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ABSTRACT. In the present work a method for the detection of the cardiac pathology known as atrial
fibrillation is proposed by calculating different information, statistics and other nonlinear measures over
ECG signals. The original database contains records corresponding to patients who are diagnosed with
this disease as well as healthy subjects. To formulate the dataset the Rényi permutation entropy, Fisher
information measure, statistical complexity, Lyapunov exponent and fractal dimension were calculated, in
order to determine how to combine this features to optimize the identification of the signals coming from
ECG with the above mentioned cardiac pathology. With the aim to improve the results obtained in previous
studies, a classification method based upon decision trees algorithms is implemented. Later a Montecarlo
simulation of one thousand trials is performed with a seventy percent randomly selected from the dataset
dedicated to train the classifier and the remaining thirty percent reserved to test in every trial. The quality
of the classification is assessed through the computation of the area under the receiver operation charac-
teristic curve (ROC), the F1-score and other classical performance metrics, such as the balanced accuracy,
sensitivity, specificity, positive and negative predicted values. The results show that the incorporation of all
these features to the dataset when are employed to train the classifier in the training task produces the best
classification, in such a way that the largest quality parameter is achieved.

Keywords: Rényi entropy, statistical complexity, Fisher information, Lyapunov exponent, fractal
dimension, atrial fibrillation, decision trees.

1 INTRODUCTION

The atrial fibrillation (AF) can be characterized as a heart condition that is associated with an
irregular and often abnormally fast heart rate. Under normal conditions, the heart beats are com-
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posed by the contraction and release of its muscular walls, in such a way that to force the blood
to circulate in the whole body. After pump, the heart goes into relax stage to fill itself with blood
again. This process is repeated every time the heart beats. In the presence of atrial fibrillation,
the heart’s upper chambers (atria) contract randomly and sometimes so fast that the heart muscle
cannot relax properly between contractions. This condition reduces the heart’s efficiency and its
performance in general. When the electrical impulses trigger fire the atria become at abnormal
rate, the AF takes place in the dynamics of the heart. This affect the heart mechanics and may
develop into a serious clinical situation. Both imaging and electrophysiological studies can be
used to monitor AF. It is very important that once AF has been detected, the patient is followed
up so that the physician can determine the most appropriate therapy to normalise the functioning
of the atrial chamber of the heart. The main objective of the present research is to formulate
a feature space that contributes with the work of the physician in the diagnose of the AF. To
achieve this objective some magnitudes are calculated from electrocardiogram (ECG) records
of the Physionet database to constitute a proper dataset, later used by classification algorithms
based on decision trees. Parameters calculated from the ECG records can be joined in two distinct
groups, one associated with informational measures such as the statistical complexity, Rényi en-
tropy and Fisher information measure, and other one formed by characteristics usually employed
in nonlinear signal analysis as it is the case of the Lyapunov exponent and the fractal dimension.

With the intention to avoid assumptions on the distribution of the data, signal ordinal patterns are
applied to define the probability density function, since their use only requires the comparison
of neighbouring values taken from the signal. In this way, the calculation is made directly on
actual data without the need of calibration or pre-filtering. For some chaotic dynamic systems
it is demonstrated that the calculations based on entropies behave similarly to the Lyapunov
exponent and are particularly useful in the presence of dynamic or observable noise. The great
advantage of computing different types of signal characteristics is that they bring the possibility
to detect abrupt changes as well as local variations.

During the investigation, an evident overlapping of the features appears, that looks like ruins the
differentiation between the two groups of normal ECG records and those with presence of AF.
However, this fact has been overcome by the classification stage very satisfactorily.

As mentioned above, the methodology applied to classify the signals is based upon decision
trees, that for its simplicity, easy implementation, and no necessity to adjust any parameter, re-
sults very appropriate to be selected. In many papers the area under the receiver operation char-
acteristic curve, the F1-score and the accuracy are employed as quality classification parameters,
in this work the balanced accuracy is incorporated due to the imbalanced number of samples
in the database of the normal sinus rhythm and AF. This research is organized in the following
sections: introduction (this section), section 2 is devoted to describe atrial fibrillation, section
3 contains a description of the magnitudes used to construct the feature space and presents the
classification method applied, section 4 is dedicated to analyze the results, section 5 summarises
the conclusions, and finally the end of the work contains the bibliography.

Trends Comput. Appl. Math., 23, N. 3 (2022)
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2 ATRIAL FIBRILLATION

One of the common arrhythmias is known as AF which is considered as a significant cause of
mortality, especially among elderly people. It occurs in about 10% of those persons whose age is
over 75 years old. In presence of AF, the electrical activity of the atria is irregular and the depo-
larization occurs at a frequency of 300-600 bpm. This behavior does not result in effective atrial
contraction, but it simply means a wave effect on the muscle, named fibrillation. Ventricular ac-
tivity is also affected, since the impulses are conducted sporadically through the atrioventricular
node, involving a considerable time for the ventricles to be filled between each beat. As a con-
sequence, there exists a marked irregularity in a characteristic pulse in terms of frequency and
volume. According to the type of AF, they can be grouped into persistent, permanent, or parox-
ysmal. This abnormal heart rhythm is usually caused by mitral valve disease, ischemic heart
disease, thyrotoxicosis, hypertension, or alcoholism. The development of thrombi (blood clots)
in the left atrium is predisposed by he lack of effective atrial contraction and the resulting blood
stasis, which can lead to the passage of emboli that may cause ischemic strokes. Due to AF is the
main cause of stroke in the elderly, its study should not be overlooked. Some patients with AF
have palpitations or may even have dizziness or syncope (fainting) [4]. There are two possible
treatments for this disease, one consists of the control of frequency with the purpose to reduce
the ventricular frequency, while the other one is focused on the carefulness of rhythm in order
to recover the sinus rhythm. None of them is agreed to be the best selection among the medical
community.

The ECG was first introduced into clinical practice about one hundred years ago by Einthoven,
and it is basically a linear record of the electrical activity of the heart that develops along the time.
For every cardiac cycle, both atrial and ventricular depolarization wave, as well as a ventricular
repolarization wave, are successively recorded. They are respectivly known as P wave, QRS com-
plex and T wave. The intervals between the waves within two successive cycles vary depending
on the heart rate. The ECG is the technique of choice for the study of patients with precordial
pain, syncope, palpitations and acute dyspnea. On the other hand, it is extremely important for the
diagnosis of cardiac arrhythmias, conduction disturbances, pre-excitation syndromes and chan-
nelopathies. Likewise, it is fundamental to evaluate the evolution and response to treatment of
all types of heart conditions and other diseases, as well as different situations such as electrolyte
imbalances, administration of drugs, effects and results of sport, surgical evaluation, among oth-
ers. It is also useful for epidemiological and control studies (clinical checks). Even though the
mentioned high utility of ECG, an incorrect diagnosis may be made when doctors rely in excess
on normal ECG registers, since almost the ten percent of acute coronary syndromes present a
normal record, especially at the beginning of the disease. Even more, some subtle alterations of
the ECG can be observed without evidence of heart disease. In those cases, the involved pro-
fessional should be cautious in the ruling out of some diseases such as ischemic heart disease,
channelopathies (e.g. long QT and Brugada syndrome) or pre-excitation syndromes, before con-
sidering a non-specific alteration. Therefore, a good practise requires to read the ECG signal in
consideration with the clinical context and possibly the necessity to make additional sequential

Trends Comput. Appl. Math., 23, N. 3 (2022)
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records [2]. Besides, normal variations can be also observed in the ECG record that are related to
constitutional habit, chest wall malformations or age condition. Even more, transitory alterations
can be detected due to a series of divers causes as it is the case of hyperventilation, hypothermia,
glucose regulation or alcohol intake, ionic alterations or the effect of certain drugs [2].

3 MATERIAL AND METHODS

In the present work, the MIT-BIH arrhythmia database of PhysioNet is the source of data which is
available at http://www.physionet.org. This set is composed by ECG signals from healthy
patients and many kinds of arrhythmia (included AF). The database provides 283 normal sinus
ECG signal fragments taken from 23 patients and 135 with AF from 6 patients.

These ECG study consisted of 3600 non-overlapping samples taken from a thousand randomly
selected ECG fragments acquired with a sampling frequency of 360 Hz and a gain of 200 adu/mV
at the main ECG position, corresponding to forty five individuals, nineteen women (in the range
of twenty three and eighty nine years old) and twenty six men (in the range of thirty two and
eighty nine years old) [15].

The aim of the present work is to classify the database mentioned above in two classes: “Fibril-
lation” and “Normal” according respectively, to the presence or not of detected atrial fibrillation
in the ECG recorded. Thus, a crucial task is to determine the features from which the classi-
fier is going to learn. In what follows, the five signal characteristics to be considered are briefly
described.

Lyapunov exponent. The behavior of a time series can be characterized in part by the corre-
sponding Lyapunov exponent (LE) denoted by λ . This parameter brings information about the
exponential divergence of the orbits in the phase space in the case of a chaotic process. Many
of the methods usually applied to compute the LE require the estimation of the attractor embed-
ding dimension as well as the time delay to reconstruct it, and other similar parameters. In this
work it was selected one of the methods that not demands any other parameters that the sampling
frequency of the signal. This is the case of the method proposed by Kantz in 1994 [9] which
provides the maximal LE in a robust way only using the time between samples. The algorithm is
based upon measures taken directly over the signal and for this reason it is clear and easy to use.
Despite there are other algorithms (cf. [3, 14]) which are more precise than the Kantz methodol-
ogy to compute the LE, this robust algorithm is widely used, its success has been largely probed
and it can be applied in the presence of noisy signals and in the case of short data series.

Fractal dimension. The characteristic roughness of a one dimensional signal can be computed
using the Fourier frequency spectrum. The outputs of this methodology can provide noisy fluctu-
ations of the results, which is why an average of the power spectrum should be taken over a long
interval of the signal to obtain stable values. Due to the statistical constituents of many signals,
that generally vary over small time intervals, it would not be appropriate to use this technique
in all the cases. An alternative to solve this problem, applied usually in nonlinear analysis, is to

Trends Comput. Appl. Math., 23, N. 3 (2022)
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compute the fractal dimension (FD) denoted by D. There are several proposals to estimate the
FD, such as the algorithm introduced by Higuchi [7] which is the one adopted in this work.

In order to calculate the FD of a time series Y = {yt}N
t=1 a subsequence of length k is constructed

as follows:
Y h

k = {yh,yh+k, · · · ,yh+η},

for all h = 1,2, · · · ,k, where η = [(N−h)/k]k and [·] indicates the integer part of a number. Then,
on every one of these subsequences the following length is calculated:

Lh(k) =
N−1

η

η/k

∑
i=1
|yh+ik− yh+(i−1)k|,

where (N−1)/η is a normalization factor of the length of the signal. Finally, to calculate the FD
a regression must be performed on the averages of the lengths of the subsequences because these
will follow a law of the type L(k) ∝ g−D. The only parameter should to be set up to compute of
the Higuchi FD is the subsequence length k, in such a way that the whole algorithm runs over the
signal data points.

Rényi entropy. Let P = {pi}n
i=1 be a discrete probability density function (pdf). The Rényi

entropy [12] of order α , which is an extension of the well-known Shannon entropy is defined as:

SR
α [P] =

1
1−α

ln
n

∑
i=1

pα
i ,

where α ∈ R+ and α 6= 1. The normalized Rényi entropy is obtained by:

HR
α [P] =

SR
α [P]

lnn
, (3.1)

In order to compute the entropy given by equation (3.1) the selected pdf is the one proposed by
Bandt and Pompe [1], which is based on the ordinal dynamism of the observations in a chrono-
logical sequence. In this approach, two parameters are necessary: the embedding dimension m
which determines the length of the subsequence to be associated with the permutations, and the
embedding time delay τ which measures the distance between two consecutive observations in
the subsequence. Explicitly, for a time series {yt}N

t=1, overlapping partitions of length m (N�m!)
are formed as follows:

s→{ys,ys+τ , · · · ,ys+(m−1)τ},

with s = 1, · · · ,N−m+1. If π is one of the m! permutations of the set {0,1, · · · ,m−1}, s is said
of type π if yπ(s) ≤ yπ(s+τ) ≤ ·· · ≤ yπ(s+(m−1)τ). Thus, the pdf of the permutations is defined as:

pi = P(πi) =
#{s is of type πi}

N−m+1
. (3.2)

Statistical complexity. Given n events, Pe = (1/n, · · · ,1/n) is the uniform distribution which
maximizes the Rényi entropy. In [10] the authors develop a way to measure statistical complexity
in terms of the concept of distance to Pe. A disequilibrium [11] is defined as:

Q[P] = Q0D [P,Pe],

Trends Comput. Appl. Math., 23, N. 3 (2022)
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where the distance is given by:

D [P,Pe] =
1

2(α−1)

[
ln

n

∑
i=1

pα
i

(
pi +n−1

2

)1−α

+ ln
n

∑
i=1

1
nα

(
pi +n−1

2

)1−α
]
,

and the normalization constant is

Q0 =
1

2(α−1)
ln

[
(n+1)1−α +n−1

n

(
n+1

4n

)1−α
]
.

Thus, the complexity using the normalized Rényi entropy as the amount of disorder, can be
expressed as:

CR
α [P] = Q[P]HR

α [P].

Fisher information. The entropy and the complexity being both global measures, cannot be
sensible to abrupt changes in a small portion of a pdf. On the contrary, The Fisher information [5]
is a local measure defined by:

F [ f ] =
∫ |∇ f (x)|2

f (x)
dx,

where f is a continuous pdf and ∇ f (x) denotes its gradient.

In [13], the authors propose ten different expressions to obtain the Fisher information in the
discrete case. The mathematical expression to be adopted in the present work is

IF [P] =
n−1

∑
i=2

(
√

pi+1−
√

pi−1)
2. (3.3)

Decision tree is a non-parametric supervised learning technique that can be applied either in clas-
sification or regression tasks. Basically, a decision tree formulates a statement and then makes a
decision based on whether this statement is true or false. In other words, it learns simple decision
rules inferred by the feature variables, which can be numerical, nominal, or a mixture of both
types.

Among the strengths of decision trees it can be mentioned that they are simple to interpret, they
can be visualized, they require little data preparation, their cost to prediction is logarithmic in
the number of training data, they can easily explain an observable condition in a model and in
general they perform well even under relax assumptions on the true model. On the opposite side,
the generated tree may be extremely complex causing overfitting which can be avoided with
a pruning mechanism, such as imposing the minimum number of elements in a leaf node or
the maximum depth of the tree. Decision trees can be also unstable when small variations are
introduced in the data. For more details on this algorithm it is referred to [6, 8].

Applying the decision tree technique, seven classification models are proposed in terms of
different combinations of variables to setup the feature space (see Table 1).

Throughout the rest of this work, the presence of fibrillation is considered as the positive class.
The classical notation to be used is TP for true positive, TN for true negative, FP for false positive

Trends Comput. Appl. Math., 23, N. 3 (2022)
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Table 1: Proposed classifier models.

Model Feature space
LDH (λ ,D,HR

α )

LDC (λ ,D,CR
α)

LDF (λ ,D, IF)

LDHC (λ ,D,HR
α ,C

R
α)

LDHF (λ ,D,HR
α , IF)

LDCF (λ ,D,CR
α , IF)

LDHCF (λ ,D,HR
α ,C

R
α , IF)

and FN for false negative cases. With the aim of studying the contribution of the variables in the
performance of the classifier, the following well-known measures are computed.

1. Balanced Accuracy, BA = (TP/P+TN/N)/2, is the mean of the TP and TN rates.

2. F1-score, F1 = 2TP/(2TP+FP+FN) is the harmonic mean of recall and precision.

3. Area Under the Curve (AUC) for the Receiver Operating Characteristic (ROC) curve that
relates the rates of TP and FP.

4. Sensitivity is the rate of TP.

5. Specificity is the rate of TN.

6. Positive Predicted Value, PPV= TP/(TP+FP), is the proportion of TP among the positive
prediction.

7. Negative Predicted Value, NPV = TN/(TN + FN), is the proportion of TN among the
negative prediction.

All the previous indicators ranges in value from 0 when all the predictions are wrong, to 1 when
the model predicts with total accuracy.

4 RESULTS AND DISCUSSION

Throughout what follows, m = 5 and τ = 5 are fixed for the involved calculus in the probability
of permutations given by (3.2). Moreover, the order for normalized Rényi entropy (RE) and for
the statistical complexity (RC) is α = 4. To unify notation, FI indicates the Fisher information
defined in (3.3). In addition, k = 20 was used for the computation of the FD.

Figure 1 graphically represents the scatter plot defined by the selection of two variables in the
feature space. As it can be noticed in all the possible combinations, the clouds composed by
fibrillation and normal ECGs show a considerable overlapping. The same behaviour can be also
understood in the histograms of Figure 2 where some variables, such as FD, RE and FI, show a
multimodal frequency distribution and a notorious overlapping of their respective plots.

Trends Comput. Appl. Math., 23, N. 3 (2022)
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Figure 1: Scatter plots defined by two features.
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The classifying models are training with the set formed by the random selection of the 70% of
normal ECG records plus the 70% of ECG with fibrillation, in order to get a dataset with more
balanced classes. Meanwhile, the remaining ECGs from each type are considered to test the
models. Due to the random context, a simulation of Montecarlo with 1000 trials is performed.
Table 2 exhibits the mean (µ) and standard deviation (σ ) of the quality classification measures
introduced in the previous section per model. All the indicators achieve a desirable result, spe-
cially the specificity (91.3%), the BA (84.6%) and the AUC (84.6%) for the model LDHCF. It
is worth to recall the context of study in which the classes of ECG do not show a remarkable
condition to be separable groups.

It can be observed that the model that best learns is the one that incorporate altogether the five
features. However, the ability to detect fibrillation is not as good as in normal ECG identification;
i.e. the sensitivity (78%) is lower that the specificity (91.3%). This fact is also reflected in the
value of F1 (79.5%). This remarks are also shown in the boxplots on Figures 3, 4 and 5.

Table 2: Mean (µ) and standard deviation (σ ) of the quality classification measures after 1000
Montecarlo trials of each model. Best values per measure are highlighted in green.

Sensitivity Specificity PPV NPV BA F1-score AUC
Model µ σ µ σ µ σ µ σ µ σ µ σ µ σ

LDH 0.723 0.088 0.877 0.042 0.745 0.059 0.870 0.034 0.800 0.039 0.729 0.051 0.800 0.039
LDC 0.657 0.095 0.868 0.050 0.715 0.072 0.842 0.035 0.762 0.043 0.678 0.060 0.762 0.043
LDF 0.766 0.081 0.905 0.049 0.804 0.079 0.891 0.032 0.835 0.040 0.780 0.054 0.835 0.040
LDHC 0.771 0.081 0.904 0.040 0.802 0.064 0.893 0.033 0.838 0.038 0.782 0.049 0.838 0.038
LDHF 0.752 0.086 0.894 0.049 0.783 0.074 0.884 0.033 0.823 0.039 0.762 0.052 0.823 0.039
LDCF 0.789 0.078 0.897 0.041 0.792 0.063 0.899 0.032 0.843 0.037 0.787 0.048 0.843 0.037
LDHCF 0.780 0.072 0.913 0.041 0.818 0.065 0.897 0.028 0.846 0.033 0.795 0.044 0.846 0.033

Finally, an example of decision tree for the model LDHCF is illustrated in Figure 6. The cor-
responding values for the quality measures are: sensitivity 0.780, specificity 0.976, PPV 0.941,
NPV 0.902, BA 0.878, F1 0.853 and AUC 0.878.

Trends Comput. Appl. Math., 23, N. 3 (2022)
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Figure 3: Distribution of AUC, BA and F1 values per model after a simulation of Montecarlo
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5 CONCLUSIONS

The aim of the present work is to analyze the performance of a classifier in order to detect
atrial fibrillation in a sample of ECG signals provided by the PhysioNet platform under the
management of the MIT Laboratory for Computational Physiology, in Cambridge, USA. Thus,
not only the selection of a good model but a suitable set of variables has been considered.

Decision tree algorithm has shown to be a proper choice in the classification procedure applied to
the database under study due to its simplicity and low computational cost in the case of dichoto-
mous clustering. In previous analysis [16], the considered variables belong to the entropic mea-
sures family, explicitly permutation and Rényi entropy were used. The incorporation of additional
information measures of global and local character, such as complexity and Fisher information,
respectively, in addition to measures that take into account the non-linear nature of the signal, as
the case of Lyapunov exponent (global property) and fractal dimension (local property), showed
a wide improvement in the performance of the classifier. In this way, the combination of entropic
measures, joint with non-linear signal invariants, emerge as adequate variables to construct the
feature space from which the classifier works. This can be seen since the model LDHCF, which
includes the five variables, has achieved the best performance.

Despite the notorious overlapping of the selected variables that define the data set used in the
classification, the computed quality measures give very acceptable results in the application of
the proposed algorithm to the involved database.

From a biomedical point of view, the present proposal has thrown less false negative cases
than false positive cases. This effect suggests the continuity of a deeper study in this line of
research which may include the consideration of other kinds of variables to be part of the feature
space. Moreover, the proposed approach could be tested on larger population samples or with the
purpose to distinguish among different types of cardiac conditions in a in multi-class context.
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