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Sociedade Brasileira de Matemática Aplicada e Computacional
Online version ISSN 2676-0029
www.scielo.br/tcam
doi: 10.5540/tcam.2023.024.03.00395

An Approximate Closed Formula for European Mortgage Options

A. M. LOPEZ GALVAN

Received on August 31, 2021 / Accepted on September 6, 2022

ABSTRACT. The aim of this paper is to investigate the use of close formula approximation for pricing
European mortgage options. Under the assumption of logistic duration and normal mortgage rates the un-
derlying price at the option expiry is approximated by shifted lognormal or regular lognormal distribution
by matching moments. Once the price function is approximated by lognormal distributions, the option price
can be computed directly as an integration of the distribution function over the payoff at the option ex-
piry by using Black-Scholes-Merton close formula. We will see that lower curvature levels correspond to
positively skewness price distributions and in this case lognormal approximation leads to close parametric
formula representation in terms of all model parameters. The proposed methodologies are tested against
Monte Carlo approach under different market and contract parameters and the tests confirmed that the close
form approximation have a very good accuracy.

Keywords: mortgages option, mortgages rates, logistic duration, moment matching, Monte Carlo pricing,
Black-Scholes pricing.

1 INTRODUCTION

Typically mortgage options are options on TBA pass-through insured against default by Fannie
Mae, Freddie Mac, or Ginnie Mae. A TBA is a liquid short-dated forward agreement with a
specified coupon, agency, and maturity. A mortgage call gives the holder the right to buy a pass-
through at an agreed upon price on the option expiry date and similarly, a mortgage put gives
the holder the right to sell the pass-through at a pre-specified price on the expiry date. Since
liquidity in the underlying TBA contracts is strictly confined to a few months forward settlement
dates, the mortgage options are necessarily short-dated. Mortgage options are commonly avail-
able for a broad range of customer specified strikes, maturities, and underlying coupons, and
are traded over the counter by most major Wall Street broker dealers. Traditionally, duration is
defined as the negative percentage price sensitivity with respect to underlying rate. Usually as
mortgage rates fall, prepayments increase and a pass-through’s expected life shortens; as rates
rise, prepayments subside and expected cash flows extend. Consequently, the duration of a pass-
through shortens as rates fall and lengthens as rates rise suggesting a logistic functional form.
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396 CLOSE APPROXIMATION

In general, the distribution of mortgage prices are negatively skewed and therefore far from log-
normal, thus Black-Scholes cannot be expected to produce reasonable mortgage option prices or
risk sensitivities. Usually, the common way to make a credible mortgage option pricing model
is by Monte Carlo approach. In [4] the author explores the pricing and the risk sensitivities of
mortgage options by using Monte Carlo simulation with a logistic duration and under normal in-
terest mortgage rates process. In this work we will see that under logistical durations and normal
rates assumptions the empirical price distribution could be approximated by negative or positive
shifted lognormal distribution and then a modified Black-Scholes formula may be used to price
mortgage option. Also, we will show that for small values of curvature the empirical price dis-
tribution could be approximated by regular lognormal distribution with parameters depending of
logistic duration. In this way, we will see that a power of the price distribution can be expressed
as a sum of two lognormal variables then by matching mean and variance we will approximate it
by a lognormal distribution. The moment matching methodology has been very useful in finance
over the years and one of its first applications was performed in [3], where the author approx-
imated the distribution of a basket by matching its first two moments with the moments of a
lognormal density function. Once the terminal price distribution is approximated by a lognormal
variable the price of an European option on the mortgage can be computed directly by using the
Black-Scholes-Merton formula. This pricing approximation will also allow us to approximate
the option risk sensitivities by close formulas. We will see that the accuracy of this close ap-
proximation formula will depend of the curvature of the duration profile and also depend of the
relative position between contract and market parameters.

1.1 Background

The duration D is defined as the negative percentage price sensitivity with respect to underlying
rate, that is

dP(r) =−D(r)P(r)dr, (1.1)

where P(r) is the price of the bond as a function of underlying rate r. The duration of a mortgage
varies across rates monotonically, rising from a minimal level for low rates to approach a stable
level for high rates. We parameterize the duration by means of a logistic function of the relative
rate r,

D(r) = L+
U

1+ e−C(r−x0)
,

where C is the curvature, L is the lower bound, U is the upper bound and x0 is the coupon.
Integrating Equation 1.1 results in an expression for price as a function of the relative rate,

P(r) = ke−Lr(1+ eC(r−x0)
)−U/C

, (1.2)

where k is a constant level that may be deduced by matching the market price quote with the
model price Equation 1.2 at the current mortgage rate. Thus, if P0 and r0 denotes the current spot
market price and the current mortgage rate respectively, then the constant level is,

k = P0eLr0
(
1+ eC(r0−x0)

)U/C
.

Trends Comput. Appl. Math., 24, N. 3 (2023)
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We assume that the mortgage rate follows a normal process with drift,

drt = µdt +σdWt , r(0) = r0,

where µ is the drift, σ the volatility and Wt is a Brownian motion. The rate distribution at a future
time t = T is,

rT ∼N (r0 +µT,σ2T ).

Now consider a Call mortgage option struck at a strike level K, expiring at T and the risk-free
rate of interest r f . Under the risk-neutral world the call price can be computed as the expected
value of the payoff at the expiry date discounted at the risk-free rate of interest,that is,

C = e−r f T E((P(rT )−K)+),

where P(rT ) is the mortgage price distribution at the expiring.

2 CLOSE PRICING APPROXIMATION

In this section we will develop the algorithm for pricing mortgage option by using shifted Black-
Scholes formulas under shifted lognormal and lognormal price distribution approximation.

2.1 Shifted Lognormal approximation

We start recalling some properties of lognormal and shifted lognormal distribution. Suppose
that X ∼N (µX ,σ

2
X ) is normal, then the random variable Z = eX is lognormal and is noted as

LogN (µX ,σ
2
X ). It is well known that the first and second moment are E(Z) = eµX+

1
2 σ2

X and
E(Z2) = e2µX+2σ2

X respectively.

A usefully lognormal property recalls to the power and multiplication, indeed if Z = eX ∼
LogN (µX ,σ

2
X ) and a is a constant then,

aZ ∼ LogN (µX + log(a),σ2
X ) (2.1)

Za ∼ LogN (aµX ,a2
σ

2
X ). (2.2)

The shifted lognormal distribution or three parameter lognormal is a lognormal distribution by
addition of a shift parameter τ . Thus, if Z = eX is a lognormal random variable then Zτ = τ−Z
has the negative shifted lognormal distribution and Zτ = τ + Z has the shifted lognormal
distribution, in general we note Zτ ∼ LogN (τ,µX ,σ

2
X ).

Given a sample of a distribution p1, p2, ..., pn, we denote the central sample moments by;

p̄ =
1
n

n

∑
i=1

pi, m2 =
1
n

n

∑
i=1

(pi− p̄)2 and m3 =
1
n

n

∑
i=1

(pi− p̄)3.

The usual way to estimate the parameters τ,µX ,σX is by using the method of moment; thus
given a sample (pi) equating the sample first moment (the sample mean) with its population

Trends Comput. Appl. Math., 24, N. 3 (2023)
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398 CLOSE APPROXIMATION

value (the population mean), and equating the second and third sample central moments with
their population values yields:

p̄ = τ + eµX+
1
2 σ2

X

m2 = e2µX+σ2
X (eσ2

X −1)

m3 = e3µX+
3
2 σ2

X (eσ2
X −1)2(eσ2

X +2).

The skewness of a random variable is a measure of the asymmetry of the probability distribution
of a real-valued random variable about its mean, thus if V is a random variable, the skewness is
defined as;

Skew(V ) =

E
((

V −E(V )
)3
)

sV 3 ,

where sV is the standard deviation of V . Given a sample of the random variable an estimator of
the skewness is,

̂Skew(V ) =
m3

ŝ3 .

The key to the approximation of the price distribution is based on the Newton’s binomial general-
ization to real exponents; by applying Newton’s it is possible to approximate the price distribution
P(r) as a Basket with lognormal terms. Indeed,

P(r) = ke−Lr(1+ eC(r−x0)
)−U/C ≈ ke−Lr

n

∑
j=0

(
−U/C

j

)
e jC(r−x0)

=
n

∑
j=0

(
−U/C

j

)
ke( jC−L)r− jCx0 ,

where
(−U/C

j

)
= −U/C(−U/C−1)...(−U/C− j+1)

j! and n huge.

Usually correlated lognormals sum has no closed-form expression, however it may be reasonably
approximated by another shifted lognormal distribution by matching the moments. This basket
approximation can be negatively skewed, and therefore direct lognormal distribution cannot be
fitted. A good way to avoid these problems is through the choice of negative shifted lognormal
distribution. In [1] it had been studied the choice of the approximating basket distribution by
using a generalized family of lognormal distributions and this approximations copes negative
skewness. In this work negative skewness basket are approximated by negative shifted lognormal
distribution.

2.1.1 Option valuation by using Shifted Lognormal approximation

Following a similar approach as in [1], if the skewness of terminal price distribution is negative,
then negative shifted lognormal distribution are chosen as an approximating distribution; other-
wise if the skewness is positive, then the approximating distribution are the shifted lognormal.
Thus, by using the shifted lognormal approximation the payoff of a call option on the maturity

Trends Comput. Appl. Math., 24, N. 3 (2023)
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date T and strike K is approximated by the payoff of a put with strike τ−K when the skewness of
price is negative. Otherwise, when the skewness is positive the call with strike K is approximated
with a call with strike K− τ:

(P(rT )−K)+ ≃ (τ−Z−K)+ =
(
(τ−K)−Z

)+ if ̂Skew(P(rT ))< 0

(P(rT )−K)+ ≃ (τ +Z−K)+ =
(
Z− (K− τ)

)+ if ̂Skew(P(rT ))> 0

,

where Z is a lognormal random variable. These argument lead to value the option by using the
Black-Scholes formula.

The algorithm that we have developed for pricing mortgage options is summarized below;

Algorithm 1 Computes mortgage options by using Shifted Lognormal Price approximation.
Data: r f ,T,K,L,C,U,µ,σ ,r0,x0,P0

Result: returns the option value approximation CSLN .
P← Generate a sample of the terminal price distribution P(rT )

if skew(P) < 0 then
(τ,µX ,σX )← Fit a shifted lognormal distribution on P by matching moments.

M1 ← eµX+0.5σ 2
X

M2 ← e2µX+2σ 2
X

W ←
√(

log
(

M2

M2
1

))
d1,d2 ←

log(M1)− log(−K− τ)±0.5W 2

W
CSLN ← e−r f T ((−K− τ)N(−d2)−M1N(−d1)

)
end
if skew(P) > 0 then

(τ,µX ,σX )← Fit a shifted lognormal distribution on P by matching moments.
M1 ← eµX+0.5σ 2

X

M2 ← e2µX+2σ 2
X

W ←
√(

log
(

M2

M2
1

))
d1,d2 ←

log(M1)− log(K− τ)±0.5W 2

W
CSLN ← e−r f T (M1N(d1)− (K− τ)N(d2))

)
end

2.2 Lognormal approximation

In the case of a positively skewed price distribution, it may be reasonably approximated by
another lognormal distribution by matching the first two central moment. Let (eX1 ,eX2) be a
correlated lognormal random vector with Xi∼N (µi,σ

2
i ) then the equation to be approximated is

Y := eX1 + eX2 ≈ Z := eX ∼ LogN (µX ,σ
2
X ). (2.3)

Trends Comput. Appl. Math., 24, N. 3 (2023)
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400 CLOSE APPROXIMATION

A commonly used way to approximate Equation 2.3 is to find µX and σ2
X by matching the first

two central moment of Y and Z. Indeed, recalling [5] since

E(eX1eX2) = eµ1+µ2+
1
2 (σ

2
1+σ2

2 +2Cov(X1,X2)),

then the second central moment of a sum of lognormal is

E(Y 2) = E((eX1 + eX2)2) = e2µ1+2σ2
1 +2eµ1+µ2+

1
2 (σ

2
1+σ2

2+2Cov(X1,X2))+ e2µ2+2σ2
2 ,

thus by matching the moments,
E(Y ) = E(Z)⇒ eµX+

1
2 σ2

X = eµ1+
1
2 σ2

1 + eµ2+
1
2 σ2

2

E(Y 2) = E(Z2)⇒ e2µX+2σ2
X = e2µ1+2σ2

1 +2eµ1+µ2+
1
2 (σ

2
1+σ2

2+2Cov(X1,X2))+ e2µ2+2σ2
2

,

and a straightforward computation by simple substitution allows us to get,

µX = log
(

eµ1+
1
2 σ2

1 + eµ2+
1
2 σ2

2

)
− σ2

X
2
,

σ2
X = log

(
e2µ1+2σ2

1 +2eµ1+µ2+
1
2 (σ

2
1+σ2

2+2Cov(X1,X2))+ e2µ2+2σ2
2(

eµ1+
1
2 σ2

1 + eµ2+
1
2 σ2

2
)2

)
.

(2.4)

2.2.1 Option valuation by using Lognormal approximation

Under the assumptions of positively skew of empirical price distribution, then it is possible
to approximate it by a lognormal distribution with a close parametric formula in terms of
model parameters. The Theorem below shows the lognormal approximation, the option price
approximation and option delta approximation in terms of model parameters.

Theorem 1. Suppose that the mortgage rate follows a normal process with parameters µ, σ

and assume that the power of terminal price distribution P(rT )
−C/U has positively skewness then

there exits parameters µPrT
and σPrT

in terms of model parameters µ,σ ,U,L,C,T,k such that,

1. P(rT )≈ LogN (µPrT
,σ2

PrT
), that is the terminal price distribution could be approximated

by a lognormal distribution with parametric parameters µPrT
and σPrT

.

2. C ∼ CLN := e−r f T (e
µPrT

+ 1
2 σ2

PrT N(d1)−KN(d2)
)

where,

d1 =

log
(

e
µPrT

+ 1
2 σ2

PrT

K

)
+

σ2
PrT

2
σPrT

and d2 =

log
(

e
µPrT

+ 1
2 σ2

PrT

K

)
−

σ2
PrT

2
σPrT

and N denotes the cumulative distribution function of standard normal distribution.

Trends Comput. Appl. Math., 24, N. 3 (2023)
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3. Delta and Gamma ∆ =
∂C

∂P0
,Γ =

∂ 2C

∂ 2P0
could be approximated by the closed parametric

formulas given by

∆LN := e−r f T e
µPrT

+ 1
2 σ2

PrT N(d1)

P0
, ΓLN := e−r f T e

µPrT
+ 1

2 σ2
PrT φ(d1)

P2
0 σPrT

where φ(x) = ∂N(x)
∂x = 1√

2π
e−

x2
2 .

Proof.

1. From the given Price equation solution as function of rate, an algebraic straight forward
computation shows that the terminal price distribution may be expressed as,

P(rT )
− C

U = k−
C
U

[(
P(rT )

k

)− C
U
]
= k−

C
U
(
e

LC
U rT + eC( L

U +1)rT−Cx0
)
. (2.5)

Calling X1 =
LC
U rT and X2 =C

( L
U +1

)
rT −Cx0 and since rT is normally distributed with

mean and variance given by r0 + µT and (σ
√

T )2, then it follows that X1 ∼N (µ1,σ
2
1 )

and X2 ∼N (µ2,σ
2
2 ) are normally distributed where,

µ1 =
LC
U

(
r0 +µT

)
σ

2
1 =

(
LC
U

σ
√

T
)2

µ2 =C
(

L
U

+1
)(

r0 +µT
)
−Cx0 σ

2
2 =

(
C
(

L
U

+1
)

σ
√

T
)2

.

The covariance between the random variables X1 and X2 may also be expressed in terms
of L,U,C,σ and T , indeed,

Cov(X1,X2) =
LC
U

C
(

L
U

+1
)

Var(rT ) =
LC
U

C
(

L
U

+1
)

σ
2T.

From Equation 2.5 it follows that

Skew
(
P(rT )

− C
U
)
= sign(k−

C
U )Skew

(
e

LC
U rT + eC( L

U +1)rT−Cx0
)

thus, the terminal price distribution may be expressed as a power of a positively skew-
ness sum of lognormal variables times a constant. Then by using the above constructed
parameters µ1,µ2,σ

2
1 ,σ

2
2 and the lognormal sum matching parameters µX and σ2

X given
by Equations 2.4 the terminal price distribution may be approximated by,

P(rT )≈ k
(
eX)−U

C where X ∼N (µX ,σ
2
X ).

Trends Comput. Appl. Math., 24, N. 3 (2023)
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Then by using the power and multiplication properties given by Equation 2.1 the final price
distribution is approximated by a lognormal distribution with parameters,

P(rT )≈ LogN (µPrT
,σ2

PrT
) where

µPrT
=−U

C
µX + log(k) , σPrT

=
U
C

σX .

2. Since P(rT ) is approximated by a lognormal distribution with parameters µPrT
and σ2

PrT
,

the call option price can be valued by the general Black-Scholes-Merton expectation

formula (see [2] for a proof); thus by using E(P(rT )) = e
µPrT

+ 1
2 σ2

PrT we have,

C ∼ e−r f T
(

E(P(rT ))N(d1)−KN(d2)

)
= e−r f T (e

µPrT
+ 1

2 σ2
PrT N(d1)−KN(d2)

)

d1 =

log
(

E(P(rT ))

K

)
+

σ2
PrT

2
σPrT

=

log
(

e
µPrT

+ 1
2 σ2

PrT

K

)
+

σ2
PrT

2
σPrT

d2 =

log
(

E(P(rT ))

K

)
−

σ2
PrT

2
σPrT

=

log
(

e
µPrT

+ 1
2 σ2

PrT

K

)
−

σ2
PrT

2
σPrT

.

3. The Greeks are followed from a direct derivation of the closed formula pricing
approximation. Indeed, recalling the lognormal approximation parameters for P(rT ),

µPrT
=−U

C
µX + log

(
P0eLr0

(
1+ eC(r0−x0)

)U
C

)
, σPrT

=
U
C

σX

and since µX and σX are not price depended we have,

∂
(
e

µPrT
+ 1

2 σ2
PrT

)
∂P0

=
e

µPrT
+ 1

2 σ2
PrT

P0
and

∂d1

∂P0
=

∂d2

∂P0
=

1
σPrT

P0
.

Using the call price approximation and applying the above relationship jointly with product
and chain rule, we have,

∂C

∂P0
∼ e−r f T

(
e

µPrT
+ 1

2 σ2
PrT

N(d1)

P0
+

1
σPrT

P0

(
e

µPrT
+ 1

2 σ2
PrT φ(d1)−Kφ(d2)

))
,

then the result can achieve from the following equality,

log
(

φ(d1)

φ(d2)

)
=

1
2

(
d2

2 −d2
1

)
=− log

(
e

µPrT
+ 1

2 σ2
PrT

K

)
.

The Gamma approximation is obtained from Delta approximation by directly deriving,

∂

∂P0

(
∂C

∂P0

)
≈ ∂

∂P0

(
e−r f T e

µPrT
+ 1

2 σ2
PrT N(d1)

P0

)
.

□

Trends Comput. Appl. Math., 24, N. 3 (2023)
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3 TEST RESULTS

In this section we perform test by looking at the effect of varying model and contract parame-
ters such as, strikes, volatilities and curvatures. The test are performed on both of our approach
by approximating by shifted lognormal and lognormal distribution. A modified Shapiro-Wilk
Goodness-of-Fit Test is used to test the shifted lognormal assumptions by estimating the thresh-
old parameter via the zero-skewness method. We also have compared the empirical price distri-
bution against the approximation distribution by using graphics test such Boxplots and QQPlots.
Our standard test example is a mortgage Call option with parameters given by:

Table 1: Default parameters values.

Parameters Values
T (Option Expiry) 90 days (90/360)
r f 0.0209
K 100
P0 100
r0 0.01
µ 0
L 1
U 9
σ 0.02
x0 0.055

3.1 Empirical and Shifted lognormal distributions

Here we test the assumptions of empirical price distribution on the shifted lognormal. A sample
of the empirical price distribution is generated by performing the followings step:

• Generate a sample of the terminal mortgage rates r1,r2, ...rn of length n by sampling a
normal with mean r0 +µT and standard deviation given by σ

√
T .

• Compute p1 := P(r1), p2 := P(r2), ..., pn := P(rn) by using Equation 1.2.

We test the null hypothesis that the empirical price sample p1, p2, ..., pn may come from shifted
lognormal with parameters (τ,µX ,σ

2
X ) against the alternative hypothesis that the sample come

from other distribution. The Table 2 shows the results of the modified Shapiro-Wilk Goodness-
of-Fit test.

Trends Comput. Appl. Math., 24, N. 3 (2023)
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Table 2: Modified Shapiro-Wilk Goodness-of-Fit test, Skew and Fitted parameters under different
curvature levels.

C skew W statistic p-value µX σX τ

0.5 0.1236835 0.9993015 0.5455999 4.8383091 0.0431144 -26.3897938
1 0.1162353 0.9993010 0.5451805 4.8911724 0.0405153 -33.2424301
2 0.1010308 0.9992999 0.5441955 5.0126047 0.0352110 -50.4261475
3 0.0854314 0.9992987 0.5430310 5.1612134 0.0297708 -74.5039283
4 0.0694575 0.9992973 0.5417093 5.3487801 0.0242015 -110.4771148
5 0.0531310 0.9992958 0.5402571 5.5969911 0.0185106 -169.7371020
6 0.0364751 0.9992942 0.5387055 5.9530868 0.0127061 -285.0605100

10 -0.0329438 0.9992875 0.5297216 5.9722431 0.0114670 -492.2735105
15 -0.1239802 0.9992812 0.5177176 4.5395958 0.0430598 -193.5528287
20 -0.2164493 0.9992826 0.5163660 3.8734434 0.0748392 -148.0180305
30 -0.3918973 0.9993261 0.5729071 3.0693251 0.1329803 -121.4553139
40 -0.5349625 0.9994000 0.6806394 2.5738760 0.1755753 -113.0580899

Under different curvature levels, the Shapiro-Wilk does not reject the null hypothesis that the
empirical price is a shifted lognormal distribution. In addition, in order to compare the empirical
distribution against the shifted lognormal we perform graphical test such as qqplot between them.
Thus, a sample of the approximated shifted lognormal distribution is generated by performing:

• Fit a shifted lognormal distribution Zτ ∼ LogN (τ,µX ,σ
2
X ) on p1, p2, ..., pn by matching

moments.

• Generate a sample of Zτ of length n.

Figure 1 illustrates the performance of shifted lognormal approximation against empirical price
distribution under different curvature levels.

The qqplot indicates a very good alignment between the quantiles and the empirical histogram
shows with similar shapes against the parametric shifted lognormal density. It seems the ef-
fect of curvature against skew; small curvature correspond to a gradual change of the duration
and therefore implicating positive skew empirical distribution; otherwise higher curvature levels
correspond to negative skew.

3.2 Option price Sensitivity on Shifted Lognormal approximation

In this section we perform the pricing methodology given by Algorithm 1. In order to assess the
performance of Shifted Lognormal approximation, here we perform sensitivity test by varying
strike and volatility against different curvature levels. As reference values we compute the option
prices by a Monte Carlo simulations and the number of simulations was chosen large enough,

Trends Comput. Appl. Math., 24, N. 3 (2023)
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Figure 1: Comparison between Empirical price distribution (E) and Fitted Shifted Lognormal
(SLN) distribution for different curvatures levels.

n= 70000. The strike K is varied from 97 to 103, curvature is varied from 0.5 to 40, rate volatility
is varied from 0.005 to 0.04 and all other parameters set to default values. Figure 2 shows the
effect of changing strikes and volatility against curvature and the heat map shows the relative
difference respect to Monte Carlo pricing thus, if CMC denotes the Monte Carlo call price then
the heat map illustrates (CSLN−CMC)100

CMC
.

The differences between the prices calculated by Monte Carlo and the close-form approxima-
tion are relatively small. In particular, when strike and volatility are growing the differences are
generally increasing.
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Figure 2: Effect of strike and curvature on option price and effect of mortgage rate volatility and
curvature on option price for shifted lognormal approximation and Monte Carlo. The heat map
measures the percentage of relative differences between both approach.

3.3 Option Price Sensitivity on Lognormal approximation

In this section we test the performance of parametric lognormal approximation given by Theorem
1 under positively price distribution skewness. As the advantage of this analytically and para-
metric method compared to Monte Carlo is of course speed of computations; also this pricing
methodology has very advantages into calibrations.

In order to ensure the assumptions, we start testing the lognormal hypothesis of empirical price
distribution by performing Shapiro-Wilk Goodness-of-Fit lognormal test under low curvature
levels. Table 3 contains the results and Figure 3 illustrates graphical test.
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Table 3: Summary statistics of Shapiro-Wilk test
for lognormal assumptions of empirical price
distribution.

C skew W statistic p-value
0.5 0.123683 0.999249 0.616570
1 0.116235 0.999226 0.586158
2 0.101030 0.999164 0.508980
3 0.085431 0.999081 0.414202
4 0.069457 0.998977 0.311534
5 0.053131 0.998848 0.213987
6 0.036475 0.998694 0.133146

The test results showed that empirical price distribution may suppose lognormal for low curvature
levels, and as expected when curvature increases p-values decreases evidencing the departure of
lognormal assumptions.

We will perform sensitivity test on option price and also for delta price. As before the refer-
ence values are computed by using Monte Carlo method. For reference delta, finite difference
is used with 1bps (0.0001) on P0 shock; more precisely the reference delta is computed by
∆MC = CMC(P0+0.0001)−CMC(P0)

0.0001 . The strike K is varied from 97 to 103, the current price P0 is
varied from 95 to 106, curvature is varied from 0.5 to 6 and all other parameters set to default
values. Figure 4 shows the results.

The differences between the option prices and deltas calculated by Monte Carlo and the approach
of lognormal approximation are relatively small. In particular, for option price it seems that the
relative errors tend to increase when the option goes into in the money with higher curvature
levels.

Trends Comput. Appl. Math., 24, N. 3 (2023)



i
i

“A1-1621” — 2023/7/5 — 21:10 — page 409 — #15 i
i

i
i

i
i

A. M. LOPEZ GALVAN 409

K

97
98

99
100

101
102

103
C

1

2

3

4
5
6

o
p
tio

n
 p

ric
e

1

2

3

4

97 98 99 100 101 102 103

1
2

3
4

5
6

K

C

0.5

1.0

1.5

P0

96 98 100 102 104

C

1

2

3

4
5
6

D
e
lta

 p
ric

e

0.2

0.4

0.6

0.8

96 98 100 102 104

1
2

3
4

5
6

P0

C

0.2

0.4

0.6

0.8

1.0

Figure 4: Effect of strike and curvature on option price and effect of Price and curvature on Delta
for lognormal approximation and Monte Carlo. The heat map measures the percentage of relative
differences by performing (CLN−CMC)100

CMC
for option price and (∆LN−∆MC)100

∆MC
for delta price.

4 CONCLUSION

We have introduced a new approach for pricing mortgage option by approximating the mortgage
price distribution by a family of lognormal distributions: regular or shifted lognormal. Hypoth-
esis tests and graphical tests were performed and the results showed that the price distribution
is close to shifted lognormal distributions and in particular for low curvature levels the price
distribution is approximate by lognormal. These approximations allow us to make use of the
Black-Scholes formulas for the European option price and option’s greeks. For low curvature
levels, the lognormal distribution fits well to the price distribution, allowing the option price
and the option’s greeks to be approximated by means of Black-Scholes formulas in terms of the

Trends Comput. Appl. Math., 24, N. 3 (2023)



i
i

“A1-1621” — 2023/7/5 — 21:10 — page 410 — #16 i
i

i
i

i
i

410 CLOSE APPROXIMATION

model parameters. Numerical simulations have shown that the option prices obtained by our an-
alytic method approximate the prices resulting from Monte Carlo simulations remarkably well,
and the delta performance of our method is also very good. The main advantage of our methodol-
ogy over Monte Carlo approach is based on the computation speed and its possible applications
to perform calibrations.
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