD model with time dependent parame-
ters and the Richards growth model. We illustrated the use of this map by fitting the fatality curves
of the COVID-19 epidemics data for Italy, Germany, Sweden, Netherlands, Cuba and Japan. The
results presented here are relevant in that they showcase the fact that phenomenological growth
models, such as the Richards model, are valid epidemiological models not only because they can
successfully describe the empirical data but also because they capture, in an effective way, the
underlying dynamics of an infectious disease. In this sense, the free parameters of growth models
acquire a biological meaning to the extent that they can be put in correspondence (albeit not a
simple one) with parameters of compartmental model, which have a more direct epidemiological
interpretation.
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APPENDIX

Equation (3.13) has the following solution

S(t) = L(1+αeb(t−t j))−1/α , (.1)

where b = β (R0−1)/R0 and t j is determined from the initial condition S(0) = s0 to be given by

t j =
1
b

ln
(
(R0−1)s0

i0 + s0

)
. (.2)

From (3.13) and (3.14) we obtain

S(ti) = L(1+αeb(ti−t j))−1/α = LR−1/α

0 , (.3)

which can be solved for ti yielding

ti =
1
b

ln
(
(R0−1)s0

i0

)
. (.4)
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