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ABSTRACT. In this work we introduce a methodology to determine an optimal vaccination strategy for
the COVID-19 disease with limited vaccination capacity, considering the delays between vaccine doses in
order to minimize the number of deaths. We start proposing a compartmental model in order to study the
evolution of the pandemic before the existence of a vaccine, in the city of Tandil, province of Buenos Aires,
Argentina. We calibrate the parameters involved according to official data. Based on that model, we design
an age-structured optimal control problem to determine the best way of administrate the available vaccines,
taking into account their characteristics and the vaccination capacity. Finally, we compare optimal solutions
with other feasible strategies, considering or not strict isolation measures.

Keywords: COVID-19, SEIR models, age-structured systems, optimal control.

1 INTRODUCTION

The COVID-19, known as the coronavirus 2019 disease, is an infectious disease caused by the
SARS-CoV-2 virus. The first cases appeared in Wuhan, China, in December 2019, the virus
quickly spread globally and the disease was characterized as a pandemic by the World Health
Organization (WHO) on March 11, 2020 [18]. To prevent the spread of the virus, governments
have imposed travel restrictions, quarantines, social isolation and prophylaxis measures. Never-
theless, the global cumulative number of confirmed cases and deaths continued to grow rapidly,
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reaching more than a million cases and 50 thousand deaths on April 4, 2020 [19], 10 million
cases and near 500 thousand deaths on June 29, 2020 [20], and over 100 million cases and 2,2
million deaths on January 31, 2021 [21].

Facing this situation, a lot of research was carried out from different areas with the aim of ana-
lyzing the evolution of the disease and proposing mitigation measures. In particular, it has been
published a large number of works studying the COVID-19 dynamics through compartmental
models (see for instance [1,2,3, 5,8, 12, 14,15, 16]). These are some of the most used models
in epidemiology, whose study goes back to the work of Kermack and McKendrick that in 1927
introduced the well-known SIR model [11]. In that early work the total population is divided into
three compartments (Susceptible, Infected, and Removed) and it is assumed that the recovered
patients do not get reinfected. Since some diseases have a certain incubation period, the intro-
duction of a new compartment for the Exposed (but not infectious) population leads to the SEIR
models (Susceptible, Exposed, Infected, and Removed), see for example [10].

The mentioned works have adapted compartmental models to COVID-19, according to the pur-
pose of each study and taking into account various disease features and different health policies.
SIR models considering finite-time quarantines as control are presented in [3] and [12]. A SIRD
model (where the Removed compartment is split into Recovered and Dead) is considered in [15]
to perform a comparative analysis of the virus spread in the USA, Brazil and Colombia. Large
compartmental models of SEIR type, explicitly considering asymptomatic patients, isolation,
quarantine and/or hospitalization can be found in [2, 8, 14] and [1]. An age-structured SIR model
with confinement as a control variable is introduced in [5], following the lines of [6] Finally,
there are some models that take into account the vaccination, such as [1]. In this latest work, as
in much of the epidemiology literature that considers models with vaccination, it is assumed that
the vaccine is a single dose, see for instance [4] and [13].

In contrast, in this work, it is assumed that there are two vaccine doses to be applied and the
objective is to determine which doses should be administered each day in order to minimize
the number of fatalities, considering the delays between doses on a certain time range. Hence,
the study differs from those presented in [1,4, 13]. The aim is to compute optimal vaccination
strategies in a context of limited vaccination capacity (due to the low availability of vaccines,
logistic issues, not enough health agents, etc.).

The analysis is carried out for the case of Tandil city, Buenos Aires province, Argentina, where
reliable official data are available.

The main contribution of this work is the design of an age-structured control problem that repre-
sents the evolution of the pandemic when a two doses vaccine is available. This control problem
will be based on some compartmental model that describes the evolution of the pandemic with-
out vaccination. For the purpose of this work, a simplified version of the one introduced in [14]
is considered, removing the compartments that explicitly consider asymptomatic population. Of
course, the existence of asymptomatic population contribute to the dynamics of the evolution of
the pandemic, but determining the percentage of them has been a difficult task in the absence
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of massive testing. Indeed, in [9] it is summarized the results of several studies, leading to very
different conclusions about this proportion, which reinforces the difficulty in this topic. It is im-
portant to remark that the maintenance of these compartments (or even others as in [2]) does not
represent a mathematical challenge, but it could increases considerably the scale of the comput-
ing problem. In addition, the hypothesis that most of the cases are detected in Tandil is not so
unrealistic since it is a mid-size city of Argentina with a considerably good health system. Thus,
for the sake of simplicity and according to the available data, the model is restricted to seven
compartments: Susceptible, Exposed, Infected, Detected, Hospitalized, Recovered and Dead.

The article is organized as follows. In section 2, the methodology to compute the optimal vac-
cionation strategies is presented. In subsection 2.1 a detailed description of the model without
vaccination is given, together with an explanation of the calibration issues. In subsection 2.2,
based on the previous model, an age-structured optimal control problem is established taking
into account the vaccination characteristics. Section 3 is devoted to simulating the evolution of
the pandemic for different scenarios, taking into account the possible containment measures and
comparing the optimal policy obtained in section 2 with other feasible strategies. Lastly, section
4 presents some final conclusions.

2 OPTIMAL VACCINATION STRATEGIES

As we mentioned above, one of the aim of this paper is to present a methodology to obtain
optimal vaccination strategies. This methodology consist in two main steps. The first one is to
design a compartmental model that fit well the evolution of the pandemic before the application
of pharmaceutical measures, in particular vaccination. Once this model has been calibrated, we
can modify it by introducing new variables and parameters that describe the new evolution of the
pandemic, taking vaccination into account. The second step consist of solving an optimal control
problem, where the dynamics is given by the modified original problem, the control represents the
way of administering the available doses of vaccines, and the objective is to reduce the number
of deaths.

We want to point out that several models can be considered for the first step, including those
that take into account the existence of asymptomatic patients. Based on the model presented in
the first step, we design an age-structured optimal control problem that allows us to consider a
two-doses vaccine. As we mentioned before, this is one of the main characteristics of our work.
Finally, to obtain the optimal solution we use an optimal control solver, so the computational
burden will depend on the complexity of the model and the dimension of the age-structure control
problem. In the next two subsection we present the models (with and without vaccination) that
we consider in this work for the case of Tandil city.

2.1 Modelization and calibration without vaccination

In this section, we introduce the model without vaccination considered throughout this work.
It is an SEIR compartmental type model sketched in Figure 1. It has 7 compartments where
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the infected population compartment is divided into three new ones: Infected (the people who
are infected and can infect others), Detected (infected people who are detected and isolated)
and Hospitalized. The removed population compartment is split into Recovered and Dead pop-
ulation, where this last compartment is denoted by F (for Fatalities) in order to distinguish it
from Detected. In Table 1, we explain in detail the meaning of the variables (compartments) and

coefficients.
(1-Cyy)
Tor
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Figure 1: Model scheme.
Table 1: Variables and coefficients involved in the model.
Variables Coefficients
S susceptible B transmission coefficient
E  exposed Teg;  average time of incubation
I infected T;p average time to detection.
D  detected Tpr  average recovery time for detected
H hospitalized | Tpy average time between detection and hospitalization
R recovered Tyr  average hospitalization time for recovering patients
F dead Cy  proportion of detected patients to be hospitalized
Cr  proportion of hospitalized patients who die

In this model, we consider that an exposed person, after approximately a period of time equal to
Tg1, begins to be infectious, that is, they are capable of transmitting the virus to other people with
whom they have contact. After a period Tjp, those infected are detected and from that moment
we assume that they are isolated so that they stop contributing to the spread of the virus. We
assume that once detected, patients can go through the disease in a mild way until they recover
or, they can present severe symptoms and be hospitalized. Lastly, we assume that only people
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who were hospitalized are those who decease. Taking all this into account, the dynamics of our
model are as follows:

Sy = —KsmI),

E(r) = {SOI0) - 7;E(®),

i) = E@)-410),

D(t) = 7-1(0)—ELD(r) - U5 pr), 2.1)
A1) = £LD()— FEH() - U (D),

Rty = U29D()+ 1-C (),

F(t) = zEH(@).

In order to anticipate the evolution of the disease using this model, it is necessary to know the
values of the parameters (coefficients and initial conditions). Some coefficients can be found in
the recent bibliography (see for instance [17]) and others can be obtained from data provided
by official agencies (https://www.tandil.gov.ar/, https://www.argentina.gob.ar/).
However, to obtain the rest of the parameters and the initial conditions it is necessary to calibrate
the model using the available information.

The calibration is carried out with a one day Euler time-discretization of system (2.1) by looking
for the minimum of the squared error between the observed data X and the model trajectories x.
In our case, we have the following objective function

0(B.&) = LT Y (5(1.8.8) (1), @2

t i€l
where x(1) = (S(¢),E(t),1(¢),D(t),H(t),R(t),F(t)) is the solution of the discrete system asso-
ciated with (2.1) with initial conditions & and I corresponds to the set of observable variables
{D,H,R,F}.
We consider the available data until March 23, 2021, and we use the previous 15 days to calibrate

the model !. The values are presented in Table 2.

We simulate our model using the calibrated parameters and compare it with the data of the
following 15 days as shown in Figure 2.

2.2 An optimal control problem with vaccination

Based on the compartmental model presented in the above section, we propose an age-structured
control model to analyze the best way of administering vaccine doses, taking into account the
main features of the available vaccines in Argentina at the beginning of 2021 and the vaccination
capacity per day.

'We solve this optimization problem in Python, with the minimize function in scipy.optimize. We use the Nelder-Mead
method and the optimal value that we obtain was 679.057.
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Table 2: Parameters and initial conditions on March 24, 2021.

Parameter ~ Value | Initial cond. Value
B 0.310 S(0) 126347.102
Ter 4.000 E(0) 187.717
Tip 5.300 1(0) 196.708
Tpr 7.050 D(0) 177.337
Tpu 1.750 H(0) 40.257
Tur 6.100 R(0) 10026.743
Tur 11.700 F(0) 183.477
Cy 0.068
Cr 0.240
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Figure 2: Comparison between the data and the calibrated model.

The aim of this section is to design an optimal control problem where the control is the vacci-
nation policy. We consider the situation in the city of Tandil at the beginning of 2021 when the
first vaccines arrived in Argentina. At that moment the most available vaccine in Argentina was
the Sputnik V vaccine (see https://sputnikvaccine.com/). Taking into account some of the
characteristics of this vaccine, we formulate our assumptions for the model. Like most vaccines
available so far, two doses should be given and a minimum and maximum delay between doses
is suggested. It is also known that after the application of the first dose, it takes a few weeks
before obtaining a significant level of immunity. Taking all these features into consideration, we
formulate a vaccination-age model, rather than one with infection-age as in [5].

Considering the compartmental model presented in (2.1), we introduced two controls u; and uy
that represent the proportion of first and second doses applied per day. We add the susceptible
vaccinated population, which depends on the vaccination age, that is the number of days since
they received the first dose. Since the development of the disease changes in people who have
already received a dose of the vaccine, we introduce the compartments of exposed vaccinated
population Ey, infected vaccinated population Iy, and detected infected population Dy. Once
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they arrive at the hospital, we assume that the behavior of the disease no longer depends on being

or not vaccinated. We summarize this information in Table 3.

Table 3: Control model variables.

Variables

susceptible population

susceptible vaccinated with the first dose since a days ago
exposed population without the effect of vaccine
exposed population under the effect of vaccine
infected population without the effect of vaccine
infected population under the effect of vaccine
detected population without the effect of vaccine
detected population under the effect of vaccine
hospitalized population

recovered population

dead population

As we mention before, based on the characteristics of the Sputnik V vaccine, we make the fol-

lowing assumptions: the second dose can be applied between 21 and 84 days after the first dose;

after 21 days of the first dose application a 70% of efficacy is attained and a reduction of 80% of

severe cases; after the application of the second dose, full immunity is acquired. We also suppose

that people with one dose of the vaccine who become infected do not receive the second dose,

since they are already immunized. Furthermore, we assume that 84 days after the first dose is

applied, the application of the second dose is mandatory, so we consider the variables v,, with

a=0,...,83, that represent people who received the first dose of the vaccine a days ago.

The involved coefficients are the ones described in Table 1 with the addition of By (the trans-

mission coefficient under the effect of vaccine) and C}; (proportion from detected to hospitalized

under the effect of vaccine). Taking into account the aforementioned considerations, we have

By =03 and C},=02Cy.
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Now we present our discrete time model with vaccination, where the time step is one day, k =
0,..N—1:

S = (1= + 1) —uf) $*

16+1 = kst

A= (1-BU K, a=0,...21

V= (1= By (R4 ) — i)k, a=22,...,82

B = (1 ) R B 1) (5t D ov>

= (1) BB (1 1) £l

I = (1) Pt 23)
B o= (- ) B+ 4B

D¢l — (1_%_<1TDiH))Dk+T]1le

Pt = (1 ) Ph

H* = (1_%_ (I;fICIeF))Hk+ Cy Dk"‘Tff;,Dk

Fhil FkJrTprFHk

REHL Rk+(ITDCH)Dk+(1;DCI‘?1‘./1)D1‘3+%Hk_i_zgzzzzuévﬁ_'_vgy

The initial conditions for this system are those obtained in Section 2.1. Finally, due to the avail-
ability of vaccines or the capacity of the health system, there is a maximum number of vaccines
M > 0 that can be administered per day (M = 410 in our case). Therefore, the total number of first
doses, second doses before 84 days from the first dose and second mandatory doses for having
reached the 84" day of vaccination, must be less than or equal to this maximum capacity. We
have the following constraints:

uk Sk Y82 o ukvk vk <M, k=0,....N—1,
uk, uk € 10,1, k=0,....N—1.
The objective of the optimal control problem is to minimize the number of deaths during a certain

period of time N:
minFV.

Now, using the available data of Tandil until March 24, 2021, and the calibration of the pa-
rameters obtained in Section 2.1, we solve our optimal control problem with the solver Bocop>
(http://www.bocop.org, see [7]). Our objective is to solve the problem with a horizon of 250

2We run Bocop with a one day Euler explicit discretization, constant starting point and single optimization for the NLP
solver Ipopt.

Trends Comput. Appl. Math., 24, N. 1 (2023)



J. GIANATTI, P. A. LOTITO, J. G. NEDER, P. M. NUNEZ and L. A. PARENTE 1 29

days, but since there exists a delay between getting infected and dying, we work with a horizon
of 300 days in Bocop.

In the following Figure we show the number of doses to be applied per day, corresponding to the
optimal solution obtained with Bocop. In the picture on the left we can see the number of the first
doses applied per day (ull‘ $%). In the picture on the right we see in orange the number of second
doses applied for having reached the vaccination-age of 84 days (v§3) and in green the second
doses applied to people with vaccination-age lower than 84 days ():22:22 u’év’;).

450 450
—— First doses —— Second doses before day 84

Second doses at day 84
400 400

350 H 350 ’/\

300 300

o
3

vaccines
vaccines

L)

0 50 100 150 200 250 300 0 50 100 150 200 250 300
days days

Figure 3: Administration of first and second doses, following the optimal vaccination strategy
obtained with Bocop.

This strategy suggests starting by applying only first doses during the first 84 days, we observe
that in the first picture every day the maximum vaccination capacity is reached (410 vaccines
per day). In the following period of 84 days second mandatory doses are applied (for having
reached the vaccination-age of 84 days) that complete the vaccination schedule and some first
doses, because people with a single dose became infected and do not receive a second dose. The
solution obtained suggests delaying the second dose until the maximum allowed interval during
the first 210 days and then applying the second dose before the interval of 84 days. Notice again
that since the vaccination of the last days has no impact on the cost, the behavior of the solution
during the last period is not so regular.

3 NUMERICAL RESULTS

As we mentioned in the introduction, throughout this pandemic period, governments have taken
different measures to mitigate the effects of COVID-19 on the population. Before the appear-
ance of effective vaccines, non-pharmaceutical measures were implemented. Some of them, such
as the use of masks and the hygiene of hands and surfaces, can be assumed to be maintained
throughout the entire period. However, as they were not enough to stop the waves of contagion,
strict confinement measures were implemented for certain periods of time and with different in-
tensities. In model (2.1), these measures have impact in the transmission coefficient 3, as will be
explained later in subsection 3.2. Since, isolation measures are not known very far in advance,
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in section 2 we assumed that this coefficient remains constant. Nevertheless, it is to be expected
that if the number of cases starts to climb rapidly, some containment measures will be taken.

In this section we study different possible scenarios of the evolution of the pandemic in Tandil,
taking into account vaccination policies and confinement measures. In all the tests presented
in this section, we consider the parameters calibrated in subsection 2.1 and a horizon of 250
days, starting from March 24, 2021. We simulate the trajectories in Python, with a one day Euler
time-discretization of the corresponding dynamical system.

3.1 Vaccination strategies

We start by considering only vaccination strategies, without taking into account possible
confinement measures. We present here five different tests.

Test 1: we analyze the scenario without vaccination, following the dynamics (2.1), and the results
are in Figure 4.

125000
100000 R

75000 +

50000 A

25000 A

0 50 100 150 200 250

5000 A
4000 -
3000 A

2000 A
1000 A

0.

0 50 100 150 200 250

Figure 4: Scenario without vaccination, following the dynamics of (2.1).

As we can see in Figure 4, there is an exponential growing until day 100, that is followed by a
fast decreasing, which is the usual behaviour of this kind of models. On day 250, the population
within the Exposed and Infected compartments is near zero so the pandemic is almost finished,
with a large number of deaths.

In each of the following tests we show five different figures. The first two present the vaccination
strategy, corresponding to the total number of vaccines, applied per day, of first and second
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doses. In the case of second doses, we differentiate between the second doses applied before the
vaccination-age of 84 days and the second mandatory doses applied to people that have reached
the vaccination-age of 84 days. The last three images show the evolution of the different variables
of our model.

Test 2: We simulate the evolution of the system, following the dynamics (2.3), using the strategy
obtained with Bocop until day 250.

400

200

—— First doses

0 T T T T
0 50 100 150 200 250

Second doses at day 84
—— Second doses before day 84

0 50 100 150 200 250

100000 +

50000 1 3

0 50 100 150 200 250
30001 —

2000 A

M T O — m

1000 -

300 -
200 1 —

100 -

0 50 100 150 200 250

Figure 5: Optimal strategy obtained with Bocop.

In Figure 5 we show the vaccination strategy and the evolution of the variables involved in the
model. Notice that the peak of the dynamics is reached a few days earlier and the values are
considerably lower than those obtained without vaccination in Test 1. In particular, as expected,
there is an important reduction of the death toll.

Trends Comput. Appl. Math., 24, N. 1 (2023)



132  covID-19 VACCINATION POLICIES

Now, we compare the results obtained in Test 2 with other feasible and perhaps easier to imple-
ment vaccination policies. The following three tests show the evolution of the controlled system
(2.3) for vaccination strategies with a fixed delay between doses. We consider delays between
doses of 84, 42 and 28 days.

Test 3: We consider a fixed delay of 84 days between doses. Figure 6 shows the vaccination
strategy and the dynamics. The obtained dynamics are very similar to those given by the optimal

policy in Test 2.
400
200 A
—— First doses
0 T T T T
0 50 100 150 200 250
400 -
200 A
Second doses at day 84
—— Second doses before day 84
0 T T T T
0 50 100 150 200 250
100000 -
50000 - 5
— R
200 250
200 250
— Ev
200 W
— Dv
100
0 - T T T T T T
0 50 100 150 200 250

Figure 6: Vaccination policy respecting a fixed delay of 84 days between doses.

Test 4: We consider a fixed delay of 42 days between doses, see Figure 7. In this case, we can
see that the number of fatalities is larger than those obtained in Tests 2 and 3, but it is quite less
than the one given by Test 1.
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400 A
200 A
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0 T T T T
0 50 100 150 200 250
400
200 A
Second doses at day 42
— Second doses before day 42
0 T T T T
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100000 A
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— 1
2000 - D
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0 L T
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Figure 7: Vaccination policy respecting a fixed delay of 42 days between doses.

Test 5: We consider a fixed delay of 28 days between doses, see Figure 8. Here, the death toll is
even higher than that obtained in Test 4, but still lower than that in Test 1.

We summarize the final values of the variables (after 250 days) in Table 4, where we can observe
that using the optimal policy of Test 2 and the strategy of a fixed delay of 84 days of Test 3
we obtain almost the same value of the objective function, that is, the same number of deaths.
Furthermore, in all cases, we obtain that the number of Exposed and Infected is almost zero,
which indicates that after 250 days the pandemic would be over.

This result does not seem to be the closest to reality, but this is because in the previous tests we
assumed that all the coefficients remain constant. In particular, the calibration of these parameters
was carried out with the data available until March, in Tandil, when a significant increase in cases
was beginning. So, we can conclude that the transmission coefficient 3 obtained in Section 2.1
is really high. Due to the increase in cases at the beginning of 2021, some containment measures
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400 —— First doses
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Figure 8: Vaccination policy respecting a fixed delay of 28 days between doses.

were taken in Argentina to reduce this transmission factor. In the next section we consider these
changes along with the different vaccination policies.

3.2 Confinement measures

In the above section, we analyze several scenarios of different vaccination policies assuming that
the coefficients of the model remain constant throughout the entire period of time considered.
In particular, the transmission coefficient 3, which is related to the number of contacts among
people and the probability of infection when contact occurs, is not expected to remain constant
if, for example, some confinement measures are taken. In fact, given that in April 2021 there was
a large increase in the number of confirmed cases in Argentina, lockdown measures were taken
during the months of May and June.

Taking that into account, we incorporate a new control to our model that can be interpreted
as confinement measures that governments can take. This control w appears as a multiplicative

Trends Comput. Appl. Math., 24, N. 1 (2023)
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Table 4: Comparison of vaccination policies without confinement after 250 days.

Variables Test 1 Test 2 Test 3 Test 4 Test 5
S 50409.371 | 28432.943 | 16163.757 25917.113 22569.913
223:0 Va 0.000 3621.852 | 28161.028 3616.113 8455.930
E 5.486 0.290 0.276 0.251 0.258
Ev 0.000 0.017 0.063 0.009 0.001

1 9.727 0.691 0.687 0.619 0.617

Iv 0.000 0.057 0.128 0.032 0.002

D 14.874 1.452 1.463 1.348 1.298
Dv 0.000 0.169 0.266 0.098 0.012
H 5.927 0.834 0.843 0.800 0.750

R 84069.956 | 89893.511 | 91147.290 | 105851.179 | 104323.154

F 2644.001 1683.536 1683.539 1771.779 1807.405

factor that reduces the transmission coefficients 8 and By. We only rewrite the first equations of
the system (2.3) where this control, wk € (0, 1], is involved.

S = (1= wAB(IF 415 — ub) S*

L = (1= wkB(IF+I5)) W&, a=0,...,21

VL = (LA By (4 1) —db) vk, a=22,...,82 G.1)
Bl = (1) ES B U ) (S i)

B = (1) BB B 1) T

In the different scenarios analyzed in the previous section, considering the assumptions made
about the vaccine, we realize that one of the best strategies is to delay the second dose until the
maximum allowed interval. Now we study the same strategies analyzed before but adding some
confinement measures to our model.

Considering the lockdown measures taken in Argentina, we define the following control:

04 if k=52,...,61

k_ 0.6 if k=62,...,77
0.8 if k=178,...,93
1 otherwise.

In Figure 9 we show the results obtained using the strategy of Test 2, where in the last two images
with vertical dashed lines we separate the different periods of confinements.

Finally, we present in Table 5 the final values of the variables, using the control w and the
vaccination policies of the tests of the previous section. We can conclude that even with these
confinement measures, the best strategy is still to delay the second dose to the maximum allowed.
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Figure 9: Bocop optimal strategy with confinements.
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Table 5: Comparison of vaccination policies with confinement after 250 days.

Variables Test 1 Test 2 Test 3 Test 4 Test
S 60357.753 | 51399.744 | 36953.365 | 49153.112 | 45272.549
):23:0 Vg 0.000 2253.590 | 31161.275 2625.841 9377.586
E 255.172 18.329 18.047 19.426 22.372
Ev 0.000 0.437 2.378 0.329 0.052

1 406.576 31.397 31.606 33914 37.985

Iv 0.000 1.122 3.521 0.928 0.055

D 547.647 45.745 46.372 50.393 54.774
Dv 0.000 2.370 4.954 2.099 0.171
H 184.436 16.898 17.178 19.035 20.045

R 73146.338 | 67629.179 | 67971.886 | 84235.667 | 81340.738

F 2261.420 948.700 948.7587 1018.596 1033.013
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4 CONCLUSIONS

The objective of this work was to optimize the use of vaccines to reduce the number of deaths. We
started by proposing a compartmental model that described well the behavior of the pandemic in
Tandil, before the existence of vaccines. We calibrated the model with the data available up to
March 2021 and then based on that model we design an optimal control problem that includes the
administration of vaccines as a control. We solved this problem with an optimal control solver,
and then compared the optimal strategy obtained with different scenarios, of no vaccination and
of fixed delays between doses.

Based on the numerical results, we can conclude that delaying the second dose to the maximum
allowed seems to be one of the best strategies. Of course, these results are related to the assump-
tions made about the vaccine. In the case of the vaccine considered here, a few weeks after the
application of the first dose, a high level of immunity is achieved. If this level of immunity were
lower, the optimal strategy would probably not be the same.

The optimal control problem in section 2 was posed assuming that the coefficients were con-
stants, in particular that means that the transmission coefficient remains constant. As explained
before, this is not the case if some lockdown measure are taken. So, in section 3 we explained
how to modify the control model presented in section 2 to take into consideration this kind of
confinement measures. Using this formulation for a particular containment measure, we simu-
lated the evolution of the pandemic for the different vaccination policies studied in subsection
3.1. We observe that also in this case, as the delay between doses decreases, the number of deaths
increases. We want to point out that in this case with confinement measures, after 250 days the
number of the infected population is greater than zero, and maybe this situation is closer to the
current situation of the pandemic, at least in Tandil. To end this section of conclusions, we want
to mention that after the first submission of this paper, new variant of COVID-19 have appeared,
such as the famous Omicron, and access to different kind of vaccine was gradually becoming
possible. Therefore, it is difficult to compare the real situation in Tandil with the scenarios pre-
sented in this work. However, during most of 2021 the policy of delaying the second dose to
the maximum allowed interval was one of the strategies adopted in Argentina. This decision,
together with confinement measures, could have been one of the reasons for the delay of the first
wave of Omicron compared to other countries. The most critical situation of the pandemic, in
terms of the number of confirmed cases, but without saturation of the health system, was at the
beginning of 2022.
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