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ABSTRACT. Colorectal cancer morphogenesis begins at the cellular level from cell mutations in the in-
testinal epithelium cavities called crypts. These mutations lead to a pressure difference in the epithelium
crypt walls, which can cause deformation and generate visible abnormalities in the epithelium. The geo-
metrical modeling of these crypts and the mathematical modeling of the biomechanical process that leads
to deformations can be simulated by using a Finite Element Method. The method solves numerically the
system of partial differential equations (PDEs) that governs this phenomenon and permits to estimate the
deformations of the crypt walls. In this work we simulate the crypt deformation when the cell mutations
appear in several regions of the crypt epithelium.

Keywords: colorectal cancer, crypts, finite element method, computer simulation.

1 INTRODUCTION

In the process of the development of colorectal cancer, called carcinogenesis, cell mutations can
arise in colon cavities, called crypts, containing transit and stem cells [30]. Mutant cells usually
show higher proliferation rate than normal cells, which causes a larger pressure on the crypts
walls than that generated by normal cells. This leads to a deformation of the crypt walls and its
top orifice. If mutant cells fill adjacent crypts, a set of abnormal and deformed crypts appear.
Thereafter there is a growth of the epithelium tissue caused by these abnormal crypts inside the
colon that evolves to an adenoma. Adenomas in the colon are characterized in early stages by the
formation of larger and deformed orifices of the epithelium crypts, which have a displacement in
the intestinal lumen [14, 30].

Regarding the cell and tissue growth modeling, we present in Section 2 a spatial continuous
model based on PDEs, similar to that used in [17], that determines the density and adhesion
cell-cell pressure of fully differentiated and proliferative transit cells in a single crypt.
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194 MODELING OF VISCOELASTIC CRYPT DEFORMATION

The exact morphology resulting from an abnormal proliferation of cells at some locations along
the crypt axis is not known. However this leads to a deformation that can proceed to a budding,
a orifice enlargement or an abnormal crypt fission [1, 15]. We follow a model similar of that in-
troduced in [17], but instead of using a biomechanical model considering only the crypt orifice
deformation, we consider the entire crypt walls deformation which permits to simulate the colon
epithelium tissue growth generated by abnormal crypt cells located in any position in relation to
the crypt base. This allows to be more effective in understanding how orifice enlargement and
deformation observed in usual colonoscopy images can be originated by abnormal cell prolifer-
ation along the usual colonoscopy camera hidden crypt axis. Understanding such origin of crypt
morphology permits to associate different orifice deformation shapes to particular locations of
the abnormal cells along the crypt axis. It is then feasible to apply a specific target therapy to
these locations to block the adenoma formation since cells at different crypt axis quotes have
different level of Wnt/-catenin/TCF4 signaling pathway and APC protein. Wnt pathway is for
instance more active in the lower part of the crypt and decreases moving upwards up to be null at
the crypt top, whereas APC protein has an opposite gradient along the crypt axis [17,23]. Such a
model based on longitudinal crypt section can allow a model calibration based on real data of a
three dimensional crypt as that obtained by the scanning electron microscope SEM as that used
in [4, 25].

In literature, there are many spatial models describing the cell spatial location, also called cell-
based models, including in-lattice or grid-models [23,30,31] and off-lattice or lattice-free models
[2, 9, 19]. The choice to preferring a spatial continuum model with respect to a cell-based model
is in the possibility of extend its application to simulate cell dynamics in millions of crypts that
can be done using a multiscale strategy, as done in [16].

For the tissue growth modeling, as highlighted in reviews [3,11,24], many possible models based
on cell dynamics in the intestinal crypts have been considered, among them: continuum mechan-
ics models [15, 27]; compartmental models describing the transition between cell types, regard-
less of their position [7,8]; and nonspatial stochastic models based on the use of epidemiological
data to predict cancer formation or some genetic instability [12, 13]. Our model determines the
displacement and deformation of the epithelium tissue along the crypt based on a continuum
equilibrium relation, this allows us to use directly the pressure gradient between cells as a force
acting on the tissue.

2 MODELING CRYPT CELL DYNAMICS AND DEFORMATION

In this Section we present the geometrical domain used to represent a crypt and two half crypts
at its left and right in a cross section of the colon epithelium. Then we introduce the PDE system
that describes the cell dynamics in this domain, see Subsection 2.2. Later in the Subsection 2.3
we define a viscoelastic model responsible for the tissue deformation along the crypt, which
coupled with the cell dynamics model allows to deform the geometrical domain of the crypt and
to observe, in some abnormal cases, tissue growth as it is shown in Section 4.

Trends Comput. Appl. Math., 23, N. 1 (2022)
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2.1 Geometrical Domain

The colon epithelium is formed by a periodic distribution of crypts that in three dimension can
be locally represented as in Figure 1. We study and analyze the deformation occurring in a small
region Ω of the colon epithelium during a time interval [0,T ]. Its external crypt subdomain ΩE

is formed by the cross section of the external epithelium tissue, which has one crypt in its center
and two walls of two adjacent crypts at its left and right, see Figure 2.

Figure 1: Small portion of the epithelium tis-
sue formed by 9 crypts.

Figure 2: Domain ΩE formed by a cross sec-
tion of a single crypt in the center with two
adjacent crypt walls at left and right.

Figure 3: Full Problem domain Ω with the ex-
ternal crypt tissue ΩE and the internal connec-
tivity tissue ΩC.

The domain Ω has also a tissue region ΩC that is formed by the connective tissue of the colon ep-
ithelium between the crypts. Thus we model the deformations and cell dynamics in Ω=ΩE∪ΩC,
see Figure 3. In ΩE , we use a diffusive-convective model for the dynamics of proliferative (also

Trends Comput. Appl. Math., 23, N. 1 (2022)
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196 MODELING OF VISCOELASTIC CRYPT DEFORMATION

called transit) cells and fully differentiated cells. Both ΩE and ΩC have elastic structures that can
move during the time interval [0,T ]. Figure 4 illustrates the boundary domain subdivisions and
their notations. Region ΩE has an external boundary formed by Γr that contains its upper circular
borders, Γ3 is the vertical boundary of the ΩE bottom and Γtop is the horizontal boundary of the
ΩE top. We note that normal mature (fully differentiated) cells are released in the colon lumen
through this last boundary Γtop [30]. The remaining external ΩE boundary is denoted by Γ1. In
the interface between ΩE and ΩC we localize Γbot that represents the circular bottom boundary,
and Γ2 that is the remaining interface boundary. Furthermore we denoted by Γ4 the lower ΩC

boundary where the tissue is supposed to be fixed.

Figure 4: Subdivisions of the boundary.

Since we deform such domains in time, we denote by Ω(t) the geometrical domain of the crypt
at time t ∈ [0,T ] that is deformed in relation to the original domain Ω represented in the figures
above. Similarly we denote by ΩE(t) and ΩC(t) the deformed external and connective tissue
domain at time t.

2.2 PDE model for cell dynamics

We suppose, as done in [17, 18], that a crypt contains two families of cells: proliferative transit
cells with density N1 = N1(x, t) and fully differentiated living cells with density N2 = N2(x, t)
where x = (x,y) ∈ ΩE(t) and t ∈ [0,T ]. It is also supposed that N1 and N2 satisfy the overall
density condition N1 +N2 = 1 and that cell families have the same diffusion coefficient D as it is
asserted in [28]. According to the model used in [17,18], N1 and N2 satisfy in ΩE(t) for t ∈ (0,T ]
the following PDE system

∂N1
∂ t −∇ · (∇pN1) = ∇ · (D∇N1)+αN1−βN1

∂N2
∂ t −∇ · (∇pN2) = ∇ · (D∇N2)+βN1,

N1 +N2 = 1

, (2.1)

Trends Comput. Appl. Math., 23, N. 1 (2022)
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where α is the proliferation rate of N1, β is the proliferation rate of N2, p is the cell-cell adhesion
pressure responsible for the upwards cell transition along the crypt axis. Since N1+N2 = 1, if we
sum the first two equations of (2.1) and take N = N1, the temporal and spatial derivatives cancel.
Thus we obtain that N = N(x, t) and p = p(x, t) satisfy in ΩE(t) for t ∈ (0,T ]:{

∂N
∂ t −∇.(∇pN) = ∇.(D∇N)+αN−βN

−∆p = αN.
(2.2)

The boundary conditions for the pressure are
p = 0 , if x ∈ Γtop

η p+(1−η)
∂ p
∂n

= 0 , if x ∈ Γr

∂ p
∂n

= 0 , if x ∈ Γ3∪Γ2∪Γ1∪Γbot

(2.3)

In the second equation of (2.3), η is the modulus of y-coordinate of outward normal vector in Γr.
This is a Robin boundary condition that allows the transition between the Dirichlet and Neumann
conditions in Γ1 and Γtop.

For the density, the boundary conditions are

N = 1, if x ∈ Γ3

D
∂N
∂n

+N
∂ p
∂n

= 0, if x ∈ Γtop∪Γr ∪Γbot

∂N
∂n

= 0, if x ∈ Γ1∪Γ2

(2.4)

The proliferation rate α is higher at the crypt bottom and becomes null at the top, normally
in the upper third of the crypt height where most of the fully differentiated cells, that are not
proliferative, reside [30]. On the other hand, the transformation rate β behaves in the opposite
way. It means that it is higher at the crypt top and null at the bottom, thus we use as in [17, 18]
the rates

α(y) =

{
τ(y− 2

3 h)2, 0≤ y≤ 2
3 h

0, elsewhere
, β (y) =

{
0, 0≤ y≤ 2

3 h
τ(y− 2

3 h)2, elsewhere
(2.5)

where h denotes the crypt height and τ > 0 is a constant that is determined by using some
biological information of the analyzed crypt such as the cell size and the cell convective velocity
along the crypt axis.

The full model (2.2) with the boundary conditions (2.3)-(2.4) guarantees that transit cells diffuse
in the crypt, proliferate with rate α and differentiate with rate β . Moreover these cells have a
convective upward velocity v = −∇p. This velocity increases along the vertical crypt axis up
to reach the crypt top, where fully differentiated cells are released in the lumen, as it has been

Trends Comput. Appl. Math., 23, N. 1 (2022)
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198 MODELING OF VISCOELASTIC CRYPT DEFORMATION

observed experimentally [30]. We note in fact that the boundary conditions for the pressure and
density in Γ permit cells to move upwards, and to be released in the colon lumen across the Γtop

boundary.

2.3 The Viscoelastic Model

As discussed in [17], the crypt domain Ω can be considered as a viscoelastic structure. Then
it can have a displacement u(x, t) = (u1(x, t),u2(x, t)) in relation to its original position, where
u1 and u2 are the displacement along the x−axis and y−axis of point x at time t, respectively.
Since connective tissue domain base is normally considered as fixed we allow only Γ1, Γ2, Γbot ,
Γtop, Γr to be free boundaries whereas Γ3, Γ4 remain fixed. The gradient of pressure differences
acts as a force on the external crypt boundary Γ1∪Γr ∪Γtop, which causes a deformation of Ω,
with a displacement u. The stress tensor σ(u) = (σi j(u))i, j=1,2 has elastic σ el

i j and viscous σ vs
i j

components, so that σi j = σ el
i j +σ vs

i j . Since ΩE contains only cells it relaxes more linearly than
ΩC and so it can be represented as follows with an elastic structure, see [17]:

σ
E
i j (u) = λE∇ ·uδi j +µE

(
∂ui

∂x j
+

∂u j

∂xi

)
. (2.6)

In (2.6) λE and µE are the Lamé coefficients, which describe mechanical properties of elastic
materials [29]. On the other hand, in ΩC, we have a viscoelastic structure that has elastic and
viscous components. We use a Standard Linear Solid (SLS) model for modeling the viscoelastic
tissue domain ΩC. This model is largely used in the representation of biological tissues [26].
Then, using the Einstein summation convention, we have

σ
C
i j(u) = Di jkl(x,0)εkl(u)(x, t)−

∫ t

0

∂Di jkl

∂ s
(x, t− s)εkl(u)(x,s)ds, (2.7)

where

εi j(u) =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
, (2.8)

D(x, t) = (Di jkl)i jkl=1,2 with

D11kl(x, t) =

(
λ (x, t)+2µ(x, t) 0

0 λ (x, t)

)
, D12kl(x, t) =

(
0 µ(x, t)

µ(x, t) 0

)
,

D21kl(x, t) =

(
0 µ(x, t)

µ(x, t) 0

)
,D22kl(x, t) =

(
λ (x, t) 0

0 λ (x, t)+2µ(x, t)

)
(2.9)

where λ (x, t) = λE(1+ e−
t

τ0 ), µ(x, t) = µE(1+ e−
t

τ0 ) with τ0 = 5.43s, see [10, 17].

At the equilibrium, the crypt structure displacements satisfy for i = 1,2 for all t ∈ (0,T ]

−∇ ·σE
i (u) = fi , in ΩE(t)

−∇ ·σC
i (u) = 0 , in ΩC(t)

u = 0 , on Γ3∪Γ4

σi(u) ·n = 0 , on ∂Γ1

ui(x,0) = ∂ui
∂ t (x,0) = 0 , in Ω(t)

(2.10)

Trends Comput. Appl. Math., 23, N. 1 (2022)
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where σi(u) = (σi1(u),σi2(u)) and n = (n1,n2) is the outward normal vector in Γ1. Furthermore,
we have f=−γ∇(p− p∗), with f= ( f1, f2), p∗ being the pressure exerted between the cells in the
normal case and p the exerted pressure in the abnormal case, that causes the crypt deformation,
and γ is an adimensional term related with the current geometry of the tissue domain and cell
dimensions.

3 METHODOLOGY

We simulate the crypt deformations and the associated tissue growth during the first stages of
colorectal cancer in which abnormalities occur in a single crypt as shown in Section 4. We use
a classic Finite Element Method with piecewise linear basis to solve the differential problem in
different time instants and we advance in time with a fixed time interval ∆t by using a Backward
Euler’s method. Once the crypt deforms as the process goes forward, the domain mesh changes in
each time iteration. The computational code is implemented using the FreeFem++ software [22],
that solves numerically the density N, pressure p, and displacement u by using a piecewise linear
finite element basis of the domain Ω(t) at each t ∈ (0,T ].

4 RESULTS AND DISCUSSIONS

In order to simulate different crypt deformations and the associated tissue growth due to abnormal
crypt cell proliferation, we need to assert the normal case and how it differs with respect the
abnormal cases.

4.1 Stable Solution for N

In order to have a stable solution of system (2.2) with boundary conditions we find an expression
for the transformation rate β , for a given α and a stable solution N. We suppose that

α(y) =

{
τ
(
y− 2h

3

)2
if 0≤ y≤ 2h

3
0 if y > 2h

3

(4.1)

in which τ is the relaxation constant, and the stable solution is

N = N(x,y, t) =


1 0≤ y < yb

Ns(y) yb ≤ y≤ yt

0 yt < y≤ h
(4.2)

where Ns(y) =
y−yt
yb−yt

, in which yt is the minimum (vertical) coordinate y of the top region and
yb is the maximum (vertical) coordinate of the bottom region. Since the solution N is stable, we

have by hypothesis that
∂N
∂ t

= 0. Then, from the first equation of (2.2), we have

∆pN +∇p ·∇N +∇ · (D∇N)+(α−β )N = 0. (4.3)

But, from the second equation, −∆p = αN, with D constant, we obtain in [yb,yt ]

βNs(y) = α(y)[1−Ns(y)]Ns(y)+∇p · (0,N′s(y))+DN′′s (y). (4.4)

Trends Comput. Appl. Math., 23, N. 1 (2022)
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Moreover since N′s(y) =
1

yb− yt
and N′′s (y) = 0, we obtain

βNs(y) = α(y)[1−Ns(y)]Ns(y)+
∂ p
∂y
· 1

yb− yt
. (4.5)

Since
∂ p
∂x

= 0 on Γ1∪Γ2 and p = 0 on Γtop, we assume that p = p(y) in order to get a simpler

solution. Then, recalling that ∆p =−αNs(y), we have

p′′(y) =−α(y)Ns(y). (4.6)

Integrating both sides of the equation we obtain

p′(y)− p′(yt) =
∫ yt

y
α(ξ )Ns(ξ )dξ , (4.7)

for all y ∈ [y,yt ].

We know that, at the crypt top, vtop = −∂ p
∂y

(yt) = 0.85 position/hour = 0.85 · hcell µm/h [30].

Moreover, since a crypt has a height 433µm on average, and cells have height 5.9µm [20], then
for a crypt in the model with height hcrypt , we have

hcell =
5.9hcrypt

433
. (4.8)

Thus vtop =−
∂ p
∂y

(yt) = 0.85 · 5.9hcell

433
= 0.01158hcrypt . Then

∂ p
∂y

=−vtop +
∫ yt

y
α(ξ )

[
ξ − yt

yb− yt

]
dξ . (4.9)

If 0 < y≤ 2h
3

, we have

∫ yt

y
α(ξ )

[
ξ − yt

yb− yt

]
dξ =

∫ 2h
3

y
τ

(
ξ − 2h

3

)2(
ξ − yt

yb− yt

)
dξ . (4.10)

On the other hand, if y >
2h
3

, we have

∫ ytop

y
α(ξ )

[
ξ − yy

yb− yt

]
dξ = 0. (4.11)

Thus, we get
∂ p
∂y

=−vtop +
∫ 2h

3

y
τ

(
ξ − 2h

3

)2(
ξ − yt

yb− yt

)
dξ , (4.12)

Trends Comput. Appl. Math., 23, N. 1 (2022)
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if 0 < y≤ 2h
3

and

∂ p
∂y

=−vtop, (4.13)

if y >
2h
3

. At last, if we define β only for yb ≤ y≤ ylim, with ylim < yt , and recall that Ns(yt) = 0,
we obtain

β (y) = α(y)[1−Ns(y)]+
∂ p
∂y
· 1

y− yt
, (4.14)

where Ns(y) is a solution of the problem

∂N
∂ t
−∇ · (∇pN) = ∇ · (D∇N)+α(y)N−β (y)N.

Figures 5 and 6 show the stable solution for density and the pressure solution of the equation
−∆p = αNs.

Figure 5: Stable solution Ns . Figure 6: Pressure p associated with the stable
density solution Ns.

4.2 Numerical Simulations

We tested many abnormal examples each leading to a different cell dynamics and crypt deforma-
tion. In each test the abnormality, characterized by a region with an unexpected high proliferation
rate α , is located in a different region. We use the following parameter values in each simulation:

Trends Comput. Appl. Math., 23, N. 1 (2022)
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crypt height h = 433µm, D = 1 (µm)2/hour, γ = 1 · 10−6, ∆t = 1 · 10−6 hour, τ = 1 · 10−5

hour−1(µm)−2 and Hmax = 6.67369 µm, with Hmax being the maximum diameter of the mesh
triangles. Moreover we use the boundary conditions for the pressure and density (2.3)-(2.4) and
the initial condition N(x,y,0) given in (4.2) with yt = h = 433µm and yb = 37µm.

In all simulations, meshes are automatically generated by the software FreeFem++. The finite
element mesh used at the beginning of the simulations, at time t=0, have 17174 triangles and
9307 vertices. After each time step, the mesh is updated based on the calculated displacements
using the “movemesh” routine. If this update causes overlapping of the elements, FreeFem++
adapts the mesh using the “adaptmesh” routine based on the BAMG mesh adaptive method [21].

4.2.1 Test I

In the first test the abnormality is centered in the lower region of the crypt, as shown by the black
circle in Figure 7.

Figure 7: Initial mesh and the abnormality location marked by a black circle located in the crypt
bottom.

After 15 time steps, the solutions u1 and u2 calculated on the updated mesh are shown in 8 and
9. Moreover, solutions N and p− p∗ are plotted respectively in Figures 10 and 11.

We observe that the displacements along the x-axis are symmetric since they are the same in
the right and left crypt walls, according to the expectations. It results then in a symmetric defor-
mation problem. Moreover, we note a relevant opening of the crypt orifice along the time, that

Trends Comput. Appl. Math., 23, N. 1 (2022)
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Figure 8: Displacement u1 after 15
time steps.

Figure 9: Displacement u2 after 15
time steps.

Figure 10: Cell density N after 15 time
steps.

Figure 11: Pressure difference p− p∗

after 15 time steps.

characterizes microadenomas such as the Aberrant Crypt Foci1, see [16, 17, 30]. Besides that,
we have a large pressure difference in the region of the abnormality. This pressure difference
decreases as we ascend the crypt. Regarding cell density N, we note that it is equal to 1 at the
crypt base and decreases its value moving upwards in the direction of the crypt top where it has
a null value.

1Aberrant crypt foci (ACF) [5, 6] are clusters of crypts in the colon epithelium, containing cells with a deviant behavior
with respect to the normal ones such as those hyper proliferating that due to their action can deform the crypt structure
giving rise to aberrant crypt orifices. It is believed that ACF are precursors of colorectal cancer morphogenesis.

Trends Comput. Appl. Math., 23, N. 1 (2022)
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4.2.2 Test II

In the second simulation the abnormality is located in the left branch (wall) of the crypt, in a
centered position in relation to the y-axis, as it can be seen by the black circle in Figure 12.

Figure 12: Initial mesh and the abnormality location in the middle of the crypt axis.

After 20 time steps, the displacements u1 and u2 computed on the updated mesh are shown in
Figures 13 and 14. N and p− p∗ are respectively shown in Figures 15 and 16.

In this simulation we observe that there is a larger displacement in the left crypt wall in relation
to the portion on the right. This behavior agrees with what is expected because the abnormality is
on the left side and, therefore, exerts larger influence in this region than on the right. Once again
the pressure difference is large close to the abnormality and this difference decreases as we move
away from this region. In this case, the density behavior is similar to that observed in test 1: it
varies from one to zero, from the bottom to the top.

Trends Comput. Appl. Math., 23, N. 1 (2022)
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Figure 13: Displacement u1 after 20
time steps.

Figure 14: Displacement u2 after 20
time steps.

Figure 15: Density N after 20 time
steps.

Figure 16: Pressure difference p− p∗

after 20 time steps.

4.2.3 Test III

In the third situation, the abnormality is on the left branch of the crypt, in a higher position, as
shown by Figure 17.

After 20 time steps, the solutions to u1 and u2 calculated on the updated mesh are shown in
Figures 18 and 19. Besides that, solutions to N and p− p∗ are respectively shown in Figures 20
and 21.

Trends Comput. Appl. Math., 23, N. 1 (2022)
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Figure 17: Initial mesh with abnormality location in the top crypt left corner.

Figure 18: Solution to u1 after 20 time
steps.

Figure 19: Solution to u2 after 20 time
steps.
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Figure 20: Solution to N after 20 time
steps.

Figure 21: Solution to p− p∗ after 20
time steps.

In this simulation, the region on the left of the crypt moves, forming an opening in this direction.
The right-hand portion of the crypt has a very small displacement. This occurs because the dif-
ference in pressure in the right portion is very close to zero, since the abnormality is found in the
left portion. Again, cell density decreases along the crypt vertical axis, from one at the bottom to
zero at the top.

4.2.4 Test IV

In the fourth simulation, the abnormality is centered in the upper right portion of the crypt, as
shown by the black circle in Figure 22.

After 10 time steps, the solutions to u1 and u2 calculated on the updated mesh are shown in
Figures 23 e 24. Moreover, the solutions N and p− p∗ are respectively shown in Figures 25 and
26.

In this test we observe an elongation of the left domain region of the epithelium due to the
presence of upward-oriented forces in this region. Such forces come from the pressure difference
in the abnormality region. The displacements in y-axis, shown by u2, are larger than those in
x-axis. Moreover, the pressure difference is larger in the upper left portion of the crypt, being
practically null in the entire right branch. Cell density presents a behavior similar to that of the
other tests, decreasing from the crypt bottom to the crypt top.
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Figure 22: Initial mesh with abnormality location.

Figure 23: Horizontal dis-
placement u1 obtained after
10 time steps.

Figure 24: Vertical displace-
ment u2 obtained after 10
time steps.
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Figure 25: Solution to N after 10 time
steps.

Figure 26: Solution to p− p∗ after 10
time steps.

5 CONCLUSIONS

The process of colorectal cancer development arises from the presence of abnormal cells in the
intestinal crypts. This leads to a pressure difference, which generates tissue displacements. Using
a PDE model, it was possible to numerically simulate the tissue deformation over time by using
the Finite Element Method. This is a problem in which the domain is updated in each time
iteration.

We analyzed how different positions of the abnormality in the tissue affects the process evolution.
The displacements occurs in different ways depending on the inital location of abnormal prolif-
erative cells. This is in line with what is biologically expected since abnormal cell proliferation
can lead to forces acting in the tissue epithelium [1, 15].

The crypt orifice deformation is an early sign of the formation of adenomas in the colon [17,
30]. Therefore, with this research, we were able to model how abnormal cells characterized by
excessive proliferation can lead to crypt deformation that can occur before cancer appears [30].
This work suggests that we can understand where the abnormal cells are acting, observing the
deformed orifice and crypt walls. This can be useful to force target drugs to act in specific colon
epithelium regions in order to block the colorectal cancer formation or reducing its growth.
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