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ABSTRACT. The calculation of the Coulomb Potential corresponding to the product of two Exponen-
tial Type Functions, inherently has numerical challenges that must be resolved. In order to address these
problems, in this paper it is presented a new partition of the Coulomb Potential. The proposed partition
involves two terms. One of the terms is a one-dimensional integral, which allows geometrical and statis-
tical interpretations. The other term is proportional to a Modified Bessel Function and it is obtained from
a two-step procedure. As a first step, a Non-Rational Function is used for approximating one of the two
integrals involved. Then, the remaining improper integral can be identified with an integral representation
of an appropriate Modified Bessel Function. The existence of such a Non-Rational Approximant is proved
and its numerical performance is shown through some examples
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1Departamento de Matemática, Facultad de Ciencias Exactas, Fı́sico-Quı́micas y Naturales, Universidad Nacional de Rı́o
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2 COULOMB POTENTIAL EXPRESSED IN TERMS OF BESSEL FUNCTIONS

1 INTRODUCTION

In this paper, it is presented an alternative treatment of the corresponding presented in References
[5] and [4] for the Coulomb Potential (CP). Explicitly, the CP generated by the product of two
Exponential Type Function (ETF) [5], denoted by V , is given by

V (
−→
R ) =

∫
d−→r exp(−α|−→r −−→

A |)exp(−β |−→r −−→
B |)

|−→r −−→
R |

= C 25/2π1/2

D5

∫ 1
0 duu(1−u)

∫
∞

0 dt cos(Dt)

[
1−exp(−pγ)

{
1+ 5pγ

8 +
(pγ)2

8

}]
pγ6[u(1−u)]3 ,

(1.1)

where α and β are positive constants;
−→
A ,

−→
B and

−→
R are fixed three dimensional vectors and

γ =
[t2 +uα2 +(1−u)β 2]1/2

[u(1−u)]1/2 (1.2)

with D = |−→A −−→
B |, p = p(u) = |u−→A +(1−u)

−→
B −−→

R | and C = ( 32
π
)1/2αβD5.

This work proposes a new partition of equation (1.1), given by

V (
−→
R ) = C 25/2π1/2

D5

∫ 1
0 du u(1−u)

p
∫

∞

0 dt cos(Dt)
[t2+uα2+(1−u)β 2]3

−

− C 25/2π1/2

D5

∫
∞

0 dt cos(Dt)g(t),
(1.3)

where

g(t) =
∫ 1

0
du

[u(1−u)]−2

pγ6

(
exp(−pγ)

(
(pγ)2

8
+

5pγ

8
+1
))

. (1.4)

Analysing the equation (1.3), it could be seen that the first term can be transformed into a one-
dimensional integral by using the following integral representation [6] for the Kν(λ z) Modified
Bessel Function (KMBF),

Kν(Λz) =
Γ(ν +1/2)

π1/2Λν

∫
∞

0
dt

cos(Λt)
(t2 + z2)ν+1/2 . (1.5)

In other words, denoting the first term in equation (1.3) by T1, it is obtained

T1 = C 25/2π1/2

D5

∫ 1
0 du u(1−u)

p
∫

∞

0 dt cos(Dt)
[t2+uα2+(1−u)β 2]3

= C π

D5Γ(3)

∫ 1
0 du u(1−u)

p(u)
π1/2D5/2K5/2(D(uα2+(1−u)β 2)1/2)

(uα2+(1−u)β 2)5/2

(1.6)

Now, considering the second term in the equation (1.3) and denoting it by T2, it can also be
transformed into a simpler expression, approximating the function g(t) by an appropriate Non-
Rational Approximant (NRA), which allows to compute the remaining improper integration
using again the equation (1.5). Then, the final result that is achieved is

T2 ≃C
25/2π1/2

D5 g(0)
(n

a

)n Γ
( 1

2

)
Γ(n)

(
Da1/2

2n1/2

)n− 1
2

Kn− 1
2

(
D
(n

a

)1/2
)

(1.7)
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Therefore, the current approach is expressed in the following equation

V ≃ T1 −T2 (1.8)

It is worth mentioning that in spite of using the CP [2] in equation (1.1) as an electrostatic object,
it is important because it can provide approximated models in many other situations. In our
multi-disciplinary research group, we are interested in introducing Exponential Type Functions
to perform Molecular Calculations. In this context, the goal is to find alternative evaluations of
the equation (1.1), i.e. expressions that can avoid improper integrals with oscillating integrands,
since thousands of them must be evaluated routinely.

In the next sections we present the details of the method. Section 2 gives the explicit construction
of the NRA, i.e. the approximation of the function g(t) defined in equation (1.4) and the parame-
ters involved in the calculation are described. Section 3 shows the numerical performance of the
new expression of V , by the experimentation with some examples. Finally, Section 4 expresses
the concluding remarks.

2 METHOD

The method proposed is motivated by the behaviour of the non-oscillating part in the integrand
of equation (1.3), i.e. g(t) is a decreasing non-negative function with slope zero at the origin,
going to zero at the infinite. Consequently, these facts together with the asymptotic behaviour of
the approximant, which is given in Appendix B (see [1], [3] for analogies), make it possible to
approximate the function g(t) by the following NRA:

App(n, t) =
g(0)(

1+ a
n t2
)n , (2.1)

where a = − g′′(0)
2g(0) . This particular choice of the parameter a makes App equal to g(t) up to the

second derivative at t = 0. The parameter n is determined following the procedure described in
Subsection 2.1. The existence of such n is guaranteed from the properties of the approximant
App, as it is proved in the Appendix A. Then, the second term in (1.3), T2, can be expressed by

T2 = C 25/2π1/2

D5

∫
∞

0 dt cos(Dt)g(t)

≃ C 25/2π1/2

D5

∫
∞

0 dt cos(Dt)App(n, t)

= C 25/2π1/2

D5 g(0)
( n

a

)n Γ( 1
2 )

Γ(n)

(
Da1/2

2n1/2

)n− 1
2

Kn− 1
2

(
D
( n

a

)1/2
) (2.2)

2.1 Calculation of the parameter n

Two different strategies are used to estimate the parameter n. At first, the calculation of n can be
carried out by means of the least squares approximation. Since this technique is computationally
expensive, the computation must be done from the interpolation at a point, setting a criterion

Trends Comput. Appl. Math., 24, N. 1 (2023)
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4 COULOMB POTENTIAL EXPRESSED IN TERMS OF BESSEL FUNCTIONS

for the point selection that takes into account the behaviour of the function to be approximated.
This last approach naturally leads to calculate the estimate of n using the fixed point method,
as it is detailed below. To determine an estimate of n it is used the fixed point method for a
previously selected value of t. For this purpose, some transformations are performed to make
the problem more manageable. The problem of approximating g by App from expression (2.1)
can be reformulated considering the functions g(0)

g(t) and
(
1+ a

x t2
)x or, equivalently, ln

(
g(0)
g(t)

)
and

x ln
(
1+ a

x t2
)
. Thus, the fixed point iteration function is given by

h(x) =
ln
(

g(0)
g(t)

)
ln
(
1+ a

x t2
) (2.3)

Taking into account the behaviour of the function g(t), it is decided to choose t as t = 2
√

a−1,
which is the value of the abscissa where g(0)

1+at2 = 1
2 g(0). In order to reduce the computational

effort required to achieve the estimating calculus from the least squares approximation technique,
the parameter n is estimated by np f iterating the function h(x) six times. It is important to note
that for each test example it is verified that the fixed point iteration converges on the interval
[1,10]. This convergence interval is dependent of the studied examples.

3 RESULTS

The performance of the proposed method is analyzed within the examples from Table 1. The
corresponding results are shown in Tables 2 and 3. Table 2 presents the reference values that cor-
respond to the direct numerical evaluation of equation (1.1). We include the approximated value,
the relative errors, and n estimation by using the least squares method and the fixed point tech-
niques. Table 3 presents the second term reference’s values, including the approximated value
and the relative errors by using both techniques.

Table 1: Definition of the examples:
−→
A ,

−→
B ,

−→
R , α and β .

Ex Ax Ay Az Bx By Bz Rx Ry Rz α β

1 0 0 0 1 0 0 0.5 2 0 8 1
2 0 0 0 1 0 0 0.5 0.5 0 8 1
3 0 0 0 1 0 0 0.1 0.1 0 8 1
4 0 0 0 2 0 0 0.5 1 0 2 1
5 -2.286613 -1.767509 0 -2.286613 1.767509 0 2.286613 1.767509 0 1 3
6 -2.286613 -1.767509 0 -2.286613 1.767509 0 2.286613 1.767509 0 1 8

Trends Comput. Appl. Math., 24, N. 1 (2023)
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Table 2: RV : Reference value, corresponds to the direct numerical evaluation of equation (1.1).
AVms: Approximated value by using the least squares method. AVf p: Approximated value by
using the fixed point technique. REms: Relative error by least squares. RE f p: Relative error by
fixed point. nms: n estimation by using the least squares method. n f p: n estimation by fixed point.

Ex RV AVms AV f p REms RE f p nms n f p

1 8.515504843e-3 8.515504856e-3 8.515504857e-3 2e-9 2e-09 3.500 3.607
2 2.565282072e-2 2.566088705e-2 2.56639191e-2 3e-4 4e-04 1.549 1.477
3 6.388687665e-2 6.524496021e-2 6.559809098e-2 2e-2 3e-02 1.606 1.555
4 2.959858143e-1 3.231339878e-1 3.229071644e-1 7e-4 5e-04 4.148 4.224
5 6.405626287e-3 6.40562629e-3 6.405626288e-3 5e-10 6e-11 9.831 9.997
6 3.171312569e-4 3.171312569e-4 3.171312569e-4 <1e-13 <1e-13 7.207 7.461

Table 3: T2RV : Second term reference’s value. T2AVms: Approximated value’s second term by
using the least squares method. T2AVf p: Approximated value’s second term by using the fixed
point technique. REms: Relative error by least squares. RE f p: Relative error by fixed point.

Ex T2RV T2AVms T2AVf p REms RE f p

1 1.537019371e-9 1.524412743e-9 1.5234828e-9 8e-3 9e-3
2 4.255363114e-4 4.1746998e-4 4.144379321e-4 2e-2 3e-2
3 7.95831452e-2 7.822506164e-2 7.787193087e-2 2e-2 2e-2
4 5.408322576e-2 5.387010451e-2 5.394448295e-2 4e-3 3e-3
5 3.177659062e-9 3.174721566e-9 3.177279844e-9 9e-4 1e-4
6 0 0 0 0 0

4 CONCLUDING REMARKS

On the one hand, one of the most important contribution of this work is the definition of the first
term in the partition of equation (1.3) which results a one dimensional integral with a numerical
evaluation quite simple, i.e. contrasting with the equation (1.1). Also, it can be interpreted as
being proportional to the weighted average of |p(u)|−1. These facts, together with the geometrical
meaning of p(u), i.e. it defines a triangular region with vertices given by

−→
A ,

−→
B and

−→
R when all

of them are not in the same line, make T1 a friendly quantity.

On the other hand, the second term in equation (1.7) also has a very simple evaluation after
the determination of the parameters g(0), g′′(0) and n. Although this makes a reduction in the
computing effort, the relative errors may have a broad range of magnitudes, and the order of
these moves between values less than 10−13 and 10−2. However, it can be seen that the weight of
T2 relative to T1 is important in the result. This is shown by examples 1, 2 and 3, where there is a
systematic deterioration of the App when p is diminishing. The fact that T1 >> T2, gives better
precision, see examples 1, 5 and 6. We consider that this last behaviour is a good result achieved
from the approach presented here, which can accomplish an improved overall final error for a
given set of examples, i.e. to that presented in reference [4].

Trends Comput. Appl. Math., 24, N. 1 (2023)
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6 COULOMB POTENTIAL EXPRESSED IN TERMS OF BESSEL FUNCTIONS

A perspective of this work is the possibility of considering other approximants, such as those
kinds of Rational Approximants presented in reference [1], i.e. perhaps with lesser deterioration
than the corresponding to NRA. It is important to note that both approaches with the integration
in the complex plane are related.

Acknowledgments
Grants from SECYT (UNRC) and CONICET are gratefully acknowledged.

REFERENCES
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APPENDIX A

Theorem A.1. For t > 0 fixed and large enough, exists n ∈ R, n > 0 such that the function ε(x) = g(t)
g(0) −(

1+ a
x t2)−x has a zero in x = n.

Proof. To prove this result, just see that for t > 0 big enough, the function ε(x) changes sign at least once
in the interval (0,∞).

Given that g(t)
g(0) < 1,∀t > 0, and limx→0+

(
1+ a

x t2)−x
= 1, the function ε(x)< 0 as x −→ 0+.

On the other hand, given that limx→∞

(
1+ a

x t2)−x
= e−at2

and that asymptotically, i.e. for all t > 0 large

enough, we have that g(t)
g(0) > e−at2

, then ε(x)> 0 as x −→ ∞.

Therefore, exists n ∈ (0,∞) such that ε(n) = 0. □

This theorem ensures that, choosing t conveniently, it is possible to construct an approximant of the form
(2.1) for g(t).

It is important to mention that the fact that limx→∞

(
1+ a

x t2)−x
= e−at2

shows the positive function H(x) =(
1+ a

x t2)−x is decreasing for t > 0 fixed. In fact, H ′(x) = H(x)
(

at2

n(1+ a
x t2)

− ln
(
1+ a

x t2)) becomes less

than zero as x −→ ∞.

APPENDIX B

Theorem B.2 (The asymptotic behaviour of g(t)g(t)g(t)). The function

g(t) =
∫ 1

0
du

[u(1−u)]−2

pγ6

(
exp(−pγ)

(
(pγ)2

8
+

5pγ

8
+1
))

,

where γ =
[t2+uα2+(1−u)β 2]1/2

[u(1−u)]1/2 , satisfy g(t) = O( 1
t2 ).

Proof. We have that γ(0,u) < γ(t,u), for all t > 0, and p(u) > 0 for all u ∈ (0,1). Then, exp(−γ(t,u)) <
exp(−γ(0,u)).

On the other hand,
1+ 5pγ

8 +
(pγ)2

8
pγ6 = p

1
(pγ)2 +

5
8pγ

+ 1
8

γ4

Therefore,
1

(pγ)2 +
5

8pγ
+

1
8
<

1
(pγ(0,u))2 +

5
(8pγ(0,u))

+
1
8
.

Calling F(u) := 1
(pγ(0,u))2 +

5
(8pγ(0,u)) +

1
8 , we have

g(t)<
1
t2

∫ 1

0
duexp(−pγ(0,u))p(u)F(u)

Then, g(t) = O( 1
t2 ). □
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