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ABSTRACT. Over the past few years, there has been a steady increase in the use of aircraft vehicles, in
particular unmanned aerial vehicles (UAV). UAV navigation is generally controlled by a human pilot. But
the challenge for the scientific community is to carry out autonomous navigation. Some solutions have been
proposed for the UAV autonomous navigation. Studies indicate as a solution to use data fusion and/or image
processing navigation. Kalman Filter (KF) can be employed as a data fuser, but the KF has disadvantages.
An alternative to the KF is based on artificial intelligence. Here, the KF is replaced by a self-configured
neural network. This work investigates a way to select data for training the neural fuser, based on cross-
validation techniques. The results are compared to the data fusion done by a KF.

Keywords: self-configured neural network, unmanned aerial vehicle, cross-validation, k-fold.

1 INTRODUCTION

Over the past few years, there has been a steady increase in the use of vehicles aircraft, in par-
ticular, unmanned aerial vehicles (UAV). UAV applications take place in several areas, ranging
from civil and military activities, such as surveillance operations, environmental monitoring,
aerial survey, and cargo transportation. Particularly, the application in agricultural monitoring
and precision agriculture stands out [11, 12, 14, 15, 28, 31, 32].

UAV navigation is generally controlled by a human pilot. This pilot controls the UAV through
a ground station, which sends commands to the UAV by a radio signal [30]. Another form of
navigation of UAV is automatic navigation. Automatic navigation does not require human pilot
for flight control, because this type of navigation is made from a pre-established route [30]. But
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the challenge for the scientific community is to define the autonomous navigation methodology
[14].

Autonomous navigation eliminates the control of a human pilot. So you need sensors, like a
Global Navigation Satellite System (GNSS) and an Inertial Navigation System (INS). These
sensors assist an embedded control system in locating and positioning the UAV during navigation
[30].

However, there are problems associated with the use of these sensors. The main troubles are inter-
ference, which can be caused intentionally or by natural actions, making autonomous navigation
unfeasible. The main ways of intentional interference are called jamming and spoofing [13, 22].
These attacks affect the estimation of the UAV location and position, provided by the GNSS
receiver [5, 18].

In addition to problems with the GNSS signal, contingencies with the INS must also be con-
sidered. The problem that occurs with the INS, in particular with low-quality equipment, is the
accumulation of the drift error, which, if not corrected, can imply a great divergence between the
estimated position and the actual position of the aircraft [16].

Beyond intentional interferences, natural interferences must also be highlighted. In this sense,
two phenomena stand out, which are ionospheric scintillation and the magnetic anomaly of
the South Atlantic [17, 29]. From these natural phenomena, scintillation significantly affects the
GNSS signal transmission, impacting the autonomous navigation of UAVs.

The aforementioned problems have already been discussed and some solutions have been pro-
posed for the autonomous navigation of UAVs when the GNSS signal is not available. Studies
indicate as a solution the use of data fusion and/or image processing navigation [2, 19, 36],

The displacement of a UAV during the flight is something that happens in fractions of a second.
Therefore, data fusion techniques must process information with maximum efficiency, that is,
at the highest speed possible. Kalman Filter (KF) is one technique applied as a data fuser [9],
but it has high computational complexity, becoming a disadvantage. Another issue linked to the
KF is the assumption of Gaussian statistics. The high computational effort of the KF on small
UAVs can become a problem if there is no onboard computer capable of supporting KF timely
execution for data fusion [20].

Methods based on artificial intelligence can be an alternative to KF [1, 10, 36]. Cintra and co-
authors pointed out the Kalman filter and neural network as O(N3) and O(N2) [8], respectively.
The complexity analysis of these algorithms shows the interest for searching a strategy with a
lower computational effort. In a previous study, the KF was replaced by a self-configured neural
network [24]. This neural network was called a neural fuser.

Data fusion operates with detection, association, correlation, estimation, and combination of data
from different sensors, with different types of data [6]. In this sense, data fusion becomes an inter-
esting alternative for application in the autonomous navigation of UAVs. With more sensors and
data types combined, a larger amount of information can be used in the estimations, applying the

Trends Comput. Appl. Math., 24, N. 1 (2023)
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fuser system for the autonomous UAV navigation during the absence of the GNSS signal [34].
Data fusion applied to autonomous UAV navigation uses data from several sensors, where the
selection of data for training the neural fuser becomes important. This work investigates an au-
tomatic way to select data for training the neural fuser based on cross-validation techniques. The
results are compared to the data fusion done by a KF.

2 SELF-CONFIGURED NEURAL NETWORK

The displacement of a UAV during the flight is something that happens in fractions of a second.
Therefore, data fusion techniques must process information with maximum efficiency, that is, at
the highest speed possible. Because of this issue and also for seeking to reduce the computational
complexity related to the FK, a self-configured multi-layer perceptron (MLP) neural network was
used to perform the data fusion.

The use of neural networks has been employed to several applications. For this reason, neural
networks can be considered as a set of techniques already consolidated, under constant evolution
or adaptation [25]. MLP is widely used by the scientific community, designed to solve linearly
inseparable problems, which could not be solved by the single layer perceptron network. Due to
their robustness, MLPs are also applied in data fusion [7, 35].

It is important to inform why a self-configured neural network was used. Given that the displace-
ment of a UAV during flight is something that happens in fractions of a second, the response of
the neural fuser needs to be as fast as possible. Thus, a solution to achieve the desired perfor-
mance is the construction of the neural fuser in dedicated hardware by field programmable gate
array (FPGA) [23].

The size of the topology of the neural network can make its construction in dedicated hardware
unfeasible. For this reason, an existing approach delivers an optimized topology for the neural
fuser. This approach consists of applying the Multiple Particle Collision Algorithm (MPCA)
[4, 21, 23]. The MPCA is a version of the meta-heuristic particle collision algorithm (PCA), and
this, in turn, was inspired by the physics of particle collision reactions in a nuclear reactor, in
particular in the scattering and absorption behaviors.

The objective of the MPCA is to find the optimized architecture of an MLP [4]. The algo-
rithm determines the ideal values for the neural network parameters. This optimization occurs
by minimizing a cost function, which is defined as:

J(Q) = Φ(x,y)×
ρ1Et(Q)+ρ2Eg(Q)

ρ1 +ρ2
(2.1)

Φ(x,y) = θ1[ex2
]+θ2[y]+1 (2.2)

where Q is the unknown set of parameters: number of hidden layers, number of neurons per
each hidden layer, type of activation function, learning ratio and momentum parameters for the
training process; Et and Eg are training and generalization errors, respectively; ρ1 and ρ2 are
parameters related to the balance between training and generalization errors – square differences

Trends Comput. Appl. Math., 24, N. 1 (2023)
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between the output neural network and the reference data, where the reference is the Kalman
filter results; Φ(x,y) is a measure of the complexity of the neural network, with x being the
number of neurons and y the number of epochs until convergence during the training; θ1 and θ2

are adjustment parameters.

3 DATA USED

The data set was obtained from experiments carried out by the research group from the Wallen-
berg Laboratory for Information Technology and Autonomous Systems (WITAS), Department of
Informatics and Information Science at the University of Linköping – Sweden [9]. The WITAS
experiments were carried out by using autonomous UAV based on the Yamaha R-MAX model1.
The total length of the UAV trajectory was about 3.6 km, and the drone is capable of taking off
with a maximum weight of 95 kg.

The used sensors were loaded into an Inertial Measurement Unit (IMU), containing three ac-
celerometers and three gyroscopes, providing the acceleration and angular rate of the UAV
along the three axes; a barometric altitude sensor; and a monocular video camera mounted on a
panoramic unit. Along with these sensors, latitude and longitude measurements from INS were
also obtained.

The UAV control system was performed by 3 embedded computers. The flight computer was a
Pentium-III PC-104 700 MHz. This computer was responsible for sending commands for takeoff,
landing, and other basic movements during the flight. The second computer, the same model as
the first, implemented image processing and features to control the camera’s tilt. Finally, the last
computer, a PC104 Pentium-M 1.4 GHz, implemented the data fusion – in this computer, the
processing from the KF was performed. All internal communication between the computers and
the UAV control loop was carried out using IEEE 802.3 (Ethernet) connections [9].

During the trajectory, 12 types of uncertainty data were collected, which are latitude and longi-
tude – obtained by the inertial sensor, 3 angular rates, 3 accelerometer measurements, directions:
north, west, climb, and height measurements. This information, together with the image process-
ing estimation, was applied to a KF-based data fuser to estimate the UAV position [9]. These data
were stored in the flight logs in a tabular structure with 66,483-time samples.

The performance between data fuser strategies based on Kalman filter and self-configured neural
network was evaluated comparing the estimated UAV positioning with the differential GPS real
time Kinematic (GPS-RTK) sensor signal. Neto et al. [24] showed errors for the UAV position
for each coordinates (Latitude, Longitude) ≤ 1.5×10−5.

1See: Yamaha Motorsports: Yamaha R-MAX model – webpage accessed at 23/Nov/2020:
www.yamahamotorsports.com/motorsports/pages/precision-agriculture-rmax .

Trends Comput. Appl. Math., 24, N. 1 (2023)
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4 TRAINING AND VALIDATION

Before starting the description of the data selection steps, training and validation of the neural
fuser, it is important to inform a reader that throughout all the experiments presented here, the
uncertainties were calculated on the difference between the results by the self-configured neural
network and those obtained by a reference source - here the reference source is from the KF. This
KF was developed by the WITAS research group.

Once the data from the WITAS research group were used, where the reference for the Swedish
experiments was given by the INS data, the average error in the trajectory was 10 m, between the
latitude and longitude measurements. Data fusion made by KF, combining INS measurements
and image processing estimation, reduced this difference to less than 5 m [9].

Sensors embedded in the UAV have different acquisition rates. There are several reasons for
this lack of synchronization. For example, the communication channels used in the embedded
electronics can vary in type and technology, each with its own transfer rate. This variation in
acquisition rates also occurred with data from WITAS [30].

Since the sensors had different acquisition rates, the data collection time were disunited. One of
the metadata in the flight log is the time the information recorded by the sensor, where the time
is measured in milliseconds. The embedded KF in the UAV used in Sweden had an activation
rate of 50Hz. But the gyroscope and accelerometer sensors had an acquisition rate of 200Hz.
Therefore, the measurements obtained by the system are repeated at various times. So, it was
necessary to pre-select the data to interpolate the measurements obtained by the sensors so that
they would be related temporally.

The original data were organized in 66,483 temporal samples, based on the sensor with the lowest
acquisition rate (10Hz), and a pre-selection was made on the data. This pre-selection meant
neglecting mismatched time measurements considering the sensor with the lowest acquisition
rate. The data were reorganized into a set of 3,319 temporal samples. These data were used for
training and validation of the neural fuser. In the experiments, 12 types of inertial data were used,
which are latitude and longitude obtained by the inertial sensor, 3 angular rates, 3 accelerometer
measurements, north, west, uphill, and last height measurements.

Here an MPCA implementation was used for the automatic configuration of the neural network
[3]. Parameters to be determined for a neural network are the variation in the learning rate of the
neural network, the variation in the number of training periods, the number of training iterations,
the moment rate, types of the activation function, number of hidden layers, and the number of
neurons per hidden layer. For the number of neurons, the selected variation was from 1 to 32
neurons – this number was selected after evaluations of some FPGA devices used in previous
studies [23].

Trends Comput. Appl. Math., 24, N. 1 (2023)
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4.1 Cross-validation training - hold out

Regarding the data made available by the WITAS research group, it was necessary a division into
sets for training an artificial intelligence model. In the literature, there is a study that investigated
the influence of the number of training periods on this data set. The study points out the method-
ology applied in the investigation was not an MLP but an approach using a Fuzzy system [26].
The investigation concludes that a low number of training iterations, less than 50 iterations, for
example, does not have statistical security to guarantee quality in the estimation. In addition, the
amount of training data used influences the results, indicating the best results were in the range
between 60% and 80% of the data.

In the MPCA neural network configuration, the data partition were into two datasets: 90% of
the data for training, and 10% for generalization. For the training dataset, an amount of 20%
employed to cross validation. The performance errors with the network topology found by the
MPCA were 10% of the data.

For the first experiment, the interval for the learning rates and moment was from 0.1 to 0.9.
The number of epochs varied from 100 to 300 epochs, and the hyperbolic tangent and sigmoid
activation functions were tested. The network outputs are real values for latitude and longitude.
The information in Table 1 are the parameters values found by the MPCA, which presented the
best result for the generalization set.

Table 1: Parameters selected by the MPCA for the first experiment.

Parameter Value or Type
Training epoch 300

Neurons in the hidden layer 11
Learning Rate 0.7
Moment rate 0.8

Activation function sigmoid

The errors found for the latitude and longitude coordinates in this experiment were 47.57 cm
and 62.83 cm, respectively. Table 2 presents the uncertainties found for the generalization set
at each coordinate. The average error in the trajectory was estimated at 87.38 cm – the actual
displacement is considered here: the value obtained from the estimates by the KF. Regarding the
trajectory error, it must be considered that each location in space is defined by a pair (latitude,
longitude). Thus, there is a distance associated with two points, which in the case of this experi-
ment corresponds to the difference in the actual displacement and the displacement estimated by
the neural fuser. For a trajectory, there is a set of distances between the real coordinates and the
estimated coordinates, with the trajectory error the average of these distances.

In this experiment, high values were obtained for standard deviation and variance. This can be
indicative of sensitivity to noise. For latitude and longitude measurements, a variation in degrees,

Trends Comput. Appl. Math., 24, N. 1 (2023)
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Table 2: Uncertainties in centimeters for each coordinate.

Latitude
Uncertainty type Value

Mean error 47.57 cm
Standard deviation 45.74 cm

Variance 2,092.44 cm
Longitude

Uncertainty type Value
Mean error 62.83 cm

Standard deviation 49.46cm
Variance 2,447.09 cm

although small, can also be expressed in meters. For example, the distance of one degree in
latitude is approximately equivalent to 111.12 km [33].

Figure 1 shows the result of the estimation applied to validation and generalization sets. It is
important to note that the latitude and longitude values are in degree. This is expected for this
type of data, where the variation usually occurs from the fifth decimal place, considering this
small flight area. We note that the values in Table 2 are in centimeters, while values in Figure 1
are in degrees.

4.2 Cross-validation training – k-fold

In the previous experiment, the data sets were separated sequentially in time. That is why the last
10% of the data has always been used in generalization. However, this way of dividing the data
can be inefficient for training, since it is not known which part of the data is the most significant
content. In other words, where is the part of the information is the best one to train the neural
network. In addition, training a neural network using sequential data can generate learning that is
addicted to trends, which increases the generalization error when the set applied for testing does
not follow the same trend as the training set. To avoid this issue, it was decided to apply another
partitioning approach known in the literature as k-fold [27].

The goal of k-fold cross-validation is to investigate the performance of a network based on the
variation in training and generalization sets. Therefore, it is relevant for the validation of all k-
sets to have the same neural network architecture, meaning the same number of hidden layers,
the same number of neurons, the same activation function, and the same initial synaptic weights.

The result obtained from the k-fold approach showed improvements compared to previous ex-
periment. Although the average error is close to that obtained in the first experiment, there was
a reduction in the values of standard deviation and variance. The reduction in variance over lati-
tude was 46%, for longitude it was 36%. Table 3 shows the uncertainties obtained for this cross-

Trends Comput. Appl. Math., 24, N. 1 (2023)
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Figure 1: Result of the estimation on the validation and generalization sets.

validation approach. The reduction values were calculated on the results of the first experiment.
For this comparison, the average of the average errors of each set was used.

In this experiment, original dataset has a division into 10 sets, and it is still considered the data
acquisition sequence, where each set represents a time sequence of 10% of the data. The first set
has the first 332 data, and so on.

Trends Comput. Appl. Math., 24, N. 1 (2023)
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Table 3: Uncertainties in centimeters for each coordinate - third experiment - k-fold.

Latitude
Uncertainty type Value Uncertainty reduction

Mean error 43.92 cm 7.67%
Standard deviation 31.28 cm 31.61%

Variance 1,113.26 cm 46.79%
Longitude

Uncertainty type Value Uncertainty reduction
Mean error 59.30 cm 5.61%

Standard deviation 37.53 cm 24.12%
Variance 1,562.86 cm 36.13%

As previously mentioned, the k-fold approach allows to identify which sets obtain the best and the
worst result for generalization. In this way, the mean error and standard deviation were verified
for each set. Figures 2 and 3 show the mean error and standard deviation of each set for both
coordinates, respectively.

Some sets obtained higher mean error and standard deviation. Set-6 had the worst results for
mean error and standard deviation, denoting a relevant portion of the data, and it would be inter-
esting to leave this portion within the training set. Similar conclusion can be applied to the last
two sets. It is also possible to see the sets with the best result for generalization. For example, set-
3 obtained the smallest mean error for both coordinates and set-8 the smallest standard deviation
considering the two coordinates. The last set, with 10% of the data, was used for generalization
in the previous experiments, resulting in a bad influence for the first experiment. Therefore, if
this set were in the data portion for training, the previous results could be better.

Table 3 shows a reduction in the values of standard deviation and variance. Obviously, these
measures are related. The variance is information for the confidence interval. The confidence
intervals can be high considering the context of UAV autonomous navigation.

Despite this experiment pointing out the sets with relevance, it has not yet been possible to
determine which is the best combination among the sets, in order to have the best set for training.
In addition, the way the data is organized directly affects the final result for generalization. More
relevant, we are dealing with complex data, such as ones obtained during a UAV flight, making
this a not trivial task. This shows the definition importance of the best data organization based on
the available data.

Since the first experiment, the organization of the data continued using 70% for training, 20% for
validation, and 10% generalization. These percentages are common in problems of supervised
artificial intelligence models. But the first experiment, using the k-fold approach, did not perform
all possible combinations between the data sets. The experiment did not consider the possible
combinations among the validation and generalization sets – which add up to 30% of the data.

Trends Comput. Appl. Math., 24, N. 1 (2023)
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Figure 2: Mean error and standard deviation in latitude for each k-set.

Trends Comput. Appl. Math., 24, N. 1 (2023)
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Figure 3: Mean error and standard deviation in longitude for each k-set.

Trends Comput. Appl. Math., 24, N. 1 (2023)
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Thus, another experiment was performed with the data, following the scheme of grouping the
data by combining 10 taken 3 to 3. Thus, the percentage of 70% for training was maintained, but
varying the combination of the 30% used in the cross-validation and generalization sets, totaling
120 possible and independent combinations.

The results obtained using this approach revealed a combination of data presenting the lowest
mean error in the generalization is in set-75. For this set, the lowest mean error in the estimates for
the UAV trajectory, and also the smallest errors for estimating latitude and longitude. Figures 4
and 5 respectively show the average errors in the estimates made for each set, for both coordinates
and for trajectory. There is a range of sets, starting above set-60 and ending at set-80, which
provides the best results – the smallest average errors. For latitude, the best result is not in this
range, but in a set close to the last one shown in Figure 4. However, this is not reflected in the other
coordinate or the trajectory error. So, this value was not considered for a possible classification,
in case it is necessary to list the sets to choose one of them as the best or most appropriate.

Considering the first experiment, before using the k-fold approach, the mean error in the tra-
jectory estimation was 87.28 cm. In the approach with 120 sets, for set-75, the mean error de-
creased to 69.41 cm. The reduction was 17.97 cm, representing a mean error of 20% less. The
same happened with the coordinates in the first experiment, where the mean errors for latitude
and longitude estimation were, respectively, 47.57 cm and 62.83 cm. For set-75, the mean errors
were 35.74 cm and 53.73 cm. The result for set-75 represents a reduction of 24% and 14% for
the mean error of estimating latitude and longitude.

From the average values obtained for each set, the mean estimation error for the trajectory would
be 104.04 cm. The mean estimation error for coordinates would be 51.65 cm for latitude and
81.68 cm for longitude. Values were considerably higher than those obtained in set-75, and even
higher than those obtained in the first experiment, before the k-fold approach. This clearly shows
the impact of the partition in the data sets selected to compose the training, cros-validation, and
generalization sets.

5 CONCLUSIONS AND FINAL CONSIDERATIONS

The experiments carried out aimed at a better understanding of the data set partition with a focus
on the application of neural networks for UAV autonomous navigation. The experiments also
served to verify the functioning of the methodology without or with the minimal treatment of the
data.

The experiments showed the drift error from the INS sensor. Applying the k-fold approach, There
is a data partition used for the training, which reflects an improvement in the generalization
results.

Figure 4 shows that the last sets present the average estimation error for the longest trajectory.
These last sets use the data of the end of the trajectory traversed by the UAV for generalization.
Consequently, it becomes interesting in the training set to always put data that reflects the drift
error. Therefore, the step using k-fold was important to find the sets where learning is improved.

Trends Comput. Appl. Math., 24, N. 1 (2023)



i
i

“A11-1532-9827” — 2023/3/2 — 19:19 — page 171 — #13 i
i

i
i

i
i

G. PENHA NETO, H. F. CAMPOS VELHO and E. H. SHIGUEMORI 171

Figure 4: Estimates for each coordinate of each k set, following the scheme of 120 combinations.

Trends Comput. Appl. Math., 24, N. 1 (2023)
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Figure 5: Estimates for the trajectory of each set of k, following the scheme of 120 combinations.

It is worth remembering that 12 types of inertial data were applied to data fusion and that each
data has its contribution in terms of influence on the organization of training, cross-validation,
and generalization data. Mainly, sensors such as gyroscope and accelerometer, present high sen-
sitivity to any variation in the attitude of the aircraft during the flight, which can reflect in the
performance during the training of the neural network. Still, on attitude sensors, it should be
noted that their accuracy or sensitivity depends on the components used in the manufacture of
the UAV.

Regarding the number of training seasons, the number of iterations between 100 and 300 was
based on observations on preliminary tests. The results of the trajectory estimation tended to be
equal to or greater than 1 m, for both coordinates, when the number of seasons was less than
100. The number of seasons for training with seasons above 300 has a worsening in the results,
showing overtraining.

Evaluations on the impact on the number of neurons and/or hidden layers have not been analyzed,
because the MPCA methodology was applied. This methodology already delivers an optimized
architecture. Therefore, it was not necessary to investigate these parameters.

Experiments have shown the impact on how training, validation, and generalization sets are cho-
sen. In addition, something important is the sensitivity to noise. Therefore, in the next work, the
impact caused by noise will be evaluated, mainly in the confidence interval of the estimates.

Trends Comput. Appl. Math., 24, N. 1 (2023)
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