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ABSTRACT. This work presents a combinatorial bijection between the set of lattice paths and the set
of ordered trees, both counted by the central coefficients of the expansion of the trinomial (1+ x+ x2)n.
Moreover, using a combinatorial interpretation of Catalan numbers, we establish a new set of ordered trees
counted by a new sequence.
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1 INTRODUCTION

The combinatorial relationships between different objects are an interesting area, which has at-
tracted much attention recently. Some finite sets have the same cardinality, and then, there is com-
binatorial bijection between these sets. In some cases, we can observe that such combinatorial
relations are trivial, but in other cases the relation between the sets is not easy to establish.

Considering this type e of combinatorial enumeration problem, we can associate different math-
ematical objects by making bijective mappings, where each element corresponds to another, with
combinatorial operations. In this way, we can prove identities extending results from one object
to another, such as the generating functions of sets.

Several methods and techniques have been developed for studying combinatorial enumerations
problems, specially involving lattices and graphs (see, for instance, [3, 4, 7]). In this context, a
particular interest has been brought to the enumerative relationship between the lattice paths,
ordered trees and the central trinomial coefficients.

The most important fact between the lattice theory and combinatorics is that each lattice can be
represented as an inclusion-order on a set system. Then the lattice structure another viewpoint
associated with sets of combinatorial objects.
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On the other hand, trinomial coefficients appear in relation to many generating functions, as Leg-
endre polynomial, and are solution for some combinatorial problems. For example, the central
trinomial coefficients are the number of permutations of n simbols, each −1,0 or 1, wich sum to
0, or are the solution of a problem with restrictions of number of ordered ballots from n voters,
[see more in [8]].

The n−th central trinomial coefficients, Tn, is defined as the coefficients of xn in the expansion
of (a+ bx+ cx2)n, for integers a,b and c ( for more details see in [ [8], Table 1] and [6]). The
sequence {Tn}n≥0 admits various combinatorial interpretations as lattice paths and ordered trees
with restrictions. Especially, the expression

Tn =
⌊n/2⌋

∑
k=0

(
2k
k

)(
n
2k

)
bn−2k(ac)k, (1.1)

give us the explicit combinatorial formula for Tn in terms of a,b and c.

It is well-know that the set of lattice paths going from (0,0) to (n,0) with steps U = (1,1), D =

(1,−1) and H =(1,0) and the set of ordered trees with n+1 edges, having root of odd degree and
nonroot nodes of out degree at most two are counted by the n−th central trinomial coefficients,
Tn, with a = b = c = 1. Therefore, a natural question is whether there is a closed relationship
between these sets, more precisely, what is the combinatorial bijection between them?

First of all, it is important observe that the central trinomial coefficients of (1+ x+ x2)n is the
sequence with first terms given by 1,1,3,7,19,51, · · · , [A002426, [8]]. This case was studied by
Euler [5] and can be seen currently with results in congruence [10].

On the side, Deutsch investigated in [2] the relationship between Schröder’s small numbers and
Schröder’s lattice paths and formulates a bijection among them, [A001003, [8]]. The Schröder’s
small numbers, also known as super-Catalan numbers, are connected with paths by considering
lattices paths from (0,0) to (n,n) with steps (1,1),(2,0), and (1,−1). Another similar paths are
Dyck paths and Motzkin paths, according to [A000108 [8]].

The bijection presented by Deutsch used ordered trees with some restriction. The relationship of
lattice paths going from (0,0) to (n,0) with steps U = (1,1), D = (1,−1) and H = (1,0) and the
set of ordered trees with n+1 edges, having root of odd degree and nonroot nodes of out degree
at most two are cited in [8], both counted by the sequence of central trinomial coefficients.

This paper introduces a bijective combinatorial proof of these sets. More precisely, we give a
combinatorial bijection between the set of lattice paths going from (0,0) to (n,0), with steps U =

(1,1),D = (1,−1) and H = (1,0), and the set of ordered trees with n+1 edges, having root of
odd degree and nonroot nodes of out degree at most two. Both sets are counted by the sequence of
the central trinomial coefficients of (1+x+x2)n. Moreover, using a combinatorial interpretation
of Catalan numbers and the sequence of the central trinomial coefficients of (1+ x+ x2)n, we
can build a new sequence that count ordered trees in complementary type. To reach our goal,
we give some useful elements about the graphs, lattices and trees (Section 2). After formulating
some basic lemmas we give the proof of our main result (Section 3). Finally, we consider a new

Trends Comput. Appl. Math., 24, N. 3 (2023)
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interesting sequence, related to the sequence Tn and the Catalan numbers Cn, that count ordered
trees in complementary type.

2 ABOUT GRAPHS, TREES AND LATTICES

A graph G consists of a non-empty set V (G) of vertices, a set E(G), disjoint from V (G), of edges,
and a function that associates with each G edge an unordered pair of (not necessarily distinct)
vertices of G. A connected graph is a graph that there is a path from any vertex to any other
vertex in the graph. And acyclic graph is a graph having no graph cycles. A tree is a connected
and acyclic graph. We say that a tree is rooted when we differentiate one vertex (node) from the
others, which we call the root.

The definition of ordered trees according to Stanley [9] is given by:

1. one specially designated vertex is called the root of T, and

2. the remaining vertex (excluding the root) are put into an ordered partition (T1, ...,Tm) of
m ≥ 0 pairwise disjointed, nonempty sets T1, ...,Tm where each of them is a plane tree.

The plane trees or subtrees are said to be children of the root tree and are ordered trees.

Also, according to Dershowitz [1], the set of ordered trees with n edges is counted by the well-
known sequence of Catalan numbers Cn, with first terms 1, 1, 2, 5, 14, 42, 132, ..., sequence
given in [A000108, [8]], and the Expression

Cn =
1

n+1

(
2n
n

)
. (2.1)

For reasons of clarity, we are considering the following definition for lattice path, given by Stan-
ley, [9]. Let S be a subset of Zd , a lattice path L in Zd of length k with steps in S is a sequence
v0,v1, ...,vk ∈ Zd such that each consecutive difference vi − vi−1 lies in S. We say that L starts at
v0 and ends at vk, or more simply that L goes from v0 to vk.

By considering the expansion coefficients of (1+ x+ x2)n, it is possible to build an arithmetic
triangle, similar to Pascal’s, namely we have,

1
1 1 1

1 2 3 2 1
1 3 6 7 6 3 1

1 4 10 16 19 16 10 4 1
1 5 15 30 45 51 45 30 15 5 1

1 6 21 50 90 126 141 126 90 50 21 6 1

.

Analyzing the numerical sequence [ [8], A002426] determined by the central coefficients of
the trinomial expansion (1+ x+ x2)n we can described the arithmetic triangle above. And by

Trends Comput. Appl. Math., 24, N. 3 (2023)
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interpretations made using the information available in [8], we show that the central coefficients
of trinomial expansion (1+ x+ x2)n is nothing else but the number of lattice paths from (0,0) to
(n,0) with steps U = (1,1), D = (1,−1), and H = (1,0).

On the other side, also this number count ordered trees with n+1 edges, having root of odd degree
and nonroot nodes of out degree at most 2. Thus, fixed n, these sets have the same cardinal. In the
literature there is no bijective proof connecting lattices and trees with these restrictions directly.
Our goal is to show a combinatorial bijection between them.

3 A COMBINATORIAL BIJECTIVE PROOF

Let Gn be the set of ordered trees with n+1 edges, having root of odd degree and nonroot nodes
of out degree at most 2. And let Pn be the set of lattice paths from (0,0) to (n,0) with steps (1,1),
(1,−1) and (1,0). For a fixed n ∈ N, as the sets have the same cardinality seen in [8], there is
a bijection between the two sets Gn and Pn. Let φ : Gn → Pn be the combinatorial bijective
function of Gn and Pn.

For the construction of the preceding bijection φ , we need to consider the following result, which
characterizes the number of steps in Pn.

Lemma 3.1. The number of steps (1,1) in Pn is the same as steps (1,−1).

Proof. Considering c the set of lattice paths from (0,0) to (n,0) with k steps (1,1), j steps (1,−1)
and q steps (1,0). We obtain k(1,1)+ j(1,−1)+q(1,0) = (k+ j+q,k− j), where k+ j+q = n
and k− j = 0. Therefore , we derive that k = j. □

The Lemma 3.1 shows us that there is symmetry with respect to the x−axis for the elements of
the set Pn. Then, let C1,C2,C3,C4 and C5 in Pn, such that C1 is the set of paths that are above the
x-axis, C2 the set of which are below the x-axis, C3 for those with positive and then negative, C4

for those with negative and then positive, and C5 for those with only ordinate zero.

For every fixed n, we consider the set C =C1 ∪C3 ∪C5 where the sets C1,C3 and C5 are in Pn.

Note that the number of edges in Gn is n+1, and the number of edges in Pn is n, so let’s remove
an edge, conveniently, such that this number becomes the same.

To succeed in this process, let call A the set of clean trees with n edges, that is, exactly one edge
has been removed, and let f : Gn → A, be the function that removes it. The function f is defined
by contracting the rightmost edge emanating from the root, the excess edge, such that we get a
tree at A = Im( f ); an exception occurs when we have a sequence of nodes with degree one nodes
after the excess edge. In this case, the sequence of consecutive adjacent nodes with degree one
nodes, if any, will go above the root after the excess edge has contracted. An example for this
exception is given in Figure 1, on the right side.

Trends Comput. Appl. Math., 24, N. 3 (2023)
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Figure 1: f applied in case of exception.

In this way we see that two trees can determine the same clean tree and as we will see it is unique.
Now, note that, given the clean tree, we can reverse the procedure, which in this case generates
exactly two trees, except for the tree composed only of nodes and root of degree one. In the
inverse procedure, consider the two cases:

I - the degree of clean tree root is greater than one, for this end to obtain the first tree, we expand
one edge from the root by pushing the two rightmost edges of the clean root tree. To get the
second one, we expand it by creating another right edge emanating from the root.

II - the degree of clean tree root is equal to one, for this end take v, if any, with the first node
of degree greater than one after the root. To get the first tree, we expand an edge by v, pushing
the two rightmost edges emanating from this node. Next, we contract the sequence of grade one
nodes preceding v and expand that sequence to the adjacent vertex to the rightmost v. For the
second tree, we expand a rightmost edge of v, and again we contract the sequence of grade one
nodes preceding v and we expand this sequence at the vertex adjacent to v to the right. If v does
not exist, this clean tree derives only from the tree composed only with nodes and root of degree
one.

Note that f (g1) = a = f (g2), for two trees g1 and g2 in Gn. Then, we can define the inverse
procedure f−1(a) = {g1,g2}, a ∈ A. Since g1 and g2 have different degrees for their roots, taking
without loss of generality g1 as the tree with root of the highest degree. Let h : A →Gn, such that
h associates each element of A with the g1 tree, that is, always associates with the highest root
tree. Taking B = Im(h), thus f

∣∣
B is bijective.

Moreover, we obtain the cardinality |A|= Kn−1
2 +1 = Kn+1

2 , that implies that |A|= |C|.

Lemma 3.2.

Under the preceding data and notations, consider the two sets C =C1 ∪C3 ∪C5 and B = Im(h).
Then, there is a bijection between sets C and B.

Trends Comput. Appl. Math., 24, N. 3 (2023)
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Proof. The main goal is to find a bijective application ψ : B →C. To reach our goal, we consider
an element g ∈ B. Let a ∈ A such that f (g) = a. Then ψ(g) is obtained by traversing the edges of
the a tree from left to right, bottom to top, and out. The remaining internal edges will be traverse
from right to left and top to bottom so that:

I - Does step (1,0) when the vertex has out degree one.

II - Make steps (1,1) and (1,−1) when the vertex has an exit degree greater than or equal to two.
Alternately, when the vertex has an out degree greater than two make step (1,1) corresponds to
the leftmost edge and (1,−1) to the rightmost edge, (see Figure 2). And if an edge emanating
from the root with step (1,1) generates subtrees, makes step (1,−1) and (1,1) when the vertex
has an output degree equal to two. Where (1,−1) corresponds to the left edge and (1,1) to the
right edge.

Figure 2: Path ψ(g) (+ = (1,1),−= (1,−1) e 0 = (1,0)).

Enumerating the trees from left to right and bottom to top, we will always start with steps (1,0)
or (1,1), and may later, at some point along the way, have a number of steps (1,−1) higher than
that of steps (1,1). So the built path is in C. This way, each tree in A will only associate with a
single path in C. In fact, by switching one edge, we have also changed the enumeration.

Conversely, given a lattice path c ∈C, we can build a tree g , such that ψ−1(c) = g.

That is, let c going from (0,0) to (n,0) with k steps (1,1), and consequently k steps (1,−1) by
Lemma 3.1. Consider the first increasing path in c with only steps (1,1) up to the point ( j,s),

Trends Comput. Appl. Math., 24, N. 3 (2023)
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and t the number of steps (1,1) and (1,−1) with upper ends in (x,y) in c, with 0 ≤ x,y ≤ n, and
y ̸= s, (see Figure 3).

Thus we define the degree of the root by 2k− t +1. Observe that t is even, since the number of
steps (1,1) and (1,−1) it is the same.

Figure 3: Root degree range.

By construction, the consecutive step requires a node of degree two, decreasing the degree of the
root by two. Since the maximum possible degree for the root is 2k+1 and we have removed as
few edges as possible when we have t > 0, this root will be the highest degree and therefore it
is in B. Moreover, we form the degree of the root and the other nodes have degree two or one
according to the number of steps (1,0) being further left and emanating from an appropriate node
according to the sequence of steps of the lattice path. □

Theorem 3.1.

The number of lattice paths from (0,0) to (n,0) with steps U = (1,1), D= (1,−1) and H = (1,0)
is the same as that of ordered trees with n+1 edges, having root of odd degree and nonroot nodes
of out degree at most 2.

Proof. Let φ : Gn → Pn be the bijective function between Gn and Pn.

Given a tree g ∈ Gn, we find a lattice path such that if g ∈ B ⊂ Gn, then φ(g) = ψ(g) = c ∈ C.

Otherwise g ∈ B∁ ⊂Gn then φ(g) = c′ ∈C∁ ⊂ Pn such that c′ is the symmetrical of c relative to
the x-axis.

Conversely, given a path c ∈ Pn, we have to c ∈C ⊂ Pn, then φ−1(c) = ψ−1(c) = g ∈ B. Other-
wise c ∈C∁ ⊂ Pn so we take c′ ∈C such that c′ is the symmetrical of c relative to the x-axis. So
by applying ψ−1 to c′ we get g ∈ B. Moreover there is a ∈ A such that f−1(a) = {g, ḡ}, where ḡ
is the lowest rooted tree. Thus we define φ−1(c) = ḡ ∈ B∁. □

Trends Comput. Appl. Math., 24, N. 3 (2023)
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4 A NEW SEQUENCE

Let Tn be the sequence formed by the central coefficients of the trinomial expansion
(1+ x+ x2)n.

To find a closed expression for Tn we can take the element with the highest coefficient in the
expansion of [−x+(1+ x)2]n. Therefore, we have

[−x+(1+ x)2]n =
n

∑
k=0

(
n

k

)
(−1)n−k

2k

∑
i=0

(
2k

i

)
xn+k−i.

Note that by the symmetry of the arithmetic triangle, the coefficient of greatest value follows xn

in the development of (1+ x+ x2)n, that is, the largest value occurs when xn+k−i = xn, so k = i.

Thus, the closed expression for Tn is
n

∑
k=0

(−1)n−k

(
n

k

)(
2k

k

)
.

We denote Cn as the sequence formed by Catalan numbers, that is, whose generating function is

furnished by considering the sequence
1

n+1

(
2n
n

)
. Since Tn counts the number of trees ordered

with n+ 1 edges, having root of odd degree and nonroot nodes of out degree at most 2, and
Cn counts the number of ordered trees with n edges, we can conclude that Cn+1 −Tn counts the
ordered trees with n+ 1 edges such that either the root has an even degree, or the ordered tree
has an odd degree root such that the nodes of out degree are greater than or equal to 3.

Also, since we have T0 = 1, T1 = 1, T2 = 3, T3 = 7, T4 = 19, . . . , and C0 = 1, C1 = 1,
C2 = 2, C3 = 5, C4 = 14, C5 = 42, we can compute the first terms of the sequence Cn−1 −Tn :
0,1,2,7,23,81,288, not cataloged in the literature, as verified at [8].

Let Ln = Cn+1 −Tn, for n = 0, we cannot form a tree with an edge, under the conditions listed
above, therefore, we set L0 = 0.

Varying n in 1
n+2

(
2n+2
n+1

)
−

n

∑
k=0

(−1)n−k

(
n

k

)(
2k

k

)
, we succeed in forming a new se-

quence, whose first terms given by ,1,2,7,23,81,288, . . . , and taking n = 3 we have 7 possible
ordered trees as we can see in Figure 4. Our new sequence Ln, counts the ordered trees with n+1
edges such that either the root has an even degree.

Trends Comput. Appl. Math., 24, N. 3 (2023)



i
i

“A3-1648” — 2023/6/22 — 18:32 — page 435 — #9 i
i

i
i

i
i

L. ROCHA and E. V. PEREIRA SPREAFICO 435

Figure 4: n = 3.

CONCLUSION

Throughout this study we had established some properties involving the set formed by the central
coefficients of the trinomial expansion (1+ x+ x2)n, lattice paths and ordered trees. Moreover, a
theoretical basis for studying bijection between these sets.

This research allowed to determine a bijective function between the set of ordered trees and
lattice paths. The combinatorial operation proposed here can be applied to prove relationships
between the same types of objects.

Finally, these results have contributed to another approach in the generalized interpretation of
closed relation between the trinomial of the form (a+bx+cx2)n, ordered trees and lattice paths.
In the best of our knowledge, our approach is not current in the literature.
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