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Linear Multistep Methods and Order Stars:

Some Properties
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Abstract: Order stars theory, introduced by Wanner et al (1978), have become a
fundamental tool for understanding of order and stability properties of numerical
methods. In this work we intend to study some properties of numerical linear
multistep methods using this theory.
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1. Introduction

Order stars theory was first introduced by Wanner [6] and has become a fundamental
tool in numerical analysis applied to differential equations. The great idea behind it
is to study the behavior of numerical methods through the properties of analytical
functions. In this way the order of a numerical method may be see as an exponential
approximation problem. This theory set up relation between order and stability of a
numerical method and help us to choose a better computer method. In this work we
present a study of some properties and definitions from orders stars theory applied
on the proof of the First Dahlquist Barrier to the order of a good numerical linear
multistep method to solve an ordinary differential equation. We begin with a brief
presentation of the order stars theory.

1.1. Order Stars of First Kind

Let f : C → C be a function. We say that f is an essential-analytic function if
it is a meromorphic function, that is, if it is an analytic function except in poles
and a finite number of essential singularities in the closed complex plane given by
clC = C∪ {∞}. Remember that a point zo ∈ C∪ {∞} is called a pole of order m if

f(z) =

m
∑

j=0

βj

(z − zo)j
+

∞
∑

l=0

αj(z − zo)
j , 1 ≤ m < ∞,
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and an essential-singularity when m = ∞.
Assume that f is an essential-analytic function being approximated by a rational
function R given by

R(z) =

m
∑

j=0

ajz
j/

n
∑

l=0

blz
l.

Excluding the trivial case f ≡ R we define

ρ(z) = R(z)/f(z), z ∈ clC.

We can see that ρ is an essential-analytic function. Furthermore its interpolation
points, that is, the points zo for which f(zo) = R(zo), are explicit in the expression
of ρ being equivalent to ρ(zo) = 1. With this terminology we can now give the first
formally definition.

Definition 1.1. The first kind order star {f, R} is defined as a partition of the
closed complex plane as {A−, A0, A+} where

A− = {z ∈ clC : |ρ(z)| < 1},

A0 = {z ∈ clC : |ρ(z)| = 1}

A+ = {z ∈ clC : |ρ(z)| > 1}.

Figure 1: First kind order star {ez, 1 + z +
z
2

2!
+ · · · + z

6

6!
}, A+ in black.

It is clear that A0 is the boundary of A+ and A− and that it is the union of
simple Jordan curves (see Figure (1)). We are interested in obtain information
about the interpolation properties, stability, location of zeroes and the behavior
nearly essential-singularities from the order stars geometry.

Definition 1.2. Let zo be an element of clC, f be an analytical function on neigh-
borhood of it and R a rational function. If there exists a constant C 6= 0 and an
integer p ≥ 1 such that

{

|zo| < ∞ ⇒ R(z) = f(z) + C(z − zo)
p + O(|z − zo|

p+1)
zo = ∞ ⇒ R(z) = f(z) + Cz−p + O(|z|−p−1)

,

we say that zo is an interpolation point of order p.
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Clearly zo belongs to A0. Furthermore we can read the interpolation order of zo

from the order star geometry by counting the numbers of sector of A− and A+

close to it.

Definition 1.3. We define the index of a point zo by ι(zo) as the number sectors
of A− that are close to it (this definition needs more rigor when zo is an essential
singularity [6]).

Definition 1.4. Let zo ∈ A0 and p = ι(zo) > 0. We say that zo is a regular point
when ρ is analytic in zo and there are exactly p sectors of A− and p sectors of A+

close to it, with an asymptotic angle of π/p.

Theorem 1.1. Let zo be a zero of f with multiplicity k ≥ 0. If it is an interpolation
point of order p ≥ max{1, k + 1} then ι(zo) = p − k and it is regular.

Proof: We may assume, with no lost of generality, that z0 6= ∞. Thus

f(z) = C1(z − zo)
k + O(|z − zo|

k+1), C1 6= 0,

and follows from the definition of ρ that

ρ(z) = 1 + (C/C1)(z − zo)
p−k + O(|z − zo|

p−k+1), C 6= 0.

Let s = p − k, C2 = C/C1 6= 0. We can take z = zo + rei θ, r > 0, to obtain

|ρ(z)|2 = 1 + rsRe{C2e
i s θ} + O(rs+1) = φ(r, θ).

Given ǫ > 0 and take r sufficiently small, it is clear that z ∈ A+ when Re{C2e
i s θ} >

ǫ and that z ∈ A− when Re{C2e
i s θ} < −ǫ. Since Re{C2e

i s θ} changes of signal 2s
times to equally spaced values of θ ∈ [0, 2π] the theorem is proved, except to the
cases in which there are sectors of A+ or A− with angle asymptotic null (cusps).
To complete the proof we will show that this case does not occurs. Cusps may
occur just if, when r → 0, there exists distinct values of θ such that φ(r, θ) = 1
converging to the same value. This implies that a zero of dφ(r, θ)/dθ tends to a
zero of φ(r, θ), which is a contradiction since ρ is analytic in an neighborhood of zo,
dφ(r, θ)/dθ = −srIm{C2e

i s θ} and Re{C2e
i s θ}, Im{C2e

i s θ} = 0 does not coexist
because C2 6= 0. Theorem is then proved. �

We will establish a relationship between the location of the zeros and poles of ρ and
the interpolation points. The connected components of A+ and A− are called the
A+-regions and the A−-regions, respectively. Such regions are called analytical if ρ
is analytical on its boundaries. Remembering that the interpolation points belong to
A0, the common points of the boundary of A+ and A−. We say that an A+-region
or an A−-region is of multiplicity L when its oriented boundary contain exactly L
interpolation points (note that this points need not be necessarily distinct).

Theorem 1.2. The multiplicity of an analytical A+-region is the number of poles
of ρ, counting with its multiplicities into the domain, and 1 ≤ L < ∞. An equivalent
condition hold for an analytical A−-region.
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Proof: Let U be an analytical A+-region of multiplicity L. We will consider the
oriented boundary of U by parameters as γ(t) = γR(t) + iγI(t), 0 ≤ t ≤ 1, where
both γR and γI are real functions. Since ρ is analytical on ∂U and U is a level set of
|ρ| we can see that γ is analytical in [0, 1], except in a finite number of points. Let
v(t) = (γ′

R(t), γ′
I(t)) e n(t) = (γ′

I(t), −γ′
R(t)) the tangent and the normal vector to

γ(t), respectively. From the definition of A+ we have that when we stay close to
∂U inside the domain, |ρ| decreases locally. Thus ln |ρ| decrease too along n, close
to ∂U . Writing ρ in polar coordinates as

ρ(z) = r(x, y)ei φ(x,y), z = x + i y ∈ clC,

it follows that ∂ ln r(x, y)/∂n < 0. Cauchy-Riemann conditions applied to ρ along
γ implies that ∂ ln r/∂x = ∂φ/∂y and ∂ ln r/∂y = −∂φ/∂x. Therefore

∂ ln y

∂ n
= γ′

I

∂ ln r

∂ x
− γ′

R

∂ ln r

∂ y
= γ′

I

∂ φ

∂ y
− γ′

R

(

−
∂ φ

∂ x

)

=
∂ φ

∂ v

and follows that arg ρ decreases ever γ is analytic. As we know ρ is meromorphic in
U and γ is the union of closed curves on clC. Hence, by the argument principle, the
variation arg ρ along γ is −2πL1, where L1 is the number of poles in U (remember
that the definition of A+ implies that ρ has no zeros in U). Furthermore, the in-
terpolation points on γ are the same point in which ρ = 1, thus arg ρ is an integer
multiple of 2π, precisely L1 times, for t ∈ [0, 1), proving that L1 (the number of
poles) is the multiplicity L of the A+-region U .
The inequality L ≥ 1 is another consequence of the fact that arg ρ decreases along
the boundary of U . Furthermore L < ∞ because, otherwise, there exists infinities
poles in U with accumulation points in its boundary. Since an accumulation point
of poles is an essential singularity this cases does note occurs because ρ is analytic
along ∂U . The proof to an A−-region follows in the same way. �

1.2. Order Stars of Second Kind

Let f be a complex function and R an approximation. We define ρ̃(z) = R(z)−f(z)
for all z ∈ clC where f and R are well defined.

Definition 1.5. The second kind order star of f and R is a partition of clC given
by {Ã−, Ã0, Ã+}, where

Ã− = {z ∈ clC : Reρ̃(z) < 0},

Ã0 = {z ∈ clC : Reρ̃(z) = 0},

Ã+ = {z ∈ clC : Reρ̃(z) > 0}.

The next results has immediate proofs (see [6]).

Lemma 1.1. Let f̃ a given function and R̃ an approximation. If we define

f(z) = ef̃(z), R(z) = eR̃(z), ρ(z) = R(z)/f(z), ρ̃(z) = R̃(z) − f̃(z).

The first kind order star of ρ is the second kind order star of ρ̃.
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Theorem 1.3. If zo in clC is a point in which ρ̃ is analytic and an interpolation
of order p, then zo belongs to A0, ι(zo) = p and it is a regular point.

We say that a closed curve in Ã0, positively oriented, is an A+-loop if it is bounded
by the inside of A+, and we say that it is an A−-loop if it is bounded by the inside
of A−. Note that a closed curve may be not an A+-loop nor an A−-loop and that
the components of an A+-loop may be an A−-loop too. We say that a loop has
multiplicity L if it has exactly L interpolation points.

Theorem 1.4. The multiplicity of an A+-loop or an A−-loop is the number of
singularities of ρ̃ in this loop. Furthermore, interpolation points and singularities
points entwine himself along the loop.

Theorem 1.5. Let z0 be a pole of ρ̃ with multiplicity q. Then ι(zo) = q and it is a
regular point.

2. Linear Multistep Methods

Given an ordinary differential equation

y′ = f(x, y), y(a) = η, (2.1)

for which we assume to have a unique solution. If we denote by yn an approximation
of the solution in the point xn = a + nh, h > 0 fix, n = 0, 1, 2, . . ., and define
fn ≡ f(xn, yn). We can represent a numerical linear multistep method [7] in its
general form as

k
∑

j=0

αjyn+j = h
k

∑

j=0

βjfn+j , αk = 1, |α0| + |β0| 6= 0. (2.2)

Clearly (2.2) may be characterized by the polynomials

r(z) =

k
∑

j=0

αjz
j, s(z) =

k
∑

j=0

βjz
j ,

called characteristics polynomials of the method.
By definition [7] we say that the method (2.2) has order p when

£[y(xn) : h] =

k
∑

j=0

[αjy(xn+j) − hβjf(xn+j , y(xn+j))]

= Cp+1h
p+1y(p+1)(xn) + O(hp+2), (2.3)

for y(x) sufficiently differentiable, where

C0 =

k
∑

j=0

αj , Cq =
1

q!

k
∑

j=0

jqαj −
1

(q − 1)!

k
∑

j=0

jq−1βj , q ≥ 1. (2.4)
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When we use a numerical method to solve an ordinary differential equation it is of
fundamental interest to know that it has good properties of convergence, consistency
and stability as the next definitions.

Definition 2.1 (Convergence [7]). A linear multistep method (2.2) is called con-
vergent when the following hold, to the solution y(x) of the initial value problem
(2.1),

lim
h→0

yn = y(xn)

for all x ∈ [a, b] and all solution {yn} of the difference equation (2.2) with initial
condition yµ = ηµ(h) for which limh→0 ηµ(h) = η, µ = 0, 1, . . . , k − 1.

Definition 2.2 (Consistency and Zero-stability [7]). We say that the method (2.2)
is consistent when it has order p ≥ 1 and we say that it is zero-stable if all roots
of r(z) has modulus less than or equals one and if that ones with modulus one is
simple.

Note that if (2.2) is consistent and zero-stable then follows from (2.4) that r(1) = 0
and dr(1)/dt = s(1) 6= 0.
We finish this section with a well-known result.

Theorem 2.1 (Dahlquist, 1956 [4]). Linear multistep method (2.2) is convergent
if, and only if, it is consistent and zero-stable.

2.1. The First Dahlquist Barrier

In this section we will analyze the following theorem. To simplify our comments we
will assume in this section that r and s has no common roots, since its roots has no
influence in our analysis (see the proof of Theorem 2.3).

Theorem 2.2 (Dahlquist, 1956 [6]). A convergent method given by (2.2) has order
bounded by 2⌊(k + 2)/2⌋ (two times the integer part of (k+2)/2). The order may be
greater than k + 1 just if k is even and all roots of r has modulus one. If βk ≤ 0 the
order is bounded by k.

To prove this theorem we need of some preliminary results as follows. By a question
of space some of then has no proof (see [6]).

Theorem 2.3. [4] A linear multistep method (2.2) has order p if, and only if,

M(log w, w) = r(w) − s(w) log w = O(|w − 1|p+1).

Proof: Suppose that the method has order p. Thus

£[ex : h] = ex[r(eh) − h s(eh)] = exCp+1h
p+1 + O(|h|p+2), (2.5)

where h → 0 and Cp+1 6= 0. But this is equivalent to say that f(h) = M(h, eh)
which is analytic in h = 0 and has a zero of order p + 1 in that point. As w = eh

maps neighborhood of h = 0 onto neighborhood of w = 1 it follows (see [1, p.135])
that f(ln w) = M(ln w, w) has a zero of order p + 1 in w = 1, that is

M(ln w, w) = O(|w − 1|p+1).
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From the other side, if M has a zero of order p in w = 1 then from the same
argument follows that equation (2.5) remain true. Since all constants αj and βj in
(2.4) does not depends of the choice of y(x) the proof follows. �

Note that we have 2k + 1 coefficients in the method (2.2) and hence we can expect
to obtain a maximal order of p = 2k. Furthermore the order is p if, and only if,

r(w)/s(w) = ln w + O(|w − 1|p+1).

In this way the maximal order occur just when r(w)/s(w) is the Padé approximation
(see [6]) to the logarithm in w = 1.
The maximal order method given by (2.2) has the following coefficients [6]

αj = χ−1
k (χk − χk−j)

(

k

j

)2

, βj =
1

2
χ−1

k

(

k

j

)2

, j = 0, 1, 2, . . . , k,

with

χ0 = 0, χm =
m

∑

j=1

1

j
, m = 1, 2, . . . .

Some calculation shows that zkr(z−1) = −r(z). Thus, if r(w) = 0 then r(w−1) = 0,
that is, if some roots of r does not has modulus one then the zero-stability condition
are not fulfilled.
Suppose that the method is zero-stable and that it has maximal order to some
k ≥ 2. In this case the sum of the modulus of the roots of r does not exceed the
value of k. Meanwhile, this sum is given by −αk−1 and follows that |αk−1| ≤ k.
Using the explicit form of αk−1 we have

|αk−1| =

∣

∣

∣

∣

∣

∣

1
∑k−1

j=1
1
j





k−1
∑

j=1

1

j
− 1





(

k

k − 1

)2
∣

∣

∣

∣

∣

∣

=⇒
1

∑k−1
j=1

1
j





k−1
∑

j=1

1

j
− 1



 k(k−1) ≤ 0,

which is a contradiction when k > 2. In this way we conclude that a linear multistep
method of k steps may not have maximal order and be zero-stable when k > 2.

We are now in a position in which the order star theory is welcome, since two
conditions about polynomials, which are determined by geometrical properties of
the complex plane , are in conflict.

The maximal order question attainable according with zero-stability is well-known
as the first Dahlquist barrier and are already studied in 1956 with no help of the
order stars theory. We will analyze this question here with a help of this theory. To
this end we will use the second kind order star

ρ̃(z) =
s(ez)

r(ez)
−

1

z
,

in virtue of Theorem (2.3). This ’inversion’ maps the zeros of r onto the poles of ρ̃,
they are thus points of non analyticity of the order star.
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Figure (2) shows, respectively, the order stars of the Adams-Mouton method [4]
of fifth order,

yi+4 − yi+3 =
1

720
h(251fi+4 + 646fi+3 − 264fi+2 + 106fi+1 − 19fi),

and of the Milne’s method [4] of fourth order,

yi+2 − yi =
1

3
h(fi+2 + 4fi+1 + fi).

Figure 2: Order stars of second kind, Ã+ in black.

Theorem 2.4. The zero-stability conditions is equivalent to all poles of ρ̃ being in
the complex semi-plane Rez ≤ 0 and that poles along iR being simples.

Theorem 2.5. If the method (2.2) has order p ≥ 2 then ι(0) = p−1 and the origin
is a regular point.

Proof: It follows from Theorem (2.3) that

M(ln z, z) = r(z) − s(z) ln z = O(|z − 1|p+1).

The same arguments in that proof implies that

r(ez) − z s(ez) = O(|z|p+1).

Hence

z s(ez) = r(ez) + O(|z|p+1) ⇒
s(ez)

r(ez)
=

1

z
+ O(|z|p−1),

since r(1) = r(e0) = 0. Thus z = 0 is an interpolation point of order p − 1 of
f(z) = z−1, with R(z) = s(ez)/r(ez). And the proof follows from Theorem (1.3).�

The function ρ̃(z) involves values ez which is periodic of period 2πi and this may
complicate the counting of zeros and poles which is important here. At this form
we will work in the set S = {z ∈ clC : |Im z| ≤ π}. Let So be the interior of S,
S+ = So ∩ {Re z > 0} and S− = So ∩ {Re z < 0}.
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Lemma 2.1. There exists κ ∈ R such that {z ∈ C : Re z > κ} ∩ S is in A+ or in
A−. If βk > 0 then it be in A+ otherwise it is in A−.

Note that poles and zeros of ρ̃(z) are in A0. This will be important in our analysis
to determine its relative positions. Remember that a loop is a closed curve in A0.

Lemma 2.2. Let γ be a curve for which γ ∩ S 6= ∅ and γ ∩ ∂S = ∅. Then there is
on γ exactly one pole of ρ̃ between any two roots of ρ̃(z) = 0. Furthermore, all poles
of ρ̃ in So is a regular point with index equal its multiplicity.

Let U be a bounded A+-region or A−-region and suppose that clC∩{R+πi} 6= ∅.
We will define x− = min{x ∈ R : x + πi ∈ clU} > −∞ and x+ = max{x ∈ R :
x + πi ∈ clU} < ∞.

Lemma 2.3. Let zo ∈ ∂U ∩ So be a zero of ρ̃. Then
- If U is an A+-region then or x+ +πi is a pole of ρ̃ or there exists a pole along the
positive oriented curve in ∂U from zo to x+ + πi.
- If U is an A−-region then or x− + πi is a pole of ρ̃ or there exists a pole along
the positive oriented curve in ∂U from x− + πi to zo.
Furthermore, a similar condition holds if we works with a condition R − πi in the
definition of U .

Let
F (t) = Re{s(eit)r(e−it)} = |r(e−it)|2Re ρ̃(it), t ∈ R.

Some calculations shows that F is a polynomial of degree k in (1 − cos t). Thus it
is an even function. Furthermore, from Theorem 2.3 follows that

r(e−it) = −its(e−it) + O(|t|p+1).

And we can see that

F (t) = O(|t|2⌊(p+2)/2⌋) = O((1 − cos t)⌊(p+2)/2⌋)

and that there are exactly two cases to consider: or F ≡ 0 or there are at most
k − ⌊(p + 2)/2⌋ zeros in (0, π).

We will suppose that the method (2.2) is zero-stable to first analyze the cases
βk > 0. If F ≡ 0 then iR ∈ Ã0 and follows from Theorem 2.5 that exactly p − 1
sectors of Ã+ and Ã− are close to the origin from the inside of S+ and that it
is regular (see Figure 2). Since the imaginary axis is in Ã0 no loop can cross S−.
Furthermore, from Lemma 2.1 there exists just a region Ã+ unbounded in S+.
Hence, may exists at most p − 2 loops in S+. By lemmas 2.2 and 2.3 each loop
has a pole of ρ̃. Therefore, by zero-stability, does not exists poles in S+ and that
poles iR are simples. It follows then that each loop has part of the imaginary axis.
From Theorem 1.5 and from the fact that the poles are simple in iR we have that
each pole is in just one loop. As r(e0) = r(1) = 0 and z = 0 are not poles we
conclude that there are at most k− 1 poles which may be in some loop. In this way
p − 2 ≤ k − 1. Therefore, if k is even we can count two times the same pole two if
it is ±πi. Thus p − 2 ≤ k and we have p ≤ 2⌊(k + 2)/2⌋.

A similar argument applied to the other cases implies the given bounds and this
bounds produces the first Dahlquist barrier. �
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3. Final Remarks

Order stars theory is very important in the study of properties of numerical meth-
ods and produces simple and elegant proofs. It is also important because it gives
consistence to numerical analysis by making a link between it and the complex vari-
able function theory.
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Resumo. A teoria de Order Stars introduzida por Wanner tornou-se uma ferra-
menta fundamental para o estudo e a compreensão das propriedades de métodos
numéricos, tais como a ordem e a estabilidade. Neste trabalho procuramos estudar
algumas propriedades dos métodos numéricos lineares de passos múltiplos utilizando
esta teoria.

References

[1] L.V.Ahlfors, “Analisis de Variable Compleja”, Aguilar, Madrid, 1966.

[2] J.B. Conway, “Functions of One Complex Variable”, Springer-Verlag, New York,
1978.

[3] E. Hairer, G. Wanner, “Order Stars and Stiff Integrators”, Section de mathé-
matiques CH-1211, Université de Genève, Switzerland, 1999.

[4] P. Henrici, “Discrete Variable Methods in Ordinary Differential Equations”,
John Wiley & Sons, New York, 1962.

[5] P. Henrici, “Elements of Numerical Analysis”, John Wiley & Sons, New
York,1964.

[6] A. Iserles, S.P. Nørsett, “Order Stars”, Chapmam & Hall, London, 1991.

[7] J.D. Lambert,“Computational Methods in Ordinary Differential Equations”,
John Wiley & Sons, London, 1973.


