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ABSTRACT. In this work we focus on the numerical solution of a higher order bidirectional nonlinear
model of Boussinesq type involving a nonlocal operator. Based on a von Neumann stability analysis for
the linearized problem, an efficient and stable scheme for the nonlinear system is proposed. Our method
is based on a numerical scheme known from the literature that solves satisfactorily a lower order linear
system. Additionally, approximate periodic travelling wave solutions profiles for the higher order nonlinear
system are presented. Such approximate travelling wave solutions are obtained from a solitary wave family
of solutions for the Intermediate Long Wave (ILW) equation and the regularized Intermediate Long Wave
(rILW) equation.

Keywords: spectral method, dispersive models, stability analysis, travelling waves.

1 INTRODUCTION

Internal ocean waves are gravity waves that appear in stratified fluids. Stratification is a con-
sequence of variations in density due mainly to differences in temperature and salinity. Abrupt
variations in density justify the use of a layered model, the simplest of which is considered here
and consists of a two-layer fluid configuration limited by a rigid lid at the top and a flat bottom.
Each layer contains an inviscid, incompressible, irrotational fluid of constant density. The two
fluids are immiscible and of different densities, the denser one is located below. An internal wave
propagates at the interface between layers and the whole system evolves according to the Euler
equations together with appropriate boundary conditions as detailed in [8, 15]. This simplified
model retains the main features that enable the study of travelling wave solutions which repro-
duce the behaviour of well-identified disturbances that move with effectively constant speed for
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80 NUMERICAL ANALYSIS FOR A HIGHER ORDER INTERNAL WAVE SYSTEM

long periods of time as described in [3,10]. Internal ocean waves are relevant for marine and sub-
marine human activity. For example, the dead water phenomenon experienced by vessels when
they travel through a relative thin layer of fresh water that does not mix with a denser layer below
affects nautical operations, as originally reported by Nansen in [13]. Internal waves are essential
in ocean dynamics because of the amount of mass and energy transported by them, ultimately
producing wave breaking and mixing and the distribution of nutrients among other kind of matter.
For a broad discussion about internal waves, not limited to their presence in oceans, see [17].

Asymptotic analysis of the Euler equations is a successful method for the study of internal ocean
waves. Several internal wave models described in the literature are derived by this process, for
example, the ILW equation in the intermediate regime and the Benjamin-Ono (BO) equation in
the deep water regime [5, 11]. For the case of intermediate depth for the lower layer and shallow
upper layer, a strongly nonlinear model for internal waves was obtained in [15, 16]. It describes
the evolution of the interface η(x, t) between the fluids and the upper layer averaged horizontal
velocity u(x, t), where x and t represent the spatial and temporal variables, respectively. The
coordinate system is set at the undisturbed interface between layers. Subscripts x and t stand for
partial derivatives. In the flat bottom case and in nondimensional variables that system reads:

ηt = [(1−η)u]x ,

ut +uux +
(

1− ρ2
ρ1

)
ηx =

√
β

ρ2
ρ1

Tδ [(1−η)u]xt +

+ β

3(1−η)

(
(1−η)3 (uxt +uuxx−ux ux)

)
x+

+β
ρ2
ρ1

(
η
(
(1−η)u

)
xt +

1
2

(
(1−η)u

)2
x

)
x
+

+β
ρ2
ρ1

Tδ

[
η Tδ

[
(1−η)u

]
x

]
xt +

β

2
ρ2
ρ1

(
Tδ

[(
(1−η)u

)
x

]2)
x
.

(1.1)

The thickness h1 > 0 of the upper layer is much smaller than the characteristic wavelength L > 0
at the interface. The thickness h2 > 0 of the lower layer is comparable with L. The densities of
the upper and lower fluid are denoted by ρ1 and ρ2, respectively. For a stable stratification, let
ρ2 > ρ1 > 0. Figure 1 illustrates this configuration. The nondimensional dispersion parameter
β = (h1/L)2 is small. For numerical purposes we focus on the case where solutions are periodic
functions in space with period 2l. In this case the nonlocal operator Tδ is defined by the symbol
T̂δ [ f ](k) = iiicoth(δk) f̂ (k), k ∈ Z∗, where δ = h2/L and iii denotes the imaginary unit. For more
details about the operator Tδ see [15] or [1].

The second equation in system (1.1) is an approximation of order β 3/2 while the first equation
is exact, this means that it is a direct consequence of the Euler equations and no approximation
from the asymptotic expansion was made [15, 16]. System (1.1) is a generalization of the model
derived in [8] using a higher order asymptotic expansion that includes terms of order β which
are not present in the model considered in [8].

Moreover, we can compare the dispersion relations of these models. In dimensional forms, being
g the gravitational acceleration, the dispersion relation ωh of system (1.1), the dispersion relation

Trends Comput. Appl. Math., 23, N. 1 (2022)
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Figure 1: Two fluids configuration.

ωl of the system proposed in [8] and the full dispersion relation ω f that comes from the Euler
equations are given, respectively, by

ω
2
h =

g(ρ2−ρ1)k2

ρ1
h1
+ 1

3 h1ρ1k2 +ρ2k coth(kh2)
,

ω
2
l =

g(ρ2−ρ1)k2

ρ1
h1
+ρ2k coth(kh2)

,

ω
2
f =

g(ρ2−ρ1)k2

ρ1k coth(kh1)+ρ2k coth(kh2)
.

Noting that ρ1k coth(kh1) = 1+ (h1ρ1)
2

3 +O
(
(h1ρ1)

4
)
, we can see that ωh is a better approxima-

tion to ω f than ωl . That is, system (1.1) approximates better the dispersive effect of the problem
than the system proposed in [8].

Also, we can obtain the conservation of mass law for system (1.1) as follows: integrating the
first equation of (1.1) on x and using that u is periodic on the x-variable, there exists an arbitrary
constant d such that ∫ l

−l
η(x, t)dx = d, (1.2)

which is valid for any value of t in a time interval where the solution is defined. As η comes from
a perturbation of the interface at rest and the coordinate system is set at the undisturbed interface
we must set d = 0.

Considering a weakly nonlinear wave propagation regime, the nonlinearity parameter α , which
is the ratio between the typical absolute wave amplitude value and the thickness h1, is introduced
by scaling η =αη∗, u=αu∗ where it is imposed that α =O(β ). Thus, omitting the asterisks and

Trends Comput. Appl. Math., 23, N. 1 (2022)
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gathering the terms with order O(α
√

β ), O(αβ ) and O(β 3/2), the following weakly nonlinear
system with normalized shallow water velocity is obtained:{

ηt −
[
(1−αη)u

]
x = 0,

ut +αuux−ηx =
√

β
ρ2
ρ1

Tδ [u]xt +
β

3 uxxt +O
(

α
√

β ,αβ ,β 3/2
)
.

(1.3)

Besides, its linearized version around the zero equilibrium is{
ηt = ux,

ut − ρ2
ρ1

√
β Tδ [u]xt − β

3 uxxt = ηx.
(1.4)

A study about the existence and uniqueness of solution for both systems in periodic Sobolev
spaces was presented in [6]. Note that the conservation law (1.2) is also valid for systems (1.3)
and (1.4).

As we see in [6, 15] the phase velocity ω/k = v(k) of system (1.4) is given by

v(k) =

(
1+

ρ2

ρ1

√
β

δ
φ(kδ )+ k2 β

3

)−1/2

,

where φ is defined as

φ(k) =

{
1, k = 0,
k cothk, k 6= 0.

(1.5)

Thus, system (1.4) in the frequency domain can be written as[
η̂t(k)
ût(k)

]
=

[
0 iiik

iiikv2(k) 0

][
η̂(k)
û(k)

]
= A(k)

[
η̂(k)
û(k)

]
, k ∈ Z,

where matrix A(k) has pure imaginary eigenvalues λk = iiikv(k). Therefore, any numerical method
must preserve this property of the spectrum. Because of this, in order to implement the method of
lines, a fourth order finite difference scheme for spatial derivatives and a spectral approach for the
dispersive terms are considered in the semi-discretization. The classical fourth order Runge-Kutta
(RK4) scheme is used for time advancing. This combination proved to be the best since along
the imaginary axis (where the eigenvalues of the spatial discretization operators must lie) the
RK4 method has the largest stability interval if compared with the fifth order, four steps Adams-
Moulton scheme and the fourth order, three steps Adams-Moulton scheme, see for instance [4].

The numerical method presented here for the linear system (1.4) is based in the one proposed
in [1] for the system 

ηt = ux,

ut −
ρ2

ρ1

√
β Tδ [u]xt = ηx,

(1.6)

which is the linearization around the zero equilibrium of the nondimensional form of the system
proposed in [8] and differs from system (1.4) in the term involving uxxt . The results of the von

Trends Comput. Appl. Math., 23, N. 1 (2022)
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Neumann analysis for both systems are analogous, however the stability conditions obtained
in this work are less restrictive than those presented in [1]. The improvement of the stability
conditions is due to the term involving uxxt which is also responsible for the better approximation
of the Euler dispersion relation. Thus, the higher order linearized system has better physical and
numerical properties.

The von Neumann analysis for the chosen method is performed together with a comparison with
other schemes for spatial derivatives in semi-discretization, namely spectral differentiation and
piecewise B-splines. The stability conditions are validated in numerical tests and extended to the
scheme for the nonlinear system (1.3) which includes the discretization of the nonlinear terms
α(ηu)x and αuux as presented in [12]. This allows us to study numerically the existence of
approximate travelling waves.

This work is organized as follows. In Section 2 discretizations for both linear and nonlinear
systems are presented including three possibilities for spatial derivatives and the von Neumann
analysis for each method is performed. In addition, we present a comparison between stability
conditions of the numerical methods for systems (1.4) and (1.6). In Section 3 the stability con-
ditions obtained in the previous section are exemplified in numerical tests and extended for the
nonlinear case. A convergence analysis for both methods is made in Subsection 3.1 and the soli-
tary wave profiles of the ILW and rILW equations are tested as approximate periodic travelling
wave solutions for our nonlinear system in Subsection 3.2. Conclusions appear in Section 4.

2 DISCRETIZATION AND STABILITY ANALYSIS

For the discretization of the linearized system (1.4) let us define the auxiliary function

ψ = u− ρ2

ρ1

√
β Tδ [u]x−

β

3
uxx, (2.1)

and rewrite system (1.4) as {
ηt = ux,

ψt = ηx.

Since u and η are 2l-periodic with respect to the variable x, we define a uniform grid on the
interval [0,2l], that is, x j = j∆x, j = 1, . . . ,N where N ∈ N is even and ∆x = 2l/N, the last
element xN is also identified with x = 0. Define uuu(t) = [u1, . . . ,uN ]

T and ηηη(t) = [η1, . . . ,ηN ]
T

where u j ≈ u(x j, t) and η j ≈ η(x j, t), j = 1, . . . ,N. The spatial discretization results in a system
of Ordinary Differential Equations in the matrix form below{

ηηη t =Cuuu,
Puuut =Cηηη .

(2.2)

Matrix C comes from the discretization of the first order x-derivative and matrix P is obtained
using the Discrete Fourier Transform (DFT) in order to get ψψψ = Puuu with ψψψ(t) = [ψ1, . . . ,ψN ]

T

where ψ j approximates the expression (2.1) evaluated at (x j, t).

Trends Comput. Appl. Math., 23, N. 1 (2022)
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Defining the Fourier matrix F componentwise by Fm, j = e(−2πiii(m−N/2) j/N), 1 ≤ m, j ≤ N, the
DFT of a vector www= [w1, . . . ,wN ]

T ∈RN is denoted by the vector ŵww= [ŵ−N/2+1, . . . , ŵN/2]
T ∈CN

which is defined by the relation ŵww = ∆xFwww and its inverse is given by www = 1
2l FT ŵww.

Now, using that the composition of one spatial derivative with the operator Tδ has the symbol
defined by equation (1.5) and some properties of the Fourier series, we can calculate ψ̂(k) =
v(kπ/l)−2û(k), k ∈ Z. Defining the diagonal matrix P̂ = diag

(
λ−N/2+1(P), . . . ,λN/2(P)

)
whose

entries are given by λk(P̂) = v(kπ/l)−2, k =−N/2+1, . . . ,N/2 we get ψ̂ψψ = P̂ûuu, thus

ψψψ =
1
2l

FT
ψ̂ψψ =

1
2l

FT P̂ûuu =
1
2l

FT P̂∆xFuuu =
1
N

FT P̂Fuuu = Puuu. (2.3)

For the first order x-derivative, as in [1], we choose numerical schemes such that ux(x j)≈ (Cuuu) j

where C is a real, skew-symmetric and Toeplitz circulant matrix. These assumptions are made in
order to preserve the property of the spectrum described earlier and the periodicity of the spatial
domain.

A Toeplitz circulant matrix C is defined by the elements c1, . . . ,cN of its first row by

Ci, j =

{
c1+ j−i, i≤ j,
cN+1+ j−i, i > j.

It is shown in [1] that the skew-symmetric Toeplitz circulant matrix C is diagonalized by matrix
(1/
√

N)F and its eigenvalues are given by

λk(C) =
iii

∆x
γ(θk), θk =

2πk
N

, γ(θ) = 2∆x
N/2−1

∑
m=1

c1+m sin(mθ).

Therefore, from the diagonal matrix Ĉ = diag
(
λ−N/2+1(C), . . . ,λN/2(C)

)
we recover C =

1√
N

FTĈ 1√
N

F.

Three possibilities for matrix C are studied that correspond to each of the following discretiza-
tions for the first order spatial derivative: five points fourth order finite difference, piecewise
linear B-splines and the spectral scheme. As shown in [1], their respective functions γ are given
by

γ
FD(θ) =

4
3

sinθ − 1
6

sin2θ , γ
BS(θ) =

3sin(θ)
2+ cos(θ)/4

, γ
SP(θ) =

{
θ , θ ∈ (−π,π)

0, θ =±π.

To integrate in time let us rewrite system (2.2) as[
ηηη t

uuut

]
= D

[
ηηη

uuu

]
, D =

[
000 C

P−1C 000

]
. (2.4)

Denoting the eigenvalues of P and D by λk(P) and λk(D), k =−N/2+1, . . . ,N/2, respectively,
it is not difficult to prove that λk(D) =±λk(C)/

√
λk(P) since matrices C and P are diagonalized

Trends Comput. Appl. Math., 23, N. 1 (2022)
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by the orthogonal matrix (1/
√

N)F . Since λk(D) is purely imaginary, the classic fourth order
Runge-Kutta method is appropriate for this problem. Applying the RK4 method in system (2.4)
we get [

ηηηn+1

uuun+1

]
=

(
I +∆tD+

∆t2

2
D2 +

∆t3

3!
D3 +

∆t4

4!
D4
)[

ηηηn

uuun

]
, (2.5)

where ηηηn and uuun are the approximations for ηηη(tn) and uuu(tn), respectively.

Once the discretization of the linear system is complete, let us obtain the discretization of the
nonlinear system. For that, let us rewrite system (1.3) as{

ηt = E1(η ,u),
ψt = E2(η ,u),

where E1(η ,u) = ux−αηux−αuηx and E2(η ,u) = ηx−αuux.

Considering the spatial mesh defined before, the x-derivatives in E1 and E2 are approximated
using one of the numerical schemes described previously, that is, five points finite difference,
piecewise linear B-splines and the spectral scheme. The variable ψψψ is calculated by equation
(2.3) as in the linear case. Integration in time is done with the fourth-order Runge-Kutta method.
Note that in the problem that motivated this study α is of the same order of β , but setting α = 0
we obtain scheme (2.5).

2.1 Von Neumann Analysis

In order to prove that the numerical scheme (2.5) is stable, let us define the following norm

||www||2N,s = 2π

N/2

∑
k=−N/2+1

(
1+(kπ/l)2)s |ŵk|2, s≥ 0,

where www∈RN and ŵww is its DFT. Our aim is to prove that there exists a positive constant Cs which
does not depend on n and ∆t such that∥∥[ηηηn,uuun]T

∥∥
N,s,s+1 ≤Cs

∥∥[ηηη0,uuu0]T
∥∥

N,s,s+1 , ∀n∆t ≤ T, (2.6)

where
∥∥[www111,www222]

T
∥∥2

N,s,s+1 = ||www111||2N,s + ||www222||2N,s+1, and both vectors www111 and www222 belong to RN .

Substituting matrix D in scheme (2.5) by its blocks described in (2.4) and using that (1/
√

N)F
diagonalizes matrices C, P and P−1, we proceed as in [1] to transform scheme (2.5) to the Fourier
space:  η̂ηη

n+1
=
[
I + ∆t2

2 P̂−1Ĉ2 + ∆t4

4! P̂−2Ĉ4
]

η̂ηη
n
+
[
∆tĈ+ ∆t3

3! P̂−1Ĉ3
]

ûuun,

ûuun+1=
[
∆tP̂−1Ĉ+ ∆t3

3! P̂−2Ĉ3
]

η̂ηη
n
+
[
I+ ∆t2

2 P̂−1Ĉ2 + ∆t4

4! P̂−2Ĉ4
]

ûuun.
(2.7)

For each frequency k, k =−N/2+1, . . . ,N/2, system (2.7) returns[
η̂

n+1
k

ûn+1
k

]
=

 c(θk,σ ,∆x) iiiv−1
(

θk
∆x

)
s(θk,σ ,∆x)

iiiv
(

θk
∆x

)
s(θk,σ ,∆x) c(θk,σ ,∆x)

[η̂n
k

ûn
k

]
= Gk

[
η̂n

k
ûn

k

]
, (2.8)

Trends Comput. Appl. Math., 23, N. 1 (2022)
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where σ = ∆t/∆x is the Courant number and

c(θ ,σ ,∆x) = 1− 1
2

σ
2v2 ( θ

∆x

)
γ

2(θ)+
1
4!

σ
4v4 ( θ

∆x

)
γ

4(θ),

s(θ ,σ ,∆x) = σv
(

θ

∆x

)
γ(θ)− 1

3!
σ

3v3 ( θ

∆x

)
γ

3(θ).

It is easy to verify that we can write Gk =V (kπ/l) G̃k V (kπ/l)−1, where

V (κ) =

[
1 0
0 v(κ)

]
, G̃k =

[
c(θk,σ ,∆x) iiis(θk,σ ,∆x)
iiis(θk,σ ,∆x) c(θk,σ ,∆x)

]
,

and that the eigenvalues of Gk and G̃k are given by g±k = g±(θk,σ ,∆x), where

g±(θ ,σ ,∆x) = c(θ ,σ ,∆x)∓ iii s(θ ,σ ,∆x).

Before enunciating the theorem which gives a sufficient condition for stability we need the
following lemma which is proven in [6].

Lemma 2.1. There exist positive constants c1 and c2 such that ∀y ∈ R

c1 ≤ v(y)−2(1+ y2)−1 ≤ c2. (2.9)

Theorem 2.1. Let β > 0 and s≥ 0. The numerical scheme (2.5) is stable, that is, inequality (2.6)
holds, if g±(θ ,σ ,∆x) satisfy

|g±(θ ,σ ,∆x)| ≤ 1, ∀θ ∈ (−π,π]. (2.10)

Proof. Let [ηηηn,uuun]T be the solution given by the method (2.5). For s≥ 0 we have

‖[ηηηn,uuun]T‖2
N,s,s+1 =

1
2l

N/2

∑
k=−N/2+1

[
1+(kπ/l)2]s∥∥B(kπ/l)[η̂n

k , û
n
k ]

T∥∥2
2 ,

where ‖ · ‖2 denotes the usual Euclidean norm and B(κ) = diag(1,
√

1+κ2). Thus, it is enough
to prove that there exists a positive constant Cs such that∥∥B(kπ/l)[η̂n

k , û
n
k ]

T∥∥2
2 ≤C2

s
∥∥B(kπ/l)[η̂0

k , û
0
k ]

T∥∥2
2 .

Using equality (2.8) recursively we get [η̂n
k , û

n
k ]

T = Gn
k [η̂

0
k , û

0
k ]

T , then∥∥B(kπ/l)[η̂n
k , û

n
k ]

T∥∥2
2 =

∥∥B(kπ/l)(Gk)
nB−1(kπ/l)B(kπ/l)[η̂0

k , û
0
k ]

T∥∥2
2

≤
∥∥B(kπ/l)(Gk)

nB−1(kπ/l)
∥∥2

2

∥∥B(kπ/l)[η̂0
k , û

0
k ]

T∥∥2
2 .

Trends Comput. Appl. Math., 23, N. 1 (2022)
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Thereby, using that Gk =V (kπ/l) G̃k V (kπ/l)−1 we get∥∥B(kπ/l)(Gk)
nB−1(kπ/l)

∥∥2
2≤ ‖B(kπ/l)V (kπ/l)‖2

2 ‖G̃k‖2n
2

∥∥∥(B(kπ/l)V (kπ/l))−1
∥∥∥2

2
.

Since matrix G̃k has eigenvalues g±(θk,σ ,∆x), by the hypothesis (2.10) we obtain ‖G̃k‖2n
2 ≤ 1.

On the other hand, using inequality (2.9) we get

‖B(kπ/l)V (kπ/l)‖2
2‖(B(kπ/l)V (kπ/l))−1 ‖2

2 =

max
{

v(kπ/l)2(1+(kπ/l)2),
1

v(kπ/l)2(1+(kπ/l)2)

}
≤max{1/c1,c2} .

Thus, we obtain
∥∥B(kπ/l) [η̂n

k , û
n
k ]

T
∥∥2

2 ≤ C2
s
∥∥B(kπ/l) [η̂0

k , û
0
k ]

T
∥∥2

2 . Therefore we conclude that∥∥[ηηηn,uuun]T
∥∥

N,s,s+1 ≤Cs
∥∥[ηηη0,uuu0]T

∥∥
N,s,s+1 . �

Condition (2.10) guarantees stability but it is not practical for numerical implementations. As
shown in [1], we can write the squared amplification factor as |g±k |

2 = 1+ p
(

σv
(

θk
∆x

)
γ(θk)

)
,

where p(y) = y6(y2−8)/576. Note that p(y)≤ 0 if |y| ≤ 2
√

2, then the scheme is stable if

max
|θ |<π

σ
∣∣v( θ

∆x

)
γ(θ)

∣∣≤ 2
√

2. (2.11)

In view of the previous computations, theorem 2.2 provides three practical conditions to
guarantee stability.

Theorem 2.2. The numerical scheme (2.5) is stable if at least one of the following inequalities
holds:

σ =
∆t
∆x

≤ γ1

√
1+

ρ2

ρ1

√
β

δ
, γ1 = 2

√
2

(
sup
|θ |≤π

|γ(θ)|

)−1

, (2.12)

µ =
∆t√
∆x

≤ γ2

√√
β

(
1+

ρ2

ρ1

)
, γ2 = 2

√
2

(
sup
|θ |≤π

{
|γ(θ)|√
|θ |

})−1

, (2.13)

∆t ≤ γ3

√
β

3
, γ3 = 2

√
2

(
sup
|θ |≤π

{
|γ(θ)|
|θ |

})−1

. (2.14)

Proof. As previously stated, we just need to prove that each condition leads to inequality (2.11).

For the first condition we use the inequality φ(y)≥ 1,∀y ∈ R to obtain

v(κ) =

(
1+

ρ2

ρ1

√
β

δ
φ(κδ )+κ

2 β

3

)−1/2

≤

(
1+

ρ2

ρ1

√
β

δ

)−1/2

.
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Therefore,

∣∣v( θ

∆x

)
γ(θ)

∣∣≤ sup
|θ |≤π

v
(

θ

∆x

)
sup
|θ |≤π

|γ(θ)| ≤

[
1+

ρ2

ρ1

√
β

δ

]−1/2

sup
|θ |≤π

|γ(θ)|. (2.15)

Multiplying inequality (2.15) by σ , applying condition (2.12) and making some simplifications
we guarantee inequality (2.11).

For the second condition we use that φ(y)≥ |y|,∀y ∈ R and 1+ β

3 y2 >
√

β |y|,∀y ∈ R for β > 0
to get

v(κ) =

(
1+

ρ2

ρ1

√
β

δ
φ(κδ )+κ

2 β

3

)−1/2

≤

(
ρ2

ρ1

√
β

δ
|κδ |+

√
β |κ|

)−1/2

,

thus

∣∣v( θ

∆x

)
γ(θ)

∣∣≤ |γ(θ)|√
ρ2
ρ1

√
β

δ
|θδ/∆x|+

√
β |θ/∆x|

≤
√√√√ ∆x√

β

(
1+ ρ2

ρ1

) sup
|θ |≤π

{
|γ(θ)|√
|θ |

}
.

Multiplying inequality (2.13) by
∣∣v( θ

∆x

)
γ(θ)

∣∣/√∆x and applying the inequality above we obtain
condition (2.11).

For the last condition we use that φ(y)> 0,∀y ∈ R, then

∣∣v( θ

∆x

)
γ(θ)

∣∣≤ sup
|θ |≤π

 |γ(θ)|√
β

3 (θ/∆x)2

=

 ∆x√
β

3

 sup
|θ |≤π

{
|γ(θ)|
|θ |

}
.

Using this inequality and condition (2.14) similarly to what was done previously we obtain
inequality (2.11).

Therefore, if one of the conditions (2.12), (2.13) or (2.14) holds, the method is stable. �

The values of γ1, γ2 and γ3 depend on the spatial discretization used to obtain matrix C. Table 1
shows approximations for these values for each of the discretizations presented earlier in this
section. The finite difference scheme provides larger values of γ1, γ2 and γ3 when compared to
piecewise linear B-splines and the spectral scheme, thus its stability conditions are less restrictive
than those provided by the other schemes.

Table 1: Values of γi for each method.

Finite Difference B-Splines Spectral Differentiation
γ1 2.061 1.633 0.900
γ2 2.651 2.300 1.595
γ3 2.828 2.828 2.828

Trends Comput. Appl. Math., 23, N. 1 (2022)
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Now we can compare the scheme (2.5) for our dispersive system and the scheme presented in [1]
for system (1.6), which has the following stability conditions:

σ =
∆t
∆x

≤ γ1

√
1+

ρ2

ρ1

√
β

δ
, γ1 = 2

√
2
(

sup|θ |≤π |γ(θ)|
)−1

,

µ =
∆t√
∆x

≤ γ2

√√
β

(
ρ2

ρ1

)
, γ2 = 2

√
2

(
sup|θ |≤π

{
|γ(θ)|√
|θ |

})−1

.

Due to the term (β/3)uxxt that leads to the term (β/3)k2 in v(k), the condition for ∆t/
√

∆x is less
restrictive for system (1.4) than for system (1.6). Moreover, we can obtain a stability condition
independent of ∆x for the scheme (2.5) which is not possible for the case of system (1.6) where
there is no quadratic term like (β/3)k2 in v(k) and any inequality must rely on the linear growth
of φ . The condition for the Courant number ∆t/∆x is the same in both cases.

3 NUMERICAL TESTS

In this section we will perform a sequence of numerical experiments in order to validate the
methods and the stability conditions. The implementations were done in Octave. For the spatial
derivative we choose the finite difference approximation because it has a low computational cost
compared to the other schemes (piecewise linear B-splines and spectral scheme) and provides
the largest values of γ1, γ2 and γ3, as shown in table 1.

In view of the conservation law (1.2) we choose as initial configuration the profile η0(x)=η(x)−
a, where η(x) = exp(−2x2) and the constant a is calculated so that η0 satisfies 0 = ∆x∑

N
j=1 η0

j
which is an approximation of (1.2) for t = 0 by the trapezoidal rule.

We set u0 so that η only propagates to the right in the linear system, that is, û0(k)= v(kπ/l)η̂0(k).
For the nonlinear system u0 is set in the same way. For the numerical experiments we set ρ1 = 1,
ρ2 = 2, h1 = 0.1 and h2 = 3.505 as in [8] and l = 10π . The values of β , α , N, ∆x and ∆t are
defined in each test. The other values are calculated by the relations L = h1/

√
β and δ = h2/L.

Figure 2 presents the graphics of the numerical solution of system (1.4) at different instants for
β = 0.0001 with ∆x = 0.03068 (N = 211) and ∆t = 0.08043 which satisfy the stability condition
(2.13). We can see the dispersion acting on η and u because of the wave trains that form as time
advances. In fact, as the phase velocity v(k) decreases to zero when |k| →+∞ the high frequency
components of the solution propagate more slowly and form the aforementioned wave trains.

Although theorem 2.2 provides sufficient conditions for stability they are not necessary. In fact,
if we choose ∆t = 0.08847 and keep the other parameters unaltered none of the conditions
required for stability in theorem 2.2 is satisfied, but condition (2.10) still holds. However, for
∆t = 0.09460, condition (2.10) is not satisfied because |g±(π/2,σ ,∆x)| = 1.0029 and since no
stability condition holds, high frequency components permeate the numerical solution as shown
in figure 3 for t = 1800∆t. Note that this phenomenon is different from dispersion in which
the components propagate with different speeds. Here, besides the dispersion effect from sys-

Trends Comput. Appl. Math., 23, N. 1 (2022)
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Figure 2: Solutions for the linear system (1.4) at times t = 0 (—), t = 1100∆t (− ·−) and t =
2200∆t (· · ·) with β = 0.0001, ∆x = 0.03068 and ∆t = 0.08043.

tem (1.4), the amplitude of high frequency components increases anomalously and the numerical
solution is compromised. This example illustrates the relevance of a proper stability analysis
even when the stability conditions are less restrictive.
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Figure 3: Solutions for the linear system (1.4) at times t = 0 (—), t = 900∆t (− ·−) and t =
1800∆t (· · ·) with β = 0.0001, ∆x = 0.03068 and ∆t = 0.09460.

Figure 4 presents the graphics of the numerical solution of system (1.4) for β = 0.001 using
∆x = 0.00383 (N = 214) and ∆t = 0.05163 which satisfy the stability condition (2.14). We see
that increasing the parameter β the phase velocity v(k) decreases to zero faster, thus a wider
wave train is formed. If ∆t = 0.06196, none of the stability conditions in theorem 2.2 is satisfied,
but condition (2.10) still holds. For ∆t = 0.07026, condition (2.10) is not satisfied since we
have |g±(1.12,σ ,∆x)| = 1.0062 and the solution obtained (keeping the rest of the parameters
unaltered) is unstable as shown in figure 5.

The stability performance exhibited illustrates the fact that theorem 2.2 provides sufficient, not
necessary restrictions for stability. Rather than the best possible condition, theorem 2.2 provides
sufficient stability conditions which are useful for implementation codes.

Trends Comput. Appl. Math., 23, N. 1 (2022)
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Figure 4: Solutions for the linear system (1.4) at times t = 0 (—), t = 1800∆t (− ·−) and t =
3600∆t (· · ·) with β = 0.001, ∆x = 0.00383 and ∆t = 0.05163.
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Figure 5: Solutions for the linear system (1.4) at times t = 0 (—), t = 1350∆t (− ·−) and t =
2700∆t (· · ·) with β = 0.001, ∆x = 0.00383 and ∆t = 0.07026.

Condition (2.10) only makes sense in the linear case where there exists a well defined amplifica-
tion factor, but the stability conditions in theorem 2.2 remain valid for the scheme for the non-
linear system (1.3) as the following numerical experiments indicate. Figure 6 shows the graphics
of the numerical solutions for system (1.3) for β = α = 0.0001, where ∆x = 0.03068 (N = 211)
and ∆t = 0.08043 satisfy condition (2.13), also figure 7 presents the graphics of the numerical
solutions for β = α = 0.001, with ∆x = 0.00383 (N = 214) and ∆t = 0.05163 satisfying the sta-
bility condition (2.14). We see that the conditions in theorem 2.2 still hold for these nonlinear
cases. Figures 8 and 9 show that keeping all parameters used in figures 6 and 7, respectively, with
the exception of ∆t, which is increased so that no stability condition in theorem 2.2 is satisfied,
the numerical solution is unstable as in the linear case. The value used for ∆t is specified in the
caption of each figure.

Solutions for the nonlinear system (1.3) have a similar appearance to solutions for the linear sys-
tem (1.4) with the same set of common parameters and starting from the same initial conditions.
In order to compare them we compute the Euclidean norm of the vector that results from their
difference at several instants. Table 2 shows that the Euclidean norm of the difference grows

Trends Comput. Appl. Math., 23, N. 1 (2022)
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as time advances and it is larger for the larger value of the nonlinear parameter. In particular,
the values at the intersection of the rows identified by β = 0.0001 and the columns identified by
η(x) = exp(−2x2) correspond to the two experiments that generate figures 2 and 6. Analogously,
the values at the intersection of the rows identified by β = 0.001 and the columns identified by
η(x) = exp(−2x2) correspond to the two experiments that generate figures 4 and 7. Besides,
table 2 shows that if η(x) changes from 0.1exp(−2x2) to exp(−2x2) and therefore the initial
values for η and u change by the same factor (keeping all the parameters equal), the Euclidean
norm of the corresponding difference is multiplied approximately by one hundred, confirming
that the nonlinear effects are present and are more noticeable for higher amplitude profiles.
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Figure 6: Solutions for the nonlinear system (1.3) at times t = 0 (—), t = 1100∆t (− ·−) and
t = 2200∆t (· · ·) with β = α = 0.0001, ∆x = 0.03068 and ∆t = 0.08043.
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Figure 7: Solutions for the nonlinear system (1.3) at times t = 0 (—), t = 1800∆t (− ·−) and
t = 3600∆t (· · ·) with β = α = 0.001, ∆x = 0.00383 and ∆t = 0.05163.
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Figure 8: Solutions for the nonlinear system (1.3) at times t = 0 (—), t = 900∆t (− ·−) and
t = 1800∆t (· · ·) with β = α = 0.0001, ∆x = 0.03068 and ∆t = 0.09460.
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Figure 9: Solutions for the nonlinear system (1.3) at times t = 0 (—), t = 1350∆t (− ·−) and
t = 2700∆t (· · ·) with β = α = 0.001, ∆x = 0.00383 and ∆t = 0.07026.

Table 2: Euclidean norm of the difference between the solutions of the linear system (1.4) and
the nonlinear system (1.3).

η(x) = 0.1exp(−2x2) η(x) = exp(−2x2)

β time norm (η) norm (u) norm (η) norm (u)

0.0001

100∆t = 8.043 0.0000495 0.0000475 0.0049454 0.0047532
500∆t = 40.213 0.0002119 0.0002041 0.0211847 0.0204099
1100∆t = 88.468 0.0003597 0.0003474 0.0359573 0.0347279

2200∆t = 176.937 0.0005106 0.0004941 0.0510226 0.0493752

0.001

150∆t = 7.745 0.0011563 0.0010590 0.1156249 0.1059029
700∆t = 36.142 0.0025461 0.0023993 0.2542572 0.2395679
1800∆t = 92.938 0.0031029 0.0029502 0.3092888 0.2940249

3600∆t = 185.875 0.0033832 0.0032392 0.3365037 0.3221350

Trends Comput. Appl. Math., 23, N. 1 (2022)
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3.1 Convergence analysis

Now let us study the convergence of the method on the temporal and spatial variables. Since
the classical Runge-Kutta method has fourth order of convergence, we just need to focus in the
spatial variable.

Since the exact solution is not available for the nonlinear system, in order to compare the nu-
merical approximations, we substitute it by an accurate numerical solution (ηηη ,uuu) that is cal-
culated with small values of ∆x = ∆x∗. For a fair comparison ∆t is kept constant and cho-
sen to guarantee stability in all tests. For a given time T = n∆t we define the time error
Ex(η ,∆x,∆x∗,T ) = ‖ηηηn−ηηη

n‖2, T = n∆t but considering only the points where all numerical
solutions are calculated. We perform successive refinements of the spatial mesh dividing ∆x by
2 and estimating the spatial convergence rate by

p≈− log2(Ex(η ,∆x/2,∆x∗,T )/Ex(η ,∆x,∆x∗,T )).

The error and rate for u are defined analogously.

A fourth order convergence rate is expected in the spatial variable since the finite difference
formula has order 4 and the Fourier approximation has spectral convergence. The estimated con-
vergence rate is confirmed in the experiments for the linear and nonlinear cases for different
values of β and α as shown in tables 3–6.

Table 3: Convergence analysis on spatial variable x for the linear system with β = 0.001, l = 10π ,
∆x∗ = 0.001917, ∆t = 0.035755 and T = 99.970644.

∆x error (η) rate (η) error (u) rate (u)
0.122718 0.260102684392 0.231045716400
0.061359 0.019181498462 3.76129 0.016887753929 3.77413
0.030680 0.001209018675 3.98781 0.001064172067 3.98817
0.015340 0.000075683518 3.99771 0.000066613691 3.99777
0.007670 0.000004715024 4.00464 0.000004149941 4.00466
0.003835 0.000000277385 4.08730 0.000000244141 4.08730

Trends Comput. Appl. Math., 23, N. 1 (2022)
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Table 4: Convergence analysis on spatial variable x for the linear system with β = 0.0001, l =
10π , ∆x∗ = 0.001917, ∆t = 0.020106 and T = 99.989358.

∆x error (η) rate (η) error (u) rate (u)
0.122718 0.275386408233 0.263332125055
0.061359 0.020799252938 3.72685 0.019828641788 3.73123
0.030680 0.001311657678 3.98707 0.001250336121 3.98720
0.015340 0.000082111042 3.99767 0.000078271354 3.99769
0.007670 0.000005115489 4.00463 0.000004876264 4.00464
0.003835 0.000000300945 4.08730 0.000000286871 4.08730

Table 5: Convergence analysis on spatial variable x for the nonlinear system with β = α = 0.001,
l = 10π , ∆x∗ = 0.001917, ∆t = 0.035755 and T = 99.970644.

∆x error (η) rate (η) error (u) rate (u)
0.122718 0.268262793175 0.238173684977
0.061359 0.019996662700 3.74582 0.017583749591 3.75970
0.030680 0.001261043561 3.98707 0.001108541009 3.98751
0.015340 0.000078944237 3.99764 0.000069394349 3.99770
0.007670 0.000004918219 4.00463 0.000004323218 4.00464
0.003835 0.000000289340 4.08730 0.000000254335 4.08730

Table 6: Convergence analysis on spatial variable x for the nonlinear system with α = β =

0.0001, l = 10π , ∆x∗ = 0.001917, ∆t = 0.020106 and T = 99.989358.

∆x error (η) rate (η) error (u) rate (u)
0.122718 0.278408434936 0.266207168503
0.061359 0.021121230297 3.72044 0.020132847020 3.72493
0.030680 0.001332336906 3.98666 0.001269866417 3.98680
0.015340 0.000083407580 3.99764 0.000079495826 3.99765
0.007670 0.000005196285 4.00463 0.000004952569 4.00463
0.003835 0.000000305699 4.08730 0.000000291361 4.08730

3.2 Approximate travelling waves

Travelling wave solutions constitute a subject of major relevance in the study of nonlinear wave
models. Important unidirectional models like Korteweg-de Vries (KdV), ILW and rILW equa-
tions and bidirectional models like Boussinesq systems exhibit travelling waves, see for exam-
ple [2, 7, 11, 14, 18] and the references therein. These solutions do not change their shapes and
propagate at constant speed by maintaining a balance between the nonlinear and the dispersive
effects of the model. It is also important to know if the travelling wave solutions are stable

Trends Comput. Appl. Math., 23, N. 1 (2022)
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to small perturbations, otherwise any physical or numerical disturbance will eventually destroy
them, [9]. In this section we will study the existence of travelling wave solutions for the nonlinear
system (1.3) from a numerical point of view since theoretical results about their existence are not
available.

As initial condition for the nonlinear system (1.3), we will use solitary wave profiles from the
ILW and the rILW equations in order to measure if their shapes are well preserved while evolving
according to the numerical scheme. Let us consider the rILW and the ILW equations given by
equations (3.1) and (3.2), respectively:

ηt +ηx−
3α

2
ηηx−

√
β

2
ρ2

ρ1
Tδ [ηxt ] = 0, (3.1)

ηt +ηx−
3α

2
ηηx +

√
β

2
ρ2

ρ1
Tδ [ηxx] = 0. (3.2)

Setting c1 =− 3
2 α, c2 =

ρ2
ρ1

√
β

2 , we can see in [15] that a travelling wave solution family for the
rILW equation is

η(y) =
acos2(θ)

cos2(θ)+ sinh2(y/λ )
, y = x− ct, (3.3)

where

a =
4cc2θ tanθ

δc1
, c =

1

1+ 2c2
δ

θ cot(2θ)
, λ =

δ

θ
, 0 < θ < π/2.

In [8, 11] we see that a travelling wave solution family for the ILW equation is also given by the
expression (3.3) but with

a =
4c2θ tanθ

δc1
, c = 1− 2c2

δ
θ cot(2θ), 0 < θ < π/2.

The numerical wave speed cn is computed as follows: for each time t j = j∆t, j = 1,2, . . . ,J,
J big enough, we find the grid point xl j that minimizes η

j
l and make a linear regression on

the points {(t j,xl j)} to estimate cn. Using Fourier properties and the DFT, we define ηηη∗ as the
approximation of η(x− cnt,0) by η̂∗k = exp(−iiikπcnt/l)η̂0

k . We define the absolute error eabs

and the relative error erel at a chosen tn = n∆t , respectively, by eabs = ‖ηηη∗−ηηηn‖∞ and erel =

‖ηηη∗−ηηηn‖∞/‖ηηη∗‖∞.

We will set the parameters, ρ1 = 1, ρ2 = 2, h1 = 0.1, h2 = 3.505, l = 10π and ∆x = 0.03068 (N =

211). The values of β , α , θ and ∆t are specified in each test. The other values are calculated by
the relations L = h1/

√
β and δ = h2/L. We adjust the initial conditions using the approximation

of the conservation law (1.2) as in section 3.

Figure 10 presents the graphics of ηηηn, the evolution of the travelling wave initial condition ηηη0

and the corresponding approximate translation ηηη∗ for α = β = 0.0001, θ = π/20 and n = 1600.
Figure 11 presents the same type of results setting θ = π/40. We can see that the ILW and rILW
profiles preserve their shapes in both cases since their graphics coincide with their corresponding
ηηη∗. This is confirmed by the small errors presented in table 7.
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Figure 10: Graphics of ηηη∗ (−·−) and ηηηn (—) for each initial condition at time t = 1600∆t with
α = β = 0.0001, θ = π/20, ∆x = 0.03068 and ∆t = 0.08043.
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Figure 11: Graphics of ηηη∗ (−·−) and ηηηn (—) for each initial condition at time t = 1600∆t with
α = β = 0.0001, θ = π/40, ∆x = 0.03068 and ∆t = 0.08043.

Table 7: Errors at time t = 1600∆t and wave velocities of η for each initial condition with α =

β = 0.0001.

Profiles θ eabs erel cn c
rILW π/20 0.0124475 0.0007270 0.97331 0.97315
ILW π/20 0.0232071 0.0013190 0.97338 0.97241
rILW π/40 0.0029185 0.0007436 0.97273 0.97248
ILW π/40 0.0040683 0.0010080 0.97273 0.97170

Setting α = β = 0.001 the shape of the ILW and rILW profiles given by equation (3.3) are also
preserved as the next experiments show. Figure 12 presents the graphics of the evolution ηηηn

for the travelling wave initial condition ηηη0 of each equation and the corresponding approximate
translation ηηη∗ for θ = π/20 and n = 900. Figure 13 presents the same type of results for θ =

π/40. Again, the graphics of ηηηn coincide with their corresponding ηηη∗ and the preservation of
shape is confirmed by the small errors presented in table 8.
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Figure 12: Graphics of ηηη∗ (−·−) and ηηηn (—) for each initial condition at time t = 900∆t with
α = β = 0.001, θ = π/20, ∆x = 0.03068 and ∆t = 0.14302.
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Figure 13: Graphics of ηηη∗ (−·−) and ηηηn (—) for each initial condition at time t = 900∆t with
α = β = 0.001, θ = π/40, ∆x = 0.03068 and ∆t = 0.14302.

Table 8: Errors at time t = 900∆t and wave velocities of η for each initial condition with α =

β = 0.001.

Profiles θ eabs erel cn c
rILW π/20 0.0008796 0.0006144 0.97289 0.97315
ILW π/20 0.0006704 0.0004557 0.97294 0.97241
rILW π/40 0.0023305 0.0090672 0.97254 0.97248
ILW π/40 0.0024069 0.0091069 0.97257 0.97170

Thus, the solitary wave family profiles of the ILW and rILW equations, for the corresponding
values of α , β , ρ1, ρ2 and δ , perform satisfactorily as approximate travelling wave solutions for
the nonlinear system (1.3), since their shapes are well preserved by the discrete scheme for the
nonlinear system as time advances.
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4 CONCLUSIONS

The numerical schemes proposed for both linear and nonlinear systems use a fourth order finite
difference method for the first order x-derivatives, spectral schemes for the dispersive terms and
the classical fourth order Runge-Kutta method for time evolution. Based on the results obtained
in this work we conclude that the numerical methods for the linear and nonlinear systems are
very robust. They present good stability conditions and convergence rates in temporal and spatial
variables.

The shapes of the solitary waves of the ILW and rILW equations were well preserved when cho-
sen as the initial condition for the discrete scheme of the nonlinear system. This may indicate that
the nonlinear system (1.3) admits travelling wave solutions. A theoretical study of the existence
of travelling waves is the subject of current research.
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