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Breather Stability in One Dimensional Lattices with
a Symmetric Morse Potential
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Abstract. Harmonic one dimensional lattice with an additional Morse potential
on site has been used to describe DNA macromolecules properties. We analyze a
modification of this lattice introducing a symmetric Morse potential. The existence
and stability of the breather is studied in this modified system. We obtain harmonic
bifurcation and determine the effective mass of the mobile breather.
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1. Introduction

Physical aspects of the DNA has received large attention from the scientific com-
munity (see, for example, ref. [1] for an experimental overview on the theme), in
particular, several theoretical models have been introduced to study thermodynam-
ics [2] and dynamics [3-5] properties of this macromolecules. In the end of the 1980
decade Peyrard and Bishop (PB) introduced a mathematical model to analyze the
DNA. In the PB model, DNA molecule is mimicked by two parallel strands com-
posed by chains of masses (the nucleotides) coupled elastically one to another. The
strands are coupled by a Morse potential simulating the H-bond between the bases
pair in the macromolecule. The Hamiltonian for the Peyrard-Bishop model [2] is
given by :

H=H,+ Hy, (1.1)

where

v, P

U4 V4

Hp_z{znjLJr%{L} (1.2)
J

represents the kinetic energy of the system, and

Hy = Z {%[(UJ - Uj—l)2 + (’Uj — Uj_l)Q]} + ZV(UJ — Uj) (1.3)

J

Lhernan@ibilce.unesp.br
2¢lso@ibilce.unesp.br
3zerug@ibilce.unesp.br



206 Cortez, Drigo Filho and Ruggiero

is the potential energy. In the equation (1.2), p,, and p,, are the linear moment.
For simplicity we consider that the mass m and the constants K are equals for all
nucleotides.

Introducing a new set of coordinates:

_7uj—vj _7’U,j—|—’Uj
yj_ \/§ 9 IJ_ \/§

we get a new form to the Hamiltonian

2 2
H = Z {% + %} +Z{§ [(@) = 2j1)* + (v —yjl)Q]} +ZV(\/§yg‘)

(1.4)

As usual in the DNA analysis [2,3] our interest is to study the optical Hamilto-
nian of this latter equation given by:

H—Z{%} +Z{§ [(yj—yjl)z}}JrZV(\/ﬁyj). (1.5)

The equations of motion for (1.6) are the system of discrete nonlinear Klein-
Gordon (KG) equations ( j=1,2,...,N)

yi" + K(2y; — yj—1 — yj41) + V' (V2y;) = 0 (1.6)

with V' being the derivative of the potential. Breathers are periodic and localized
solutions of (1.7) [6]. The dynamic of the PB model is obtained from eq. (1.7)
explored in reference [2] and our results in this case are similar to that reference.
In this model the function V'(u; — v;) is given by a Morse potential.

The main results of this work is concerning the symmetric Peyrard-Bishop (SPB)
model, where the potential V(u; — v;) is symmetric (it is defined in the next sec-
tion). We also observe the existence of harmonic bifurcation and we determine
initial conditions to move the breather.

1.1. The model and the formulation of the problem

In the original PB model it is used the Morse potential in eq. (1.5), i.e.,

V(y;) = D[e~ W) —1]2. (1.7)

In the present work, we modify the original model by using a symmetric Morse
potential (SPB model) given by

V(y:) = Dle~ "l — 12, (1.8)
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in eq. (1.5). The constants a and D are specific parameters related with the width
and deep of the potential, respectively.

The acoustic Hamiltonian describes a chain of harmonically coupled oscillators
and do not deserve any new physical knowledge. Then, in what follow, we will
be treating only the equations of motion derived from the optical Hamiltonian.
Considering, for simplicity, m = 1,D=1/2 and a=1, the equation of motion for
the studied models are given by equation (1.7) and we are interested in their time
reversible and periodic solutions. Breather [3], with a given frequency w;, and
period T=27/w;, can be obtained from nonlinear discrete systems of the form
(1.7). MacKay and Aubry proved analytically their existence [7]. In the present
work, numerical methods have been used to obtain breathers using truncated Fourier
series for the coordinates yy, (t):

km
Yn = 2" + Z 22, " cos(kwyt)
k=0

Substituting this expression for y,(¢) in (1.7) we obtain a system of algebraic
equations given by:

k2wp?z," + K(Zan N L zn+1k) +V,* =0 (1.9)

which depend on the control parameter K, and V,,’* is the Fourier coefficient
for the periodic function V'(y,(t)) The dynamics of the DNA model was originally
studied with soliton techniques [2]. However, in this work we use the anti-continuous
limit method [7] to get the solution. The first step of this method is to solve nu-
merically the system of equations (1.7) in the uncoupled limit, K = 0. Using the
above truncated Fourier series with w, = 0.8 and k,,= 17 represents the eighteen
coefficients of (1.10) which are obtained by usual numerical calculation with MAT-
LAB [8]. The next step to create the breather is to introduce the coupling between
the neighborhood oscillators, i. e., to solve the dynamical equations with K # 0,
using the previous isolated oscillator solution as a trial function. The numerical
results are obtained for N = 21 (as the number of oscillators in (1.10)), wp =0.8,
we start from a trial solution at K = 0 and increasing the parameter K by small
steps. Each obtained solution for a value of K is used as the trial solution for the
new value of this parameter, replaced by K + §, in a modified Newton process.
At the beginning, the breather (”bright breather”) solution is obtained considering
only one oscillator vibrating with equal amplitude from their equilibrium position.
Figure 1 show a example of such solution. The Fourier coefficients were obtained
by the Newton’s method [8]. The solutions for a short period of time are presented
in Figure 1. In this figure, the oscillators are numbered from -10 to +10 with the
central one labeled with n = 0 (N=21).

The stability of the breather solution can be performed numerically. The goal
is to get the behavior of the system around the periodic solutions uy(t). Let us
introduce a new function Uy, (t) = yn(t) + €, (t), where y,,(¢) is the periodic breather
solution of the SPB model shown in Figure 1 and €,(t) is a perturbation. Imposing
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AMPLITUDE, u(i

TIME, t

Figura 1: Spatial breather configuration of the SPB model with the control parameters
K=0.1297 and w,=0.8.

that U, (t) must satisfy the system (1.7) and expanding around y,,(t) to first order
(linearization), we obtain the following system of equations for €;(t).

6" +k(2¢; — €1 —€511) + V" (V2(y;(t))e; = 0 (1.10)

The Floquet theory [9] is used for differential equations with periodic coefficients.
In our cases (symmetric and non-symmetric Morse potential), y,, are periodic func-
tions and the system (1.12) can be transformed in Hill’s equations with periodic
coefficients since V" (v/2(y;(t)) is also a continuous periodic function. The linear
stability of these solutions can be obtained from the eigenvalues of the Floquet
matrix FO , called Floquet multipliers. The Floquet matrix F0 is given by the fun-
damental matrix ®(t) associated to the system (1.12) at the period T. The equations
(1.12) can be transformed in a system of first order equations by introducing

=mn =-V"yk)E - KJE (1.11)

where ¢ and m are N dimensional vectors, represented by column matrix of
dimension N x 1. [V?(yn(t))] and [J] are NxN matrix with elements given by
[V”(yn(t))]iyj =V (yn(t))(SZJ and [J]i,j = 25i,j_5i,jfl_5i,j+1 y respectively, 5i,j being
the Kronecker delta symbol. The appropriate periodic boundary conditions used in
the calculation is given by yo=yn and y1=yn+1.

2. Floquet multipliers
In short, we can construct a vector Q(t)=( £(¢),m(¢t) ) and a periodic matrix [A]
(2N x 2N) composed by four blocks with dimension N x N so that €(¢) satisfies the

equation

Q' = A(t)Q. (2.1)
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The fundamental matrix ®(¢) can be construct from the 2N linearly independent
solution of (1.13) corresponding to different initial conditions, defined as a column
vector with 2N-1 zeros and 1 in the i-th position (i =1, ... , 2N) such that, for any
instant t, ®(t) satisfy

O = A(t)®. (2.2)

The equation (2.1) is a Floquet type equation. The matrix [A] is periodic, i.e.,
[A (t + T)] = [A (t)]. Then, it is easy to show that ®(t 4+ T') is also solution of
(1.13) with each element being a linear combination of all elements of ®(¢). Thus,
it can be written as

O(t+T) = ()M, (2.3)

where M is a matrix of constant elements. Obviously, by construction ®(0) is the
identity matrix and ®(7")= M is known as the monodromy matrix. In this case, M
is the Floquet matrix FO.

The eigenvalues of monodromy matrix are the Floquet multipliers. As discussed
in reference [9] the solution is stable (bounded) if the modules of Floquet multipliers
are equal to one, and unstable if at least one multiplier has modulus different from
one. In this last case, the perturbation solution €, (t) will increase in time because
after p periods of time, the equation (2.3) leaves us to

O(t + pT) = B(t)MP, (2.4)

that will blow up if at least one of the multiplier has modulus greater than 1.
To ensure linear stability, all eigenvalues f,, =e*? of M have to lie on the unit circle
in a complex plane, i.e., the Floquet arguments 6, must be real-valued. We can
construct a breather mobile using a harmonic bifurcation [3]. The intuitive analogy
with the pendulum is helpful, because in this case we have two possibilities. We
are interested here in rotating solutions above the separatrix, a kinetic perturbation
must be exerted [3].

The center of energy for the system is given by [3]

nH,
Xg = E"T (2.5)
where the density energy H,, is the form
»; k
H, = ﬁ + {Z [(yn - yn71)2 + (Ynt1 — yn)z]} + V(\/iyn) (2.6)

We can use the profiles of the stationary breather for these parameters and the
velocity is a vector which the components are given by [3]

un(0) = (Yn+1(0) = yn-1(0))/2 (2.7)
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We can define a perturbation velocity in terms of the parameter A. The compo-
nents of this vector perturbation V are given by

Va(0) = A(v,(0) /v) (2.8)

where v is the norm of the vector of the components v,,(0).

This velocity can be used as a small perturbation added to the initial conditions.
Thus, the kinetic energy added to the breather by the initial kick’ is (1/2)A?. The
effective mass can be defined through the relation

m*Vi2/2 = \?/2 (2.9)

where V}, is the breather velocity of the center of energy obtained by the equations
(1.7).

3. Stability and mobility for SPB model

The second derivative of the symmetric Morse potential (1.9) is given by

V" = 2exp (=2|yn) — exp (= |yn|) (3.1)

and should be used in the equations of motion (1.12).

Solving this system of equations, we observe breather stability for many values
of the coupling parameter K ( 0 < K < 0.28) and frequency w, = 0.8. This
bifurcation is characterized when two real eigenvalues of Floquet multipliers are
different from one for =0, as showed in figure 2a. In this figure we note that two
eigenvalues are out of the unit circle and this exact solution is linearly unstable.
For the coupling K=0.28 and w;, =0.8 there is a harmonic bifurcation ( fig. 2(a)).
In this case we can construct a mobile breather following the methodology of the
reference [3], described in the preceding section, using a perturbative parameter \.

We determine for the parameters K=0.28, w,=0.8, A = 0.1 and v=3/800 (fig.
2(b)) the effective mass. It is, in this case, m = (\/v)? = 711.11. When we use
K=0.35 the effective mass is 493.8.

The breather motion can be characterized by the perturbation parameter ().
In the SPB model the critical value is A = 0.1. We note that the mobility of
the breather depends on the proximity of control parameter K from the region of
harmonic bifurcation (figure 2(a)). For K=0.28, w=0.8, A = 0.01 the breather
remains pinned because the center of energy Xpg remains fixed (figure 2(b)). On
the other hand, for K=0.28, w, = 0.8 and A = 0.1 the center of energy is displaced
to others sites of the lattice, i.e. we get mobile breather. Finally for A = 1 the
velocity of the center of energy is not uniform.

4. Conclusions and Discussion

From the analysis of SPB model, we could shown the existence and the stability of
the breathers. In particular, the behavior of the mobile breathers is determined in
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Imaginary part

Figura 2: Distribution of the Floquet eigenvalues of the instability matrix of the breather
and the Center of energy. (a)Distribution on the unit circle of the extended Floquet matrix
in the SPB model for wy=0.8 and k=0.28. Two eigenvalues are out of the unit circle and
this exact solution is linearly unstable. (b)Center of energy (Xg) as a function of the
critical parameter with K=0.28 and w,=0.8, the parameter A are A = 0.01 (upper line),
A = 0.1 (middle line) and A = 1 (bottom line)

terms of the center of energy . This behavior depends on the initial conditions, the
parameter K and w,. We obtain for the SPB model the breather stability for the
parameters 0 < K < 0.28 and wp = 0.8, while for the same value of the frequency
the original PB model gives stable breathers for K in the range 0 < K < 0.13 [3]. We
observe that the range of the stability in terms of the parameter K is approximately
the double for the symmetric case. The result indicates that the SPB model is more
stable than the PB one. We also determine that the amplitudes of the breathers
for the PB model are larger than the amplitudes obtained for the SPB model.

In terms of the effective mass, we observe that it decrease if the couple parameter
K increase. This behavior is also observed for the PB model [3].

Finally, we would like to express that the center of energy is useful in the analysis
of the interaction of breathers and impurities. Then, the results obtained here can
be used to study this kind of lattices which is more realistic for physical application,
for instance, in DNA macromolecule [4]. On the other hand, the existence of the
mobile breather can be useful to understand the localized 'hot spot’, i.e. a local
accumulation of energy , which might be pinned in the lattice or may travel through
it [10] and the existence of thermodynamic phase transitions [11].
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Resumo. Redes nao lineares com o potencial de Morse tem sido usados para des-
crever as propriedades do DNA. Analizamos uma modificagdo desta rede usando o
potencial de Morse simétrico. A existéncia e a estabilidade dos breathers sdo estu-
dadas neste sistema. Os resultados mostram a existéncia de bifurcacdo harmonica
e a massa efetiva do breather mével também foi determinada.
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