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ABSTRACT. In this work, we provide some sufficient conditions to study the global asymptotic stability
of the endemic equilibrium for certain models in mathematical epidemiology with nonlinear incidence and
removal functions. We also present numerical examples in order to illustrate our results.
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1 INTRODUCTION

Forecasting the evolution of an infectious disease has been the main motivation for the con-
struction of mathematical epidemiological models. This is because knowing the evolution of
the infectious disease allows the design of public health strategies to control or eradicate the
disease. In epidemiology, many mathematical models descend from the classical SIR model of
Kermack and McKendrick, established in 1927. When the infectious diseases confer permanent
acquired immunity, these diseases can be modeled by classical susceptible-infectious-recovered
(SIR) models. In epidemiological models the total population, N(t), is divided into any number
of classes according to their epidemiological status. In the SIR model, S is the number of indi-
viduals in the susceptible class, I is the number of individuals who are infectious but not isolated
and R is the number of individuals who are recovered.

We propose the following SIR model

Ṡ = µN −µS− f (S, I),

İ = f (S, I)− (γ +µ)I −g1(I), (1.1)

Ṙ = γI +g1(I)−µR,
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2 A SIR MODEL WITH GENERAL RECOVERY FUNCTIONS

with N(t) = S(t)+ I(t)+R(t). In model (1.1), it has an inflow of newborns into the susceptible
class at rate µN and deaths in the classes at rates µS, µI and µR. Notice that, The births balance
the deaths. Therefore, the population size N is constant. Also, it is assumed that the infected
population recovers at a rate γ and joins the recovered class. The interaction between susceptible
and infected population will produce new infected individuals. These contagion processes are
characterized by the C1 incidence function f (S, I). Define g(I) := (µ + γ)I + g1(I), for some
g1(I)≥ 0, we make the following assumptions:

i) f (S,0) = f (0, I) = 0 and f (S, I) is a positive function for S, I > 0.

ii) f (S, I) is monotonically growing for S > 0.

iii) g(0) = 0 and g′(I)> 0 for I ≥ 0.

The asymptotic behavior of SIR models with the general nonlinear incidence rate have been
studied by many researchers; see [1,2,6,7] and [3]. However, the treatment rate of the infectious
is assumed to be linear i.e., g1(I) = 0. In [8, 9] a SIR model with a saturated treatment is studied
i.e., g1(I) := rI

1+αI , nevertheless it deals only with a specific incidence rate. The general strategy
in the previous works has been, first to establish the existence of an endemic point, then to prove
that it is unique and later to proof the global stability in the feasibility region.

In this work, we develop criteria on global stability without the need to prove the existence and
uniqueness of an endemic point, our result will also allow us to recover several results in the
literature such as those above mentioned and extend them for general removal terms.

2 RESULTS

Without loss of generality, since the total population N(t) is constant, we take N(t) = 1. Then
1= S(t)+I(t)+R(t). To analyze the endemic points, we reduce model (1.1) to a two-dimensional
system as R does not appear in the first two equations of (1.1), the third equation can be ignored.
This observation gives the simpler system

Ṡ = µ −µS− f (S, I),

İ = f (S, I)−g(I). (2.1)

By hypotheses i) and iii), we have that (2.1) always admits the disease-free equilibrium state
E0 = (S0, I0) = (1,0).

In the following result, we prove that all solutions of system (2.1) are eventually confined in the
a compact subset, which is a positive invariant region.

Lemma 1. The region
∆ = {(S, I) ∈ R2 : S ≥ 0, I ≥ 0,S+ I ≤ 1}

is a positive invariant region for system (2.1).

Trends Comput. Appl. Math., 25 (2024), e01544
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Proof. Consider a solution of system (2.1), given by (S(t), I(t)), with initial condition
(S(0), I(0)) ∈ ∆. We define w(t) = S(t)+ I(t). Using equations given in (2.1), it is obtained

ẇ = µ −µw+ f (S, I)− f (S, I)− γI −g1(I)≤ µ −µw. (2.2)

Multiplying expression (2.2) by eµt leads to

eµt ẇ+µeµtw ≤ µeµt . (2.3)

Notice that, equation (2.3) can be written as

˙eµtw ≤ ˙eµt . (2.4)

By integrating (2.4) in [0, t] and since w(0) = S(0)+ I(0)≤ 1, then

eµtw(t)≤ eµt −1+w(0)≤ eµt . (2.5)

Therefore.
w(t)≤ 1. (2.6)

That is, a solution (S(t), I(t)) of system (2.1) does not come out on the side S+ I = 1.

On the other hand, consider the initial condition (S(0), I(0)) = (0, I(0)) ∈ ∆ with I(0)> 0. Then,
the dynamics of system (2.1) in the vertical side of ∆ is given by

Ṡ = µ,

İ =−g(I(0)).
(2.7)

From the reduced system given by (2.7), it is shown that every solution with initial condition
(S(0), I(0)) = (0, I(0)) goes into ∆. Therefore, these solutions do not come out for the vertical
side of ∆.

Finally, we consider a solution of system (2.1) on the horizontal side of ∆. That is, (S(0), I(0)) =
(S(0),0) with S(0) ≥ 0. Thus, system (2.1) constrained to this type of initial condition is given
by

Ṡ = µ(1−S),

İ = 0.
(2.8)

From (2.8), it is concluded that every solution of the model with an initial condition (S(0), I(0))=
(S(0),0) remains on the horizontal side of ∆. Therefore, these solutions do not come out for the
horizontal side of ∆.

Therefore, all solutions in ∆ remain in this subset when t → ∞. In conclusion, ∆ is a positive
invariant region. □

Trends Comput. Appl. Math., 25 (2024), e01544
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4 A SIR MODEL WITH GENERAL RECOVERY FUNCTIONS

From Lemma 1, it can be concluded that every solution of system (2.1) in the first quadrant will
eventually enter or remain in ∆.

Let ∆o denote the interior of ∆.

Recall that a real matrix is Hurwitz if its eigenvalues have negative real parts. In dimension 2, the
condition that a matrix A is Hurwitz is equivalent to requiring Trace(A)< 0 and Det(A)> 0.

The basic reproduction number R0 has been defined as the average number of secondary in-
fections that occur when one infective is introduced into a completely susceptible host popula-
tion [1]. To calculate the basic reproduction number, we use the method proposes in [1]. Then,
for system (2.1) , the basic reproduction number is

R0 =
1

g′(0)
∂ f (E0)

∂ I
.

We denote by X the vector field formed by the right hand side of system (2.1). We get

Lemma 2. Let f (S, I) and g(I) be functions satisfying i)-iii). If R0 > 1, then E0 is saddle for X.

Proof. In effect, we have that E0 is the equilibrium point, by i) we get ∂ f (E0)
∂S = 0 and since

R0 > 1 then ∂ f (E0)
∂ I −g′(I0)> 0. Hence the derivative of X in E0 is

D(X)(E0) =

 −µ − ∂ f (E0)
∂ I

0 ∂ f (E0)
∂ I −g′(I0)


which has eigenvalues of different signs, this concludes the proof. □

Let us introduce the following notation.

Definition 1. For C1−functions on an open set U ⊂ R2, f1, f2 : U → R, with independent
variables x,y, we consider the partial Wronskian with respect to y, as

Wy( f1, f2) := det


f1

∂ f1
∂y

f2
∂ f2
∂y

= f1
∂ f2

∂y
− f2

∂ f1

∂y
.

Theorem 3. Let f (S, I) and g(I) be functions satisfying i)-iii). If R0 > 1 and

WI( f ,g)≥ 0, (2.9)

then (2.1) admits a unique endemic equilibrium, which is globally asymptotically stable relative
to ∆o.

Trends Comput. Appl. Math., 25 (2024), e01544
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Proof. We denote by X the vector field formed by the right hand side of system (2.1) and
consider the vector field 1

g X . Notice that 1
g X and X have the same phase portraits in ∆o. By a

straightforward computation and (2.9) we obtain

Trace
(

D
(

1
g

X
))

=− 1
g2

[
g
(

µ +
∂ f
∂S

)
+WI( f ,g)

]
< 0. (2.10)

Therefore by Bendixson-Dulac’s criterion, there are no periodic solutions or polycycles in ∆o [4].

Since ∆o is a positive invariant region for 1
g X , the Poincaré-Bendixson Theorem implies that

for any x ∈ ∆o its ω-limit set is a fixed point which cannot be E0 because this is saddle i.e,
ω(x) = {pλ}, pλ ∈ ∆o, for some index, λ ∈ Λ. Notice that, Λ is the set of indexes that records
the number of equilibria points of the system. This implies the existence of at least one point of
endemic equilibrium.

By direct computation and (2.9) we have

Det
(

D
(

1
g

X
))

=
1
g3

[
µWI( f ,g)+

∂ f
∂S

(µ −µS)g′
]
> 0. (2.11)

Thus by (2.10) and (2.11) the Jacobian matrix of 1
g X(p) is Hurwitz for all p ∈ ∆o. Therefore, the

fixed points pλ are isolated and asymptotically stable.

Now let
W s

pλ
:= {x ∈ ∆

o : ω(x) = {pλ}} (2.12)

be the basin of attraction for each pλ . These sets are open and not empty. As ∆o = ∪λ∈ΛW s
pλ

and ∆o is connected , then it is obtained that the cardinality of Λ is one, which is denoted by
#(Λ) = 1. Therefore there is a unique endemic equilibrium E∗, which is asymptotically stable
and all solutions with initial data in ∆o converge to E∗. This finishes the proof. □

Recall that a function k(S, I) on ∆o is uniformly sublinear function if

∂k
∂ I

(S, I)≤ k(S, I)
I

for all 0 < S, I < 1. (2.13)

As was observed by [2], if a C2-function k(S, I) is concave with respect to the variable I i.e.,
∂ 2k
∂ 2I ≤ 0, then it is uniformly sublinear.

As a direct consequence of Theorem 2.2, we have the following statement.

Corollary 4. Let f (S, I) and g(I) be functions satisfying i)-iii). If R0 > 1 and if −g, f , are
uniformly sublinear functions, then (2.1) admits a unique endemic equilibrium, which is globally
asymptotically stable relative to ∆o.

Proof. By the sublinearity of f and −g we have ∂ f
∂ I ≤ f

I and ∂g
∂ I ≥ g

I respectively, combining
these inequalities we get

WI( f ,g) = f
∂g
∂ I

−g
∂ f
∂ I

≥ f
g
I
−g

f
I
= 0,

Trends Comput. Appl. Math., 25 (2024), e01544
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6 A SIR MODEL WITH GENERAL RECOVERY FUNCTIONS

this yields the condition (2.9) as desired. The result follows from Theorem 2.2. □

An immediate consequence of Corollary 2.3 and the remarks above is the following result.

Corollary 5. Let f (S, I) and g(I) be functions satisfying i)-iii). If R0 > 1, g is convex and f
concave with respect to I, then (2.1) admits a unique endemic equilibrium, which is globally
asymptotically stable relative to ∆o. The Theorem 2.2 extends and/or refines certain previously
established results. It is shown in [2], Theorem 2.6 that if f grows monotonically with respect
to both variables, is uniformly sublinear. If in addition R0 > 1 and g(I) = (µ + γ)I, then system
(2.1) has a unique positive endemic equilibrium state which is globally asymptotically stable.
Notice that inequality (2.9) is valid if f is uniformly sublinear and if g(I) = (µ + γ)I. Therefore
our Theorem 2.2 recovers that result of global stability.

On the other hand, for f concave with respect to I and g(I) = (µ + γ)I a similar result on global
stability was established in [6], Theorem 2.1. As we mentioned if f is concave respect to I, then
f is uniformly sublinear. So Theorem 2.2 also recovers that result of global stability.

2.1 Examples

In this section, we explore epidemiological models with nonlinear incidence and removal terms.
Using our previous results, we analyze the global stability of the endemic equilibrium. To
understand our results more intuitively, some numerical simulations are also carried out.

Example 2.1. Consider the SIR model determined by{
Ṡ = µ −µS− βSI

1+αI ,

İ = βSI
1+αI − (µ + γ)I − r1Ir2 − s1Is2 ,

(2.14)

where r2,s2 ≥ 1; γ,α,r1,s1 ≥ 0 and β ,µ > 0. Since g(I) = (µ +γ)I+ r1Ir2 + s1Is2 is convex and
f (S, I) concave with respect to I, then by Corollary 2.4 there is a unique endemic equilibrium
which is globally asymptotically stable whenever R0 > 1. Taking the SIR model (2.14) with
specific parameters µ = 0.3,γ = 0.1,r1 = 0.2,r2 = 2,s1 = 0.3,s2 = 3,α = 1 and β = 3, we get
R0 = 7.5. Hence system (2.14) admits a unique endemic equilibrium which is globally stable.
See Figure 1.

Trends Comput. Appl. Math., 25 (2024), e01544
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Figure 1: Figure illustrates the dynamic behavior of system (2.14) in the positive quadrant of
(S, I) plane. In this scenario, the function f (S, I) = βSI

1+αI shows a saturation phenomenon in I
while g(I) = (µ + γ)I + r1Ir2 + s1Is2 is always increasing in the variable I.

Example 2.2. Take for example the SIR model given by{
Ṡ = µ −µS− βSI

1+αI ,

İ = βSI
1+αI − (µ + γ)I − rI

1+kI ,
(2.15)

where all parameters are positive. If α ≥ k and R0 > 1, then there is a unique endemic equi-
librium which is globally asymptotically stable. Indeed, a straightforward computation yields
WI( f ,g)≥ 0 on ∆o. Therefore, we can apply Theorem 2.2. In particular, for the system (2.15) with
specific parameters µ = 0.25,γ = 0.6,r = 0.7,k = 0.1,α = 0.4 and β = 2.5, we get R0 ≈ 1.6129.
So (2.15) admits a unique endemic equilibrium which is globally stable. See Figure 2. Notice that
in this example g is not convex.

Trends Comput. Appl. Math., 25 (2024), e01544
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Figure 2: Figure shows the existence of a global attractor of model (2.15). In this scenario, a
saturation phenomenon, as a function of I, is considered in the number of new infections and in
the number of recovered individuals.

Example 2.3. We consider the following SIR model with incidence rate proposed in [5] and a
similar removal function g(I),{

Ṡ = µ −µS−βSe−mII,

İ = βSe−mII − (µ + γ)I + re−kII,
(2.16)

with all parameters are positive. If m ≥ k and R0 > 1, then there is a unique endemic equilibrium
which is globally asymptotically stable. Indeed a direct computation gives

WI( f ,g)≥ rβSI2e−(m+k)I(m− k)≥ 0.

On the other hand, the monotonic growing condition iii), g′(I) ≥ 0, is equivalent to
(µ + γ)ekI + rkI ≥ r, which is true for 0 ≤ I ≤ 1, due to µ + γ > r. The last inequality is im-
plied by R0 > 1. Therefore, we can apply Theorem 2.2. In particular, for the system (2.16) with
parameters µ = 0.4,γ = 0.6,r = 0.2,m = 3,k = 1 and β = 20, we get R0 ≈ 16.6667. Thus, sys-
tem (2.16) admits a unique endemic equilibrium which is globally stable. See Figure 3. Notice
that in this example f is not monotone with respect to I.

Trends Comput. Appl. Math., 25 (2024), e01544
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Figure 3: Figure shows numerical simulations of solutions of model (2.16) when the functions
f (S, I) and g(I) satisfy the conditions i)-iii) and R0 > 1. Notice that, when the number of infec-
tious individuals increases, the incidence function f (S, I) = βSe−mII and the number of recov-
ered individuals, g(I) = re−kII are non monotone functions. However, the solutions of the model
converge to the global attractor.

3 DISCUSSION

In this paper, a new coordinate-free approach was proposed to establish the existence, the unique-
ness and the global stability of an endemic equilibrium point for SIR models. These criteria re-
cover several results in the literature. We also provided numerical examples in order to illustrate
our results. As future work, we intend to study new sufficient conditions of type (2.9) that cover
new situations or other models.
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