
i
i

“A7-1511-8326” — 2021/5/11 — 17:55 — page 279 — #1 i
i

i
i

i
i

in Computational and 
Applied Mathematics

Trends Trends in Computational and Applied Mathematics, 22, N. 2 (2021), 279-289
Sociedade Brasileira de Matemática Aplicada e Computacional
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ABSTRACT. We analyze a seasonal SIR model that assumes a periodic treatment rate. Using the Leray-
Schauder degree theory, we prove that model shows periodic solutions. This result shows that sustained
oscillations in the incidence of the disease are related to the periodic application of a treatment against the
disease. So, we can say that the periodic application of treatment can be considered a seasonal driver of the
sustained oscillations.

Keywords: seasonal treatment rate, periodic orbit, Leray-Schauder degree, SIRS models, reproduction
number.

Infectious diseases have been analyzed since the Hippocratic era. In the Corpus Hippocraticum
there can be found clinical descriptions of some infectious diseases. These descriptions show the
relationship between the diseases and the environment, the climate, and the society. In particu-
lar, Hippocrates found a connection between the disease and the day of year when the disease
appears. The first influenza epidemic of the human history was studied by Hippocrates. This dis-
ease was a winter epidemic whose infectious individuals suffered of an upper respiratory tract
infection [14].

As it was pointed out above, the infectious diseases can be related to environmental or social
drivers. In particular, seasonality can be considered either an environmental factor or a social
factor for the spreading of infectious diseases. Seasonality is closely linked to seasonal infec-
tious diseases; however, identifying the principal causes that produce seasonal diseases is so
hard because the mechanisms producing it are little known. [1] and [5] analyze some seasonal
drivers that generate a peak in the number of infectious individuals for different diseases. They
found the following. Cases of vector-borne diseases as malaria and dengue have an incidence
increase due to rainfall and temperature; diarrhea diseases as cholera and rotavirus infections
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280 A SIR MODEL WITH A SEASONAL TREATMENT

have a peak in the incidence because of temperature and aggregation of children; measles in-
creases in fall or spring because the epidemiological mechanism is host aggregation during
school terms; polio, rotavirus and influenza are associated to the latitude, respiratory-aerosol
and contact-borne pathogens. In summary, seasonality can be related to environmental changes,
host-behavior changes, seasonal change in host immune competence, and disappearance and
appearance of a particular pathogen; see [1, 9].

From a mathematical epidemiological perspective, periodic patterns in abiotic factors have been
modelled assuming a periodic forcing function to describe the infection rate; see [6], [1], [7]
and [15], [11]. In this scenario, sustained oscillation in the number of infectious individuals may
occur due to a resonance phenomenon between the damped oscillations typical for SIRS models
and the oscillation in the infectious rate; see [6]. For example, [6] shows that if both features share
a period of one year, then the amplitude of the epidemic bouts tends to increase dramatically.

On the other hand, social drivers have been modeled to describe the dynamics of seasonal dis-
eases. For example, [1] showed that seasonal forcing in host social behavior can generate sus-
tained oscillations in the infected population, and ( [5], [13]) studied how yearly rhythms in host
have an effect in the immune function.

In this direction, seasonal patterns are observed in the application of some public health strate-
gies. For example, annual vaccination of susceptible individuals to protect them against the In-
fluenza; see [10], [3]. In general, public health campaigns target susceptible individuals and the
seasonal drivers are associated to the infection rate, but it is little known about how the application
of a seasonal treatment to the infectious individuals affects the population dynamics.

With that in mind, in section 2 we propose a simple epidemiological model with a periodic
recovery rate. In section 3, we calculate R0 and we prove existence of periodic orbits. In section
4, numerical simulations of the solutions of the model are shown. Finally, in section 5, the results
are discussed.

1 THE MODEL

We consider a population N(t) that is divided into three classes: susceptible, infectious and re-
covered individuals, which are denoted by S(t), I(t) and R(t) respectively. The interactions of
susceptible individuals with infectious ones are modeled using the mass action law. The infec-
tion rate of the disease, β , is assumed a positive constant, so βSI describes the number of new
infectious individuals. The natural birth/death, µ , is assumed to be a positive constant. Finally,
we propose a seasonal treatment rate, γ(t); so γ(t)I is the number of infectious individuals that
are treated and recovered at time t.

Trends Comput. Appl. Math., 22, N. 2 (2021)
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Then, the proposed model is

Ṡ = µ(1−S)−βSI, (1.1)

İ = βSI− γ(t)I−µI,

Ṙ = γ(t)I−µR.

Notice that, N(t) is variable, with Ṅ = µ− µN. Then, in absence of the disease, the population
goes to 1, which is the populational carrying capacity.

By using Ṅ, we can prove that the solutions of (1.1) with initial condition in the positive orthant
R3
+ either approach, enter, or remain in the subset of R3 defined by

Σ3 := {(S, I,R) | S(t)≥ 0, I(t)≥ 0,R(t)≥ 0,S(t)+ I(t)+R(t)≤ 1}.

Therefore, we analyze the solutions of the model (1.1) in the invariant subset Σ3.

Because the third equation of the model is independent of the first two equations in system (1.1),
it can be neglected. So, we analyze the reduced model that is shown below.

Ṡ = µ(1−S)−βSI, (1.2)

İ = βSI− γ(t)I−µI.

Notice that, system (1.2) has two equilibrium points if γ(t) ≡ γ̄ is considered constant. In this
scenario, the disease-free equilibrium is given by E0 = (1,0), and the endemic equilibrium is
given by E∗ =

(
γ̄+µ

β
,µ
(

1
γ̄+µ
− 1

β

))
. By using the next generation matrix; see [4], we calculate

the basic reproduction number that is given by R0 =
β

µ+γ̄
.

2 R̄0 AND PERIODIC ORBITS FOR THE MODEL

Knowing the evolution of an infectious disease can be possible when some epidemiological pa-
rameters are calculated. The most famous epidemiological parameter is the basic reproduction
number, which is denoted by R0. In autonomous mathematical epidemiology models, the ba-
sic reproduction number is defined as ”the number of secondary infections that results from the
introduction of a single infectious individual into an entirely susceptible population during its in-
fectious period” (see [2]). By definition, if R0 is less than 1, the number of infectious individuals
will decrease; in contrast, if R0 is greater than 1, there is an epidemic outbreak.

However, if infectious diseases are modeled with seasonal infectious rates, secondary infections
must be considered by calculating R0. These new infections depend on the time of the year when
the infectious individual is introduced into the entirely susceptible population, and an averag-
ing of all of them is required for calculating R0. In this case, the basic reproduction number is
calculated using

R̄0 = D
1∫

0

β (t)dt. (2.1)

Trends Comput. Appl. Math., 22, N. 2 (2021)
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In expression (2.1), D measures the average time of the infection period. So, R̄0 may be inter-
preted as ”the average number of secondary infections that results from the introduction of a
single infectious individual into a completely susceptible population at a random time of the
year”. In this case, the condition R̄0 < 1 is not enough to stop to an epidemic outbreak, yet it is
sufficient and necessary for long-term disease extinction. Notice that, the control policy of bring-
ing R̄0 below 1 fails to control the epidemic outbreak because transmission series can be created
during the season of high incidence if Dβ (t)> 1.

By proceeding in an analogous way as the one shown above, if β is considered constant and γ(t)
is assumed a periodic solution, we propose that the basic reproduction number to be

R̄0 = D(t)
1∫

0

βdt. (2.2)

In this case, it is required an averaging over all the possible times of the year that an infectious
individual is recovered.

For model (1.1), the basic reproduction number is

R0 =
β

γ̄ +µ
, (2.3)

with

γ̄ =
1
T

T∫
0

γ(t)dt. (2.4)

The periodic rate γ(t) can be decomposed as

γ(t) = γ̄ + γ0(t) where
T∫

0

γ0(t)dt = 0. (2.5)

We define the following homotopy.

Ṡ = µ(1−S)−βSI, (2.6)

İ = βSI− γλ (t)I−µI,

for λ ∈ [0,1] and γλ (t) := γ̄ +λγ0(t).

System (2.6) is an homotopy between a nonseasonal system that is given by model (2.6) with
γ0(t) = γ̄ and the system (1.2), which corresponds to taking λ = 1 in the model (2.6). Observe
that, for λ = 0, system (2.6) has the two equilibria points E0 and E∗ that were mentioned above.

We prove existence of one nontrivial periodic solution using the Leray-Schauder degree theory;
see [11]. For this, E∗ is going to continue as a function of λ until the existence of a periodic
solution for λ = 1 is proved.

Trends Comput. Appl. Math., 22, N. 2 (2021)
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Suitable modifications to describe system (1.1) will be established. To do so, the problem is
formulated in a functional setting in the following way.

For l = 0,1, the Banach spaces

C l = {(S, I) | S, I ∈Cl(ℜ,ℜ),S(t +T ) = S(t), I(t +T ) = I(t)} (2.7)

are considered.

Let L : C 1→ C 0 and Nλ : C 0→ C 0 be the operators given by

L(S, I) = (Ṡ+µS, İ +µI,) (2.8)

and
Nλ (S, I) = (µ−βSI,βSI− γλ (t)I). (2.9)

Since L is invertible, the operator

Fλ (S, I) = (S, I)−L−1 ◦Nλ (S, I) (2.10)

is defined.

Because C 1 is complety embedded in C 0 and L−1 : C 0→ C 1, the operator, L−1 ◦Nλ : C 0→ C 0

is a compact operator. In an analogous way, Fλ : C 0→C 0 can be considered. Therefore, periodic
solutions of the system (2.6) correspond to zeros of Fλ .

Now, consider the open sets

D := {(S, I) ∈ C 0 | S(t)> 0, I(t)> 0,S(t)+ I(t)< 1}

and

G := {(S, I) ∈ D |minS(t)[0,T ] < r},

for a fixed 0 < r < 1.

Recall that, the existence of a solution of F1 in G via Leray-Schauder degree theory is guaranteed
if deg(F0,G) 6= 0, and Fλ is an admissible homotopy. That is, 0 6= Fλ (∂G), for all λ ∈ [0,1].

In the next result, we prove that Fλ is an admissible homotopy.

Lemma 1. If R0 > 1 and r is such that 1
R0

< r < 1, then for any λ ∈ [0,1] there are no solutions
(S, I) of the system (2.6) on ∂G.

Proof. Notice that (S0, I0) is the unique solution of the system (2.6) on ∂G for any λ ∈ [0,1]. If
(S, I) ∈ ∂G, then (S, I) /∈ ∂D so (S, I) ∈ D and

S(t)≥ r,∀t. (2.11)

Trends Comput. Appl. Math., 22, N. 2 (2021)
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Integrating the second equation in (2.6) on the interval [0,T ], the expression

T∫
0

İ
I

dt = (βS−µ)T −
T∫

0

γλ dt (2.12)

is obtained. Notice that,
T∫
0

İ
I dt = 0 because I(t) is T−periodic. By using (2.11) and (2.12), the

inequality

1
T

T∫
0

γλ dt ≥ βS−µ

is achieved.

By using the assumptions of the Lemma (1), the expression

µ + γ̄ ≥ β r > β
1

R0
= µ + γ̄,

is obtained, which is a contradiction.

Therefore, Lemma (1) is proved. �

Now the degree of F0 on the open set G will be determined.

Proposition 2. Let G be an open set as the one defined above. Then deg(F0,G) 6= 0.

Proof. Observe that, if R0 > 1, then (S∗, I∗) is the unique periodic solution of F0(S, I) = 0 on G.

To prove that deg(F0,G) 6= 0, it suffices to show that the Fréchet derivative DF0(S∗, I∗) is invert-
ible. For this, it will be proved that the kernel of DF0(S∗, I∗) has uniquely the trivial solution. That
is, ker(DF0(S∗, I∗)) = {0}. This is possible because DF0(S∗, I∗) is Fredholm as F is a compact
perturbation of the identity.

Let (V,W ) ∈ ker(DF0(S∗, I∗)). We will prove that ker(V,W ) = {0}.

For this, the system DF0(S∗, I∗) = 0 must be solved, which is equivalent to solve

L(V,W ) = DN0(S∗, I∗)(V,W ). (2.13)

By using equations (2.8) and (2.9), we obtain the expression

DN0(S∗, I∗)(V,W ) = (−β̄ (S∗W + I∗V ),(β̄ ((S∗− γ̄)W + I∗V )). (2.14)

Therefore, the system (2.13) is explicitly given by(
V
W

)′
=

(
µR0 −(γ̄ +µ)

µ(R0−1) 0

)(
V
W

)
. (2.15)

Trends Comput. Appl. Math., 22, N. 2 (2021)
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The characteristic polynomial of matrix (2.15) is given by

p(x) = x2 +µR0x+µ(γ̄ +µ)(R0−1). (2.16)

Analyzing the polynomial (2.16) is observed that the independent term p(0) > 0 if and only if
R0 > 1. Also, assuming ω ∈ R,

Im(p(ωi)) = µR0ω. (2.17)

Therefore, the matrix associated to the system (2.15) has no imaginary nor zero eigenvalues.
In conclusion, the system has no periodic solutions except (V,W ) = (0,0). Then, the result is
proved. �

So, we can enunciate the principal result.

Theorem 3. Model (1.1) admits a non-trivial periodic solution if R0 > 1.

Proof. Using the invariance of the Leray-Schauder degree under the homotopy, by Lemma 1
and Proposition 1, the result deg(F1,G) 6= 0 is achieved. Therefore, the system (1.1) admits a
non-trivial periodic solution. �

We have shown that the public health strategy given by a seasonal treatment can be considered
as a factor producing sustained oscillations in the infected population still in the case that the
infectious rate is assumed constant.

3 SIMULATIONS AND NUMERICAL ANALYSIS

In this section, numerical simulations of the models solutions are shown. For this, the software
Python 3.7.3 is used. In particular, the effects of the seasonal recovery rate over the solutions of
the model are shown. To do this, we propose the following function.

γ(t) = γ

(
1+ ι cos

(
2πt
T

))
. (3.1)

The values of the parameters used in the numerical simulations do not describe neither epidemi-
ological rates nor demographic ones. They only were chosen such that satisfy that R0 > 1 to
illustrate the results of the analysis of the model.

Figure 1 and 2 show the dynamics of the epidemiological classes if the values of the parameters
of the seasonal treatment rate are changed.

4 DISCUSSION

The epidemiological mathematical literature is vast. From the Hippocratic era, infectious diseases
have been associated to social or environmental drivers. Most epidemiological models describing
seasonal diseases use seasonally-dependent transmission rates to describe them. In particular,
most models assume that seasonality is related to environmental factors, and in a fewer cases,

Trends Comput. Appl. Math., 22, N. 2 (2021)
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Figure 1: Figure shows sustained oscillations in the epidemiological classes. The values of the
parameters of the model are µ = 0.01,β = 9.79×10−2,γ = 0.0654554132, ι = 0.02.

it is related to social drivers. Indeed, the study of periodic recovery rates has been avoided.
Epidemiological models have been used to design public health strategies. The classical strategy
is to bringing R0 below 1 to control de infectious disease. It is important to underline that R0

must capture the seasonality when this characteristic of the disease is modeled. Notice that, if
R0 does not capture the seasonal phenomenon, the control interventions may fail, which can be
catastrophic for the population.

Decision makers take into account to design control interventions whether new infectious cases
are associated with social or environmental drivers. In this sense, as it was previously mentioned,
seasonal behaviors are commonly associated to periodic infection rates. Therefore, the control
interventions are designed using this periodicity.

In this work, we show that sustained oscillations in the incidence of infectious individuals appear
if a seasonal treatment is assumed. In other words, periodic treatments lead to seasonal behavior
in the incidence of the disease that can be an undesirable scenario for the population. We calculate
the basic reproduction number, R0, which can be used to design intervention control. The analysis
of a model with a seasonal treatment rate is in line with the reality because seasonal treatments
are applied for seasonal infectious diseases, for example, the periodic mass administration of
antibiotics for ocular Chlamydia trachomatis, and the use of antiviral therapy in person whom
influenza develops; see [12] and [8].

It is known that a SIR model with a periodic infection rate shows sustained oscillation in the
number of infectious individuals. In this direction, we show a complementary result. So, seasonal
behavior in the incidence of the disease can be related not only to periodic infection rates but also
to periodic recovery rates. Therefore, decision makers can design the public health strategies

Trends Comput. Appl. Math., 22, N. 2 (2021)
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Figure 2: Case (a) shows the behavior of the infectious class if the value of the parameter γ is
changed and the other values of the parameters are the same as the values used in Figure 1. In
this scenario, for the green solution γ = 0.0654554132 while for the blue and yellow solutions
the value of γ is reduced and increased in 10%, respectively. Case (b) shows the behavior of the
infectious class if the value of the parameter ι is changed and the other values of the parameters
are the same as the values used in Figure 1. In this scenario, for the green solution γ = 0.02 while
for the red and cyan solutions the value of ι = 0.1,0.5 is reduced 90% and 50%, respectively.
Case (c) shows the behavior of the infectious class if the length of the period is changed. In this
scenario, for the green solution the period is 365 days, for the yellow solution the period is 90
days, and for the blue solution the period is 183 days. Finally, Case (d) shows the infectious class
if the infectious rate is changed. The green solution is obtained if β = 9.79× 10−2, the yellow
solution is obtained if β is increased in 10% and the blue solution is obtained if β is decreased
in 10%.
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taking into account that seasonal behavior can be associated either with seasonal infection rates
or with seasonal recovery rates.
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