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Abstract. This paper presents a new parameterization scheme to the continuation
power flow that allows the complete tracing of P-V curves and the computation of
the maximum loading point of power system, without ill-conditioning problems of
the Jacobian matrix and without the exchange of parameter. The objective is to
present the technique in a clear and didactic way.
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1. Introduction

An important task of voltage stability analysis is the computation of the system’s
maximum loading point (MLP). This is important for the knowledge of voltage sta-
bility margin and also for modal analysis studies, which uses the MLP to assess the
critical eigenvectors and eigenvalues of the Jacobian matrix. Usually, the MLP is
obtained by successive power flow solutions through manual scaling of the loading
level of the system. This procedure is repeated until the power flow method (PF)
becomes divergent. For practical purposes this point is considered as the MLP [7].
The MLP is associated to a physical limitation of the power network for a particular
configuration, load condition, load increase direction etc. and, should not be based
on a mathematical limitation of the numerical method. As shown in [3], the point
where PF calculations fail to converge may vary, depending on which method is
used in the calculation. It was shown in [3] that different MLPs were obtained with
the conventional Newton and fast decoupled methods. It is well known that the
convergence problems of conventional Newton methods during the computation of
the MLP are consequences of numerical difficulties associated with the singularity
of the Jacobian matrix. This singularity occur in systems with constant PQ loads
because, in this case, the gradual load increment will lead to a saddle-node bifurca-
tion point, which corresponds to the MLP. Therefore, the divergence will occur even
if double-precision computation and anti-divergence algorithms are used. Thus, this
class of methods is not adequate for tracing complete P-V curves, being restricted
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to the upper portion of the curves until the vicinity of the MLP. In general, the
ability of the power flow method to find a solution will depend on the existence of
the solution or multiple solutions, the presence of singularity, the solution method,
and the initial conditions.

The application of continuation methods for voltage stability analysis overcome
the above mentioned difficulties by adding parameterized equations [1, 2, 3, 4, 5, 7,
10]. The load flow equations are reformulated in order to eliminate the singularity
of the Jacobian matrix (J), and consequently the numerical problems that occur
in its vicinity at the MLP. A critical point for a successful continuation method
is the parameterization step, which has been the subject of many investigations
reported in the literature. The most used parameterization techniques can be clas-
sified as local parameterization [1] and geometrical parameterization [4, 5]. The
local techniques consist of changing the parameter near the MLP in a way that the
singularity of J disappears. Geometrical techniques add equations of lines or arc-
lengths as parameters. For instance, a line equation perpendicular to the tangent
vector was used in [6]. It provided good results but a very precise step size control
around the MLP was necessary [4]. In [5] an arc-length equation was proposed as
parameter. This technique allows the complete tracing of P-V curves with no need
of changing the parameter during the process. However, as it includes a non-linear
equation at the predictor step, the resulting set of equations requires the applica-
tion of special methods to be successfully solved, which can be very time-consuming
[5]. An important characteristic of continuation methods is that they can provide
valuable information regarding the geometry of the solution space of the power flow
equations, which is useful not only from a didactic point of view, since it facilitates
the understanding of the problem, but it can also aid the development of new strate-
gies for the elimination of numerical problems related to the solution methods, the
computation of multiple solutions and obtaining of voltage stability indices [8].

The parameterization techniques based on physical parameters simplify the
mathematical definition and understanding of the methods [1, 2]. However, the
major part of continuation methods found in the literature use complex param-
eterization techniques with purely geometric interpretation [4, 5]. The latter are
considered more robust and therefore, more appropriate than those based on phys-
ical parameters [7].

This paper presents a new geometric parameterization scheme that allows the
complete tracing of the P-V curves without ill-conditioning problems of the matrix
J . The Jacobian matrix singularity is avoided by the addition of a line equation,
which passes through a point in the plane determined by variables loading factor
and bus voltage magnitude. The use of this technique enlarges the group of voltage
variables that can be used to tracing of P-V curves.

2. Continuation Power Flow (CPF)

The definition of a CPF method starts with the general power flow equations for a
given system, which can be written as

G(V, θ, λ) = 0 (2.1)



An Efficient Geometric Parameterization Technique for the CPF 187

where V is the vector of voltage magnitudes and θ is the vector of voltage phase
angles. The symbol λ is a loading factor used to scale up the loading and generation
level and G is a vector of equations representing the real and reactive power balance
of system buses. These equations can be written as

[Pgen(λ) − Pload(λ)] − P (θ, V ) = 0
[Qgen − Qload(λ)] − Q(θ, V ) = 0

(2.2)

here Pload(λ) = λkplP
sp
load, Qload(λ) = λkqlQ

sp
load, and Pgen(λ) = λkpgP

sp
gen, P sp

load,
Qsp

load, and P sp
gen are specified values at base case (λ = 1) for real and reactive power

of PQ buses and real power for PV buses, respectively. The symbols kpg, kpl and kql

are pre-specified parameters used to adjust a specific loading scenario, describing the
rate of changing of real power (Pgen) for generation buses (PV buses), and real (P )
and reactive (Q) power for load buses (PQ buses). Therefore, it is possible to apply
an individual loading variation, for a single bus or for a selected group of buses,
considering different power factors (from the base case values) for the buses. If
system security is evaluated through the maintenance of a minimum voltage stability
margin, a constant power load representation will result in a more secure operational
system condition [9]. Once a loading and generation pattern is defined, (2.2) can
be solved by using a conventional PF method (e.g. Newton) to compute solutions
for various loading conditions. This is done by increasing λ gradually from 1 (base
case) up to a value for which a solution can no longer be found (PF calculations
diverge). In this case V and θ are dependent variables, while Pgen, Pload, Qload

and λ are independent variables, i.e., λ is treated as a parameter in the Newton
iterative process. On the other hand, in continuation method procedures in general,
λ is considered as a dependent variable and then, changed automatically. In this
case, equation (2.2), which dimension is n = 2nPQ+nPV (nPQ and nPV correspond
to the number of PQ and PV buses, respectively) now has n + 1 unknowns, and
an additional equation is needed. The difference among the continuation methods
is in the way this new variable is handled and how singularity of the Jacobian
matrix is avoided. Among the many methods described in the literature [1, 2, 7],
the most widely used consist of four basic elements: a parameterization procedure,
a predictor step, a step size control, and a corrector step.

3. Proposed Continuation Power Flow

In order to eliminate the drawback of continuation methods, the methodology pro-
posed in this paper adds a new equation to (2.1). The idea is to use a line equation
(see Figure 1) that passes through any chosen point (λ0; V 0) at the plane defined
by variables loading factor (λ) and buses voltages magnitude (V ):

G(θ, V, λ) = 0
W (θ, V, λ, α) = α

(

λ − λ0
)

−
(

Vk − V 0

k

)

= 0
(3.1)

where the parameter α is the angular coefficient of the line. As a new equation is
added, λ can be treated as dependent variable and α is considered as continuation
parameter.
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3.1. Parameterization and Predictor Step

Starting from a solved base case (θ1, V 1 and λ1) plus the initial chosen point
(λ0; V 0), a value for α is computed by

α1 =
V 1

k − V 0

k

λ1 − λ0
. (3.2)

Once α computed, the proposed continuation power flow method (PCPF) can be
used to trace the P-V curve and to compute the MLP by applying the predictor step
to find an estimate for the next solution. The most common prediction techniques
estimate solutions on the tangent or secant lines computed from converged points
[1, 5, 10].

Figure 1: Tangent predictor with α as parameter.

In the tangent method, the estimate of the next solution can be found by taking
an appropriately sized step in a direction tangent to the solution path at the current
solution. The tangent vector is computed by taking the derivative of (3.1)
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where x =
[

θT V T
]T

, Gλ corresponds to the partial derivatives of G with
respect to λ, J is the Jacobian matrix of the conventional PF, Jm is the Jacobian
matrix modified due to the increase in the number of rows and columns and t the
tangent vector. The sign choice (+1 or −1) will depend on how variable α will be
changing as the solution path is being traced. Plus if it is increasing, and minus if
it is decreasing. After solving (3.3) for the tangent vector t, the estimate for the
next solution is given by
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where the superscript ”e” stands for estimate, that is, the tangent vector is used
to obtain an estimate for θ, V, λ and α starting from the current solution j. The
symbol σ is a scalar that defines the predictor step size. Its value must be such that
the estimate is within the radius of convergence of the corrector step.

The secant method uses the current and the previous solutions in order to esti-
mate the next one. Therefore, this is an approximation of tangent predictor. The
main advantage of this predictor is that it is relatively inexpensive in term of cpu
time and has no problems related to the singularity of the Jacobian matrices. How-
ever, the tangent predictor is usually more accurate than the secant predictor, while
it cannot foresee control limit effects any better than the secant.

A trivial predictor is the modified zero-order polynomial [4, 8], which uses the
current solution and a fixed increment in the parameter (Vk, θk, λ or α) as an
estimate for the next solution. Note that the repeated conventional power flow ap-
proach corresponds to a continuation method with a modified zero-order predictor.

3.2. Parameterization and Corrector Step

Finally, the corrector step solves the case from the estimated solution until con-
vergence of the power flow. After the prediction has been made, it is necessary
to correct the approximate solution to avoid error accumulation. Since the point
obtained by a good predictor is very close to the correct solution, few iterations will
be performed to obtain an exact solution. Newton’s method is used in the corrector
step. In this step, equation α − αe = 0, where α and αe are respectively the vari-
able selected as the continuation parameter and its predicted value, is appended to
(3.1). So, decomposed the equation (3.1) in Series of Taylor, the correct solution is
computed by solving

[

−J −Gλ

∂W

∂x
−α

]





∆θ
∆V
∆λ



 = Jm





∆θ
∆V
∆λ



 =





∆P
∆Q
∆W



 (3.5)

which is solved by Newton method. For αe the solution of (3.5) gives the new
point on the curve (θ2, V 2 and λ2) corresponding to the intersection of the solution
trajectory curve with the line with new angular coefficient specified by αe.

4. Test Results

The first point is computed by a conventional Newton method. The convergence
criterion adopted to change the step size and parameters during iterative process is
a predefined number of iterations associated to the total mismatch criterion. The
total mismatch is defined as the sum of the absolute values of the real and reactive
power mismatches. The tests are performed considering a convergence threshold of
10−4p.u. for total mismatch and a maximum number iterations of ten.
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4.1. A General Procedure for Changing the Set of Lines

It was necessary to define a procedure to choose the best set of lines to be used
at each stage of the P-V curve. After many tests we concluded that the following
procedure is highly robust and also provides a low demand in terms of the total
number of iterations needed to build the P-V curves. Its main steps are:

1. solve the base case using a conventional Newton method (λ = 1) and α1 is
computed by (3.2), Figure 1;

2. the remaining lines are obtained by applying a step size of 0.02 for σ us-
ing equation (3.3) predictor and (3.5) corrector, then is calculated for each
predictor, a new estimated value of α for the correction until not find more
solution;

3. if the PCPF not find solution, it is estimated the coordinates of the set of
lines to the median point, between the last two obtained points (points ”a”
and ”b”), i.e., [(Va + Vb)/2, (λa + λb)/2] will be the coordinates of the second
set of lines, called median point (MP ), Figure 3(b). The α1 is calculated by
the line which passes by the coordinates of the center of set of lines (median
point) and the last point solved (point ”b”).

4. when Vk is greater than Vk−1, it is estimated more 4 points, then, consider
the equation of the line that passes by the coordinates initial of set of lines
(point ”O”) and the last point solved and complete the trace of the P-V curve
with σ = 0.02.

4.2. Performance of the PCPF for the IEEE-118 Bus System

The Figure 2 illustrates the results of the PCPF for tracing P-V curves of the
IEEE-118 bus system. Figure 2(a) presents the voltage at the critical bus 13 (V13)
as function of λ (P-V curve), with the α as parameter, along with the lines used for
solving each point. Point P (λ1 = 1.0; V 1 = 0.9680p.u.) was solved by a conventional
PF. The angular coefficient of the first line (α1 = 0.2680) considering that the initial
point is the origin (0, 0.7), was computed by using equation (3.2). In the Figure
2(b) can be seen the points obtained along the P-V curve of the bus 9, for the
parameter α of the Figure 2(a). The number of iterations performed for solving
each point with the PCPF and the CPF with V13 as parameter can be seen in
the Figure 2(c), where after the point 27, the CPF with V13 as a parameter not
will pass because of the singularity of the matrix J , i.e., will return of the same
way of solution already obtained. From these results it can be concluded that the
PCPF have a good performance along the solution trajectory even in the vicinity
of the MLP and beyond, providing solutions in the lower part of the curve keeping
a reduced number of iterations. It should be emphasized that the MLP, and so the
loading margin (LM), is obtained after the solution of few points on the curve.

Figure 3 shows similar results of the bus 13. Figure 3(a) presents the P-V curve
of the bus (PQ) 44 (V44) as function of λ (P-V curve), with the α as parameter.
It is observed that when the PCPF not find solution for the first set of lines, it is
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Figure 2: System IEEE-118: (a) Plane λ − V13 with α as parameter, (b) points of the
curve P-V obtained, (c) number of iterations.

estimated the coordinates of the second set of lines to the median point between the
last two points obtained (points ”a” and ”b”), and after the solution of few points
on the curve changes to the step 4 of the general procedure and complete the trace
of the P-V curve. The Figure 3(c) shows the critical bus with the points obtained
through of the bus 44. The number of iterations performed for getting each point
can be seen in Figure 3(d). If it were used the CPF parameterized by V44 or λ to
the obtaining of P-V curve of the bus 44, the method would be restricted only in the
upper part of the curve and often without really knowing if the value is the MLP. It
would be need an exchange of parameters to eliminate the singularity of the matrix
J and get the MLP. This occurs because the ”noses” of the curves are coincident.
The same occurs for the bus 46 of Figure 4 to use V46 or λ as parameter.

Figure 3: System IEEE-118: (a) Plane λ − V44 with α as parameter, (b) detail of the
MLP region, (c) points of the curve P-V of the bus V9 obtained, (d) number of iterations.
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Figure 4: System IEEE-118: (a) Plane λ − V44 with α as parameter, (b) detail of the
MLP region, (c) points of the P-V curve of the bus V9 obtained, (d) number of iterations.

Consider now the P-V curve of a bus 46 (PV), figure 4, whose magnitude voltage
remains constant over a relatively large stretch of the P-V curve, in the case of the
generation bus of number 46, see Figure 4. The Figure 4(a) presents the voltage at
the bus 46 (V46) as function of λ (P-V curve), with the α as parameter, along with
the lines used for solving each point. Point ”P” was solved by a conventional PF.
The angular coefficient of the first line (α1 = 0.3050) considering that the initial
point is the origin (0, 0.7), was computed by using equation (3.2). The other lines
were obtained using the equations (3.3), (3.4) and (3.5). There was the exchange
of set of lines (i.e., to the median point) with step of 0.2 for σ, Figure 4 (b), where
the singularity of the matrix J was eliminated. Note that the PCPF get success in
tracing of the entire P-V curve, including the part constant in the curve and the
lower part of the curve, Figure 4(a) and (b). In the Figure 4(c) can be seen the
points obtained along the P-V curve of the bus 9, for the parameter α of the figure
4(a). The objective is to show that the points obtained actually belong to the upper
and lower part of the P-V curve, i.e., it is possible to obtain the P-V curve complete
without the exchange of parameter, this process is verified by point ”c” of Figure
4(b) and (c). The number of iterations spend for solving each point with the PCPF
can be seen in figure 4(d).

5. Conclusion

This paper presents a new scheme for the parameterization step of continuation
methods aiming the complete tracing of P-V curves without the exchange of pa-
rameter. The proposed methodology allows the successful computation of any point
on the P-V curve, with the desired precision, and keeping low requirements in terms
of the number of iterations of the convergence process. Another important aspect
to be pointed out is that the results obtained for many systems agree with other
methods published before [2]. A procedure to switch from a set of lines to other,
during the tracing of the P-V curves is also presented, if necessary. The automatic



An Efficient Geometric Parameterization Technique for the CPF 193

switching process is done with the purpose of avoiding singularity points on the
Jacobian matrix, and also to keep a low requirement in terms of the number of
iterations. Even though sometimes it is necessary to change from one set of line
to another, the proposed method has as advantage that, unlike other methods, the
next set of lines is known in advance. Besides, the change of set of lines does not
modify the Jacobian element position but only their values. It can be concluded
from many tests performed, that the method represents a very attractive option for
building P-V curves and computing the MLP of power systems. It is also of very
easy computational implementation, given that few modifications on the conven-
tional power flow program would be required. It also showed that the use of this
technique enlarges the group of voltage variables that can be used to obtain the
P-V curves.

Resumo. Este trabalho apresenta um novo esquema de parametrização geométri-
ca para o fluxo de carga continuado que possibilita o traçado completo das curvas
P-V, e o cálculo do ponto de máximo carregamento de sistemas de potência sem a
troca de parâmetro. Foi implementado o preditor tangente, então para resolver o
problema de singularidade da matriz Jacobiana foi adicionado a equação de uma
reta que passa por um ponto no plano formado nas variáveis fator de carregamento
e magnitude das tensões nodais. O uso desta técnica amplia o grupo das variáveis
de tensão que podem ser usadas para o traçado das curvas P-V. Os resultados
obtidos para o sistema IEEE 118 barras mostram que as caracteŕısticas do método
convencional são melhoradas e a região de convergência ao redor da singularidade
é ampliada.

Palavras Chaves. Fluxo de Carga, Multipla Soluções, Ponto de Máximo Car-
regamento.
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