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Abstract. This paper proposes a test for the mean square stability problem for
discrete-time linear systems subject to random jumps in the parameters, described
by an underlying finite-state Markov chain. In the model studied, the horizon of
the problem is given by a stopping time τ∆, associated with the occurrence of a
crucial failure after which the system is brought to a halt for maintenance. The
usual stochastic stability concepts and associated results are not indicated, since
they are tailored to purely infinite horizon problems. Using the concept named
stochastic τ -stability, equivalent conditions to ensure the stochastic stability of the
system until the occurrence of τ∆ is obtained. These conditions lead to a test that
benefits from the chain structure for proposing a simpler decomposition algorithm
for the mean square stability verification for infinite horizon problems.
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1. Introduction

Consider a discrete-time linear system subject to abrupt parameter changes that
can be modelled via a discrete-time finite-state Markov chain. Here, these changes
are associated with failures or repairs of the running system. This class of systems
is known in the literature as discrete-time Markovian jump linear systems (MJLS);
see (2.1) and (2.2) (see, for instance, [2] and references therein).

The study of MJLS, and in particular, the study of stochastic stability of MJLS
has continuously attracted the attention of many researchers. Ji et al [6] established
conditions to test second order stability through a set of coupled algebraic matrix
equations, known as coupled Lyapunov equations. Costa and Fragoso [3], using
Kronecker product, obtained necessary and sufficient conditions for mean square
stability of these systems with additive noise included. However, these studies are
concerning to infinite time horizon problems. A situation of interest arises when
one studies this class of systems until the occurrence of a stopping time τ of the
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joint process {xk, θk, k ≥ 0} modelled by (2.1) and (2.2). The stopping time
τ may represent interesting situations from the point of view of applications. The
stochastic stability analysis for the case where τ represents the occurrence of a fixed
number N of failures or repairs of the system (τ = TN) has been developed in [4].
In that work, it was introduced a new concept called stochastic τ -stability (see
Definition 2.1), tailored for problems in which the horizon of the problem coincides
with the occurrence of a stopping time. In this paper we consider particularly the
case where τ = τ∆ indicates the occurrence of a “crucial failure”, which may occur
after a random number of failures, and after which the system is brought to a halt for
maintenance. This fatal occurrence is represented by a jump into to the absorbent
state ∆ in an augmented Markov chain. Necessary and sufficient conditions to
ensure the stochastic τ -stability were provided in this case, which differ from those
presented in [6] and [3] of comparative interest. These conditions yield a simpler
verification test for mean square stability of MJLS with infinite time horizon.

2. Notation and Problem Formulation

Consider the discrete-time homogeneous Markov chain {θk; k ≥ 0} with space state
X = {1, . . . , s} ∪ {∆} (∆ is a absorbent state), initial distribution µ = (µ1, . . . , µi)
where µi = P (θ0 = i), for all i ∈ X and transition probability matrix P = [pij ]
where

pij := P (θk+1 = j | θk = i), ∀i, j ∈ X, k = 0, 1, . . . . (2.1)

Throughout this paper the following notation is adopted. Rn denotes the n-
dimensional real space and Mm×n (Mm) and the normed linear space of all m× n
(m×m) real matrices. The transpose of matrix U is indicated by U ′ and a positive
semidefinite matrix (positive definite) is represented by U ≥ 0 (U > 0). Thus,
the closed (opened) convex cone of all the positive semidefinite (positive definite)
matrices in Mm is denoted by Mm0 = {U ∈ Mm : U = U ′ ≥ 0} (Mm+). The
linear space of all sequences of r real matrices in Mm×n (Mm) is represented
by Mm×n = {U = (U1, · · · , Ur) : Ui ∈ Mm×n, i ∈ X} (Mm). For the sake of
notational simplification, Mm0 is written when Ui ∈ Mm0, for all i ∈ X and Mm+

is written when Ui ∈ Mm+. The standard vector norm in Rn is indicated by ‖·‖ and
the corresponding induced norm of matrix U by ‖U‖. In addition, rσ(U) indicates
the spectral radius of U ∈ Mm, and a∧ b denotes min{a, b} . Let 11{.} be the Dirac
measure. For U ∈ Mm0, the following operator is defined

E∆
i (U) =

∑

j 6=i,j 6=∆

pijUj .

Writing H = [h1 . . . hn] ∈ Mm×n, H = (H1, H2, . . . , Hr) ∈ Mm×n, define

ϕ(H) :=







h1

...
hn






∈ Rmn, ϕ̂(H) :=







ϕ(H1)
...

ϕ(Hr)






∈ R(rmn).
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For gi ∈ Rn2

, i ∈ {1, . . . , r}, consider ϕ̂−1
j













g1

...
gr












:= ϕ−1(gj), j ∈ {1, . . . , r}.

Let the discrete-time Markovian Jump Linear Systems (MJLS) defined on the
fundamental probability space (Ω, F, {Fk}, P ),

S : xk+1 = Aθk
xk, x0 ∈ Rn, θ0 ∼ µ (2.2)

where {xk, θk; k ≥ 0} is the process state taking values in Rn × X. When θk = i,
the MJLS evolves according to the “ith mode”, namely, Aθk

= Ai ∈ Mn.
In this work we study the stability for MJLS as in (2.2) until the occurrence of

a crucial failure event after which the system is brought to a halt for maintenance.
This crucial failure is associated with the time of the jump into the absorbent state
∆ represented by the stopping time τ∆. Initially, a mixed and intermediary case
defined by the minimum between the occurrence of a finite number N of failures
or repairs TN and the aforementioned stopping time τ∆ is also studied. Despite of
being interesting in itself, it is also used here as a strategy for studying the case τ∆.
In this scenario, since the occurrence of any fault or repair is associated with the
jump of the Markov chain state, define the sequence T N = {Tn; n = 0, 1, . . . , N} of
{Fk}-stopping times

T0 = 0

Tn = min{k > Tn−1 : θk 6= θTn−1
}, n = 1, 2, . . . , N.

For all m ≥ 1 and i ∈ X, it is easy to verify that

P (T1 = m | θ0 = i) = pii
m−1(1 − pii)11{pii<1}. (2.3)

Note that P (T1 = 1 | θ0 = i) = 1 and P (T1 = +∞ | θ0 = i) = 1, whenever pii = 0
and pii = 1, respectively. From this perspective is adopted the stochastic τ -stability
concept introduced in [4] that is tailored to the announced problems.

Definition 2.1. Consider a stopping time τ with respect to {Fk}. Then, the MJLS
S is

i) Stochastically τ -stable (τ -SS) if for each initial condition x0 and initial distribution

µ

E

[

∑

k≥0

‖xk‖
211{τ≥k}

]

< ∞; (2.4)

ii) Mean Square τ -Stable (τ -MSS) if for each initial condition x0 and initial distribu-

tion µ

E
[

‖xk‖
211{τ≥k}

]

→ 0 when k → ∞; (2.5)

The result below was proved in [4] and will be used latter.
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Proposition 1. Let τ ∈ T N . The following assertions are equivalent:

i) The MJLS S is τ-SS.

ii) The MJLS S is τ-MSS.

iii) For any given set of matrices Q ∈ Mn+, there exists a unique set of matrices
L ∈ Mn+, satisfying the Lyapunov equations

piiA
′
iLiAi − Li + Qi = 0, ∀i ∈ X. (2.6)

iv) rσ(p
1/2
ii Ai) < 1, ∀i ∈ X.

3. Preliminary Results

Consider the stopping time τ∆, defined as the hitting-time of ∆, i. e., the time of
first visit to state ∆,

τ∆ = inf{n ≥ 1 : θn = ∆}.

Note that {T1 = k, τ∆ ≤ T1} and {T1 = k, τ∆ > T1} are equivalent to {θk = ∆, θk 6=
θk−1 = · · · = θ1 = θ0} and {θk 6= ∆, θk 6= θk−1 = · · · = θ1 = θ0}, respectively. Thus,
for all k ≥ 1 and i, j ∈ X the probabilities bellow follows immediately

P (T1 = k, τ∆ ≤ T1 | θ0 = i) =pk−1
ii pi∆11{i6=∆}, (3.1)

P (θk = j, T1 = k, τ∆ > T1 | θ0 = i) =pk−1
ii pij11{j 6=i6=∆}. (3.2)

In the sequence, define the functional

V n(x0, θ0) =: E

[τ−1
∑

k=0

‖xk‖
2 + x′

τSθτ
xτ | x0, θ0

]

, n = 0, . . . , N, (3.3)

by setting V 0(x, θ) =: x′Sθx and V n(x, ∆) := x′S∆x for all n. The next lemma,
which the proof idea is presented in appendix, will be useful.

Lemma 3.1. Let τ = τ∆ ∧ TN . If S is τ-SS, then (3.3) can be expressed as

V n(x0, θ0) = x′
0S

n
θ0

x0, with n = 1, . . . , N,

where the matrices Sn
i ∈ Mn+ are obtained recursively as

Sn
i − piiA

′
iS

n
i Ai = In + A′

ipi∆S∆Ai + A′
iE

∆
i (Sn−1)Ai, (3.4)

with S0 = S.

Considering that {τ ≥ k} = {τ∆ ∧ TN ≥ k} ⊂ {TN ≥ k}, one concludes, by
using the Dominated Convergence Theorem, that the τ -stability concept and the
equivalences presented in Proposition 1 are applied to the mixed case τ = τ∆ ∧ Tn.

The result bellow follows directly from Proposition 1 and provides necessary and
sufficient conditions to ensure the stochastic τ -stability in the case τ = τ∆ ∧ Tn,
n ≤ N .



Mean Square Stability Test for Markovian Jump Linear Systems 303

Corollary 3.0. Let τ = τ∆ ∧ Tn, n ≤ N . The necessary and sufficient conditions
for stochastic τ-stability are given by Proposition 1.

Proof. The sufficiency follows immediately by the fact that τ ≤ TN . In this sense,
it is enough to observe that τ∆ coincides with some of the jump times Tn, and also
the minimum τ = τ∆ ∧Tn, n ≤ N coincides with Tn for some n ≤ N . The necessity
is based on Lemma 3.1. Setting S ≡ In in functional (3.3) we conclude that

V n(x0, θ0) = E

[

∑

k≥0

‖xk‖
211{τ≥k}|x0, θ0

]

and thus

Sn
i − piiA

′
iS

n
i Ai > 0

holds for each n ≤ N . Hence, the result relies on the Lyapunov Stability theory.

4. Conditions for τ∆-stability

In this section are presented the necessary and sufficient conditions for τ -stability
when τ = τ∆. These conditions are obtained by setting τ = limN→∞{τ∆ ∧ TN} in
the mixed case and relying on the Dominated Convergence Theorem. In the sequel
Diag(Ui), for all Ui ∈ Mm (i 6= ∆), indicates the matrices with Ui on the main
diagonal and zero otherwise. Initially, consider the transition probability matrix P ,
block-partitioned in the form

P =

[

1 0
B Q

]

where B :=











p1∆

p2∆

...
ps∆











and Q :=











p11 . . . p1s

p21 . . . p2s

...
...

...
ps1 . . . pss











.

In addition, write
A1 :=Diag(Ai ⊗ Ai)

′Diag(Q⊗ In2),

A2 :=Diag(Ai ⊗ Ai)
′(Q̃ ⊗ In2), and

A :=A1 + A2 = Diag(Ai ⊗ Ai)
′(Q⊗ In2),

where Q̃ is obtained by setting the main diagonal of the matrix Q to zero. For any
L, K, H ∈ Mn, the next properties are valid:

(L ⊗ K)′ = L′ ⊗ K ′, (4.1)

(L ⊗ K)(H ⊗ R) = LH ⊗ KR, (4.2)

ϕ(LKH) = (H ′ ⊗ L)ϕ(K). (4.3)

Theorem 4.1. For τ = τ∆ the following conditions are equivalent:

i) The MJLS S is τ-SS.

ii) rσ(A) < 1.
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iii) rσ(A1) < 1 and rσ([Isr2 −A1]
−1A2) < 1.

iv) For any given set of matrices Q ∈ Mn+, there exists a unique set of matrices
L ∈ Mn+, satisfying the Lyapunov equations

s
∑

j=1

pijA
′
iLjAi − Li + Qi = 0, i = 1, . . . , s (4.4)

or equivalently
Li = ϕ̂−1

i

(

[Isr2 −A]−1ϕ̂ (Q)
)

. (4.5)

Proof. Firstly, consider the relations

E0

[

∑

k≥0

‖xk‖
211{k≤τ∆}

]

= lim
N→∞

E0

[

∑

k≥0

‖xk‖
211{k≤τ∆∧TN}

]

= lim
N→∞

x0S
N
θ0

x0, (4.6)

for each (x0, θ0), where the former follows from Dominated Convergence Theorem
and the latter is valid for SN in (3.4) with S0 = In, cf. Lemma 3.1. Using the
operator ϕ, the expression (3.4) can be rewritten as

ϕ(Sn
i ) − ϕ(piiA

′
iS

n
i Ai) = ϕ(Q̂i) + ϕ(A′

iE
∆
i (Sn−1)Ai)

where Q̂i = In + A′
ipi∆S∆Ai. Using the properties (4.1) and (4.3),

[In2 − piiIn2(A′
i ⊗ A′

i)]ϕ(Sn
i ) = ϕ(Q̂i) +

∑

j 6=i,j 6=∆

pijIn2(A′
i ⊗ A′

i)ϕ(Sn−1
j ) (4.7)

for all i = 1, . . . , s. Introducing the matrices Q, Q̃ and the operator ϕ̂, the equation
(4.7) becomes equivalent to

[Isr2 −A1]ϕ̂(Sn) = ϕ̂(Q̂) + A2ϕ̂(Sn−1). (4.8)

(iii) ⇒ (i) A necessary condition for the convergence of (4.8) is the non-singularity
of Isr2 −A1, and that rσ([Isr2 −A1]

−1A2) < 1, see [8, theo 10.1.1]. Thus, (iii) im-
plies the convergence of the recursive equation (4.8), and the τ -stability follows
from (4.6).

(i) ⇒ (iv) By hypothesis and (4.6), there exists L ∈ Mn+ such that

E
[

∑

k≥0

‖xk‖
211{k≤τ}

]

= x0Lθ0
x0, (4.9)

and L satisfies (3.4), or equivalently, (4.8):

[Isr2 −A1]ϕ̂(L) = ϕ̂(Q̂) + A2ϕ̂(L).

According to definition of A, the preceding equation can be rewritten as

[Isr2 −A]ϕ̂(L) = ϕ̂(Q̂), (4.10)

which provides (4.4) by inspection. The uniqueness of L implies that Isr2 − A is
invertible, completing this part of the proof.
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(iv) ⇒ (ii) Since the expressions in (iv) are equivalent to (4.10), the uniqueness
of L implies that Eig(A) 6= 1. The fact that rσ(A) < 1 is originated from the
property that L ∈ Mn+ for all Q ∈ Mn+ (see [5, pg. 538]).

(ii) ⇒ (iii) If (ii) is verified, then (4.5) defines L ∈ Mn+ uniquely. Since (4.4)
and (4.5) are equivalent, for all Q̃ ∈ Mn+,

piiA
′
iRiAi − Ri + Q̃i = 0, or [Isn2 − Diag(Ai ⊗ Ai)

′Diag(Q⊗ In2)]ϕ̂(R) = ϕ̂(Q̃)

are satisfied by a unique R ∈ Mn+. The last expression implies that rσ(A1) < 1.
From (4.5), one writes

ϕ̂ (L) = [Isr2 −A]−1ϕ̂ (Q) = [Isr2 −A1 −A2]
−1ϕ̂ (Q)

= [(Isr2 −A1)(Isr2 − (Isr2 −A1)
−1A2]

−1ϕ̂ (Q)

= [Isr2 − (Isr2 −A1)
−1A2]

−1(Isr2 −A1)
−1ϕ̂ (Q) .

Hence Eig((Isr2 − A1)
−1A2) 6= 1, and since that L ∈ Mn+ for all Q ∈ Mn+, the

second condition about the spectral radius in (iii) results proven.

Remark 1. Note that the conditions for τ-stability presented in Proposition 1 are
given in terms of uncoupled Lyapunov equations. On the other hand, although
the conditions for τ-stability provided in Theorem 4.1 are given in terms of cou-
pled Lyapunov equations, they differ from the criteria for purely infinite horizon of
comparative interest, see [6], since that

∑s
j pij ≤ 1. Besides, the matrix A in (ii)

involves only the matrix Q. Therefore, this condition also differs from that proposed
in [3] for mean square stability, namely, rσ((P ⊗ In2)Diag(Ai ⊗ Ai)

′) < 1, which
involves the full probability matrix. Consequently A present contractive properties
more favorable, as we can confirm through the next example.

Example 1. Let the independent Markov chains {αk; k ≥ 0} and {γk; k ≥ 0}
with state space S = {1, . . . , s} and S′ = {g, f}, and transition matrices P :=
[pij ] and Q := [qij ], respectively, with qgg = ρ < 1 and qff = 1. Consider the
composed chain {θk = (αk, γk); k ≥ 0} with state space S = {(i, f), (j, g), i, j =
1, . . . , s}, in which ∆ = {(i, f), i = 1, . . . , s}, and transition matrix P where

P (θk+1 = (j, g) | θk = (i, g)) = pijρ

P (θk+1 = ∆) | θk = (i, g)) = pij(1 − ρ)

P (θk+1 = ∆) | θk = ∆) = 1.

The matrix P can be written as P =

[

1 0

B̂ Q̂

]

, with

B̂ =:







p11(1 − ρ) . . . p1s(1 − ρ)
...

...
...

ps1(1 − ρ) . . . pss(1 − ρ)






and Q̂ =:







p11ρ . . . p1sρ
...

...
...

ps1ρ . . . pssρ






.

Additionally, set A(i,g) = Ai and A(i,f) = A∆. With the objective of investigating
the MSS of the system, we must calculate

E
[

‖xk‖
211{τ≥k} | θ0 = (i0, g)

]

,
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which involves the next probability

P (τ ≥ k, θ1 = (i1, ·), · · · , θk−1 = (ik−1, ·) | θ0 = (i0, g)) =

P (θk−1 = (ik−1, g), · · · , θ1 = (i1, g) | θ0 = (i0, g)) =

ρk−1pi0i1pi1i2 · · · pik−2ik−1
. (4.11)

By using (4.11) and denoting pi1i2 · · · pik−2ik−1
, we obtain

E
[

‖xk‖
211{τ≥k} | θ0 = (i0, g)

]

=

x′
0

(

∑

i1,··· ,ik−1 6=∆

ρk−1cA′
i0A

′
i1 · · ·A

′
ik−1

InAik−1
· · ·Ai1Ai0

)

x0.

Now, applying (4.1), (4.2), (4.3) and the operator ϕ, we get that

E
[

‖xk‖
211{τ≥k} | θ0 = (i0, g)

]

= x′
0ϕ

−1
(

∑

i1,··· ,ik−1 6=∆

ρk−1c ϕ(A′
i0A

′
i1 · · ·A

′
ik−1

InAik−1
· · ·Ai0)

)

x0

= x′
0ϕ

−1
(

(Ai0 ⊗ Ai0 )
′

∑

i1,··· ,ik−1 6=∆

ρk−1c In2(Ai1 ⊗ Ai1)
′ · · · (Aik−1

⊗ Aik−1
)′
)

x0

= x′
0ϕ

−1
(

FGk−1D
)

x0, (4.12)

where F ∈ Mn2×sn2

is the matrix with the i0th submatrix block non-null, namely
, F := [0 : 0 : · · · : (Ai0 ⊗ Ai0)

′ : · · · : 0], G ∈ Msn2×sn2

and D ∈ Msn2×1 are
defined as

G := (Q̂ ⊗ In2)Diag(A⊗ A)′ and D :=







ϕ(In)
...

ϕ(In)






.

Remark 2. Notice that G ≡ ρ(P⊗ In2)Diag(A⊗A)′ since the matrix Q̂ coincides
with ρP. As ρ < 1, then Q̂ it is not a probability matrix, while P it is. Thus,
remaining evidenced the contractive characteristic of G. More specifically, note that
Gk is a matrix of the type (ρM)k which can converge while Mk does not converge.

5. Mean Square Stability Test

Suppose we are interested in the MSS of system in the form (2.1) and (2.2), with
X = {1, 2, . . . , L}. Since that the set X is finite, see. [1, pg. 125-132], it can be de-
composed in to form T , R1, . . . , Rl, where T contains the transient states (starting
at j, there exists a positive probability of never returning to j) and R1, . . . , Rl are
the disjoint sets of recurrent states (starting at j, the probability of returning to j
is one). Note that each Rj forms a closed set, i.e., no state outside it can be reached
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from any state in it. Then, the transition matrix can be put in the form

P =















PR1
0 · · · 0 0

0 PR2
· · · 0 0

...
. . .

...
0 0 · · · PRl

0
PT1

PT2
· · · PTl

PT















,

where, for each j = 1, . . . , l, PRj
(each one taken by itself defines Markov matrices)

and PT represent the transition probabilities within the sets Rj and T respectively,
and PTj

represents the transition probabilities from T to Rj .
Costa and Fragoso [3] presented a necessary and sufficient condition for MSS,

given in terms of the spectral radius of a matrix in the form G = (P ⊗In2)Diag(A⊗
A)′, which involves the probability matrix P associated to the system. More specif-
ically , we must obtain rσ(G) < 1.

A necessary and sufficient condition for MSS, has been obtained in [7] in terms
of a Lyapunov equation in form (4.4) involving all states of the chain. On the other
hand, and comparatively, a necessary and sufficient condition for the τ∆-MSS of
the system has been established in Theorem 4.1 in terms of a matrix of the type
G∆ = Diag(A ⊗ A)′(PT ⊗ In2) or a Lyapunov equation (4.4), neither of them in-
cluded the absorbent state.

From this perspective, without loss of generality, we can adopt the recurrent
classes as “absorbent states” and then apply the conditions (ii) and (iv) for the
MSS analysis. In detail, considering the process starting at some transient state
i ∈ T , we can employ the results for τ∆-stability since with non-null probability the
process will be absorbed by some recurrent class. In this context, it is enough to
examine simultaneously the spectral radius of a matrix of the type G∆, involving
a matrix PT (which it is not a probability matrix ) and the spectral radio of some
matrices of the type G, involving PR1

, · · · , PRl
.

In other words, a test for MSS can be decomposed into two parts: one test for
τ∆-MSS for the transient states and some tests for MSS involving a lesser order
problem.

Conversely, considering the process starting at some j ∈ Rj , it is enough to
apply the MSS test regarding PRj

.
The same arguments can be used with respect to the Lyapunov equations.
In both criteria, (using the Matlab software) the computational time expended

for the MSS test here proposed has been lesser than that expended with the MSS
test of comparative interest.

The following example illustrate the statements above.

Example 2. Consider the state space X = {1, 3} ∪ {2, 7, 9} ∪ {6} ∪ {4, 5, 8, 10},
where T = {4, 5, 8, 10} is the set of transient states, R1 = {1, 3} and R2 = {2, 7, 9}
are sets of recurrent states and R6 = {6} is an absorbing state.
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The following matrix is adopted

states

P =











































1 0 0 0 0 0 0 0 0 0

0 1/2 1/2 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 1/3 2/3 0 0 0 0 0

0 0 0 0 1/4 3/4 0 0 0 0

0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0

0 0 0 1/3 0 0 1/3 1/3 0 0

0 1/4 0 0 0 0 1/4 0 1/4 1/4

0 0 1/3 0 0 0 0 1/3 0 1/3











































6

1
3

2
7
9

4
5
8
10

The next cases are analyzed.

Case 1: Consider n = 5 and

Ai =













1/8 0 1/4 1/4 1/8
0 1/8 1/3 1/8 1/4

1/5 1/3 1/4 1/4 1/4
1/3 1/3 1/3 1/8 1/4
1/8 0 1/4 1/4 1/8













,

with i = 1, . . . , 10.

Case 2: Consider n = 10 and the matrices Ai, i = 1, . . . , 10, generated by the
routine rand of Matlab.

Adopting the MSS test proposed in [3], we must examine the spectral radio of the
matrix G = (P ⊗ In2)Diag(A ⊗ A)′, with dimension 10n2 × 10n2, more specifi-
cally, 250 × 250 and 1000 × 1000, respectively for cases 1 and 2. Using the routine
“ cputime” of Matlab, the mean execution time in these calculous was approximately
0.575s for case 1, with rσ(G) = 0.9613 (the system is MSS). For case 2 it was ap-
proximately 38.95s.

Now, adopting the τ-MSS proposed here, it is enough to analyze the spectral
radio of the matrix G∆ = Diag(A⊗ A)′(PT ⊗ In2) with dimension 4n2 × 4n2, and
simultaneously, apply the MSS test as above for the remaining states. That test
involves the probability matrices PR1

, PR2
and PR6

, and calculous of the spectral
radios of the type G matrices with dimension 3n2 × 3n2, 2n2 × 2n2 and n2 × n2,
respectively. Regarding the mean running times they were 0.0531s for case 1 and
4.375s for case 2.

Resumo. Este artigo propõe um teste para estabilidade em média quadrática de
sistemas li-neares com saltos nos parâmetros, descritos por uma cadeia de Markov
com espaço de estados finito. No modelo estudado, um tempo de parada τ∆, asso-
ciado à ocorrência de uma falha grave que leva à paralização do sistema, é adotado
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como horizonte do problema. Os conceitos de estabilidade estocástica assim como
os resultados encontrados na literatura não são indicados, uma vez que referem-
se a problemas com horizonte infinito puro. Através do conceito denominado τ -
estabilidade estocástica, são obtidas condições necessárias e suficientes para garan-
tir a estabilidade do sistema até a ocorrência de τ∆. Estas condições conduzem
a um teste que se beneficia da estrutura da cadeia e permite uma decomposição
para verificação de estabilidade em média quadrática para problemas com horizonte
infinito, o qual induz métodos algoŕıtmicos mais simples.

A Proof of Lemma 3.1

Proof. For simplicity, write E0[·] instead of E[· | x0, θ0]. The idea consists in defining
the functional

x
′
0S

n
θ0

x0 =: E0

[(Tn−1
∑

k=0

‖xk‖
2 + x

′
Tn

SθTn
xTn

)

11{τ∆>Tn}

]

+

E0

[(τ∆−1
∑

k=0

‖xk‖
2 + x

′
τ∆

Sθτ∆
xτ∆

)

11{τ∆≤Tn}

]

and employ an induction argument on n. For n = 1,

V 1(x0, θ0) = x′
0S

1
θ0

x0 =

E0

[T1−1
∑

k=0

‖xk‖
2 + x′

T1
SθT1

xT1
11{τ∆>T1} + x′

T1
S∆xT1

11{τ∆≤T1}

]

.

Applying (2.3), (3.2) and (3.1, one obtains

x′
0S

1
θ0

x0 =

∞
∑

k=0

pk
ii

(

‖Ak
i x0‖

2 + ‖(A′
i
k+1

Ei,∆(S)Ak+1
i )1/2x0‖

2+

‖(A′
i
k+1

pi∆S∆Ak+1
i )1/2x0‖

2
)

.

Then, since x0 is arbitrary, fixing ρ =: In + A′
ipi∆S∆Ai + A′

iE
∆
i (S)Ai, we get that

S1
i =

∞
∑

k=0

pk
iiA

′
i
k
ρAk

i = ρ +

∞
∑

k=1

pk
iiA

′
i
k
ρAk

i

= ρ +

∞
∑

k=0

pk+1
ii A′

i
k+1

ρAk
i = ρ + piiA

′
i

(

∞
∑

k=0

pk
iiA

′
i
k
ρAk

i

)

Ai.

Thus, recognizing S1
i in brackets,

S1
i − piiA

′
iS

1
i Ai = In + A′

ipi∆S∆Ai + A′
iE

∆
i (S)Ai, (A1)

completing the proof for n = 1, for the case 0 < pii ≤ 1. For the case pii = 0, since
P (T1 = 1 | θ0 = i) = 1,

x′
0S

1
θ0

x0 =

∞
∑

k=0

(

‖x0‖
2 + ‖(A′

iEi,∆(S)Ai)
1/2x0‖

2 + ‖(A′
ipi∆S∆Ai)

1/2x0‖
2
)

.
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Hence, (A1) holds. For the general case, from the homogeneity property, one
concludes that

V n(x0, θ0) = E0

[T1−1
∑

k=0

‖xk‖
2 + V n−1(xT1

, θT1
)

]

.

Since V n−1(xT1
, θT1

) = V n−1(xτ∆
, ∆)11{τ∆≤T1} + V n−1(xT1

, θT1
)11{τ∆>T1} then,

V n(x0, θ0) = x′
0S

n
i x0 =

E0

[T1−1
∑

k=0

‖xk‖
2 + x′

T1
S∆xT1

11{τ∆≤T1} + x′
T1

Sn−1
θT1

xT1
11{τ∆>T1}

]

,

which allow us to obtain

x
′
0S

n
i x0 =

∞
∑

k=0

p
k
ii

(

‖Ak
i x0‖

2 + ‖(A′
i
k+1

pi∆S∆A
k+1
i )1/2

x0‖
2+

‖
(

A
′
i
k+1

E∆
i (Sn−1)Ai

k+1
)1/2

x0‖
2
)

,

and consequently Sn
i − piiA

′
iS

n
i Ai = In + A′

ipi∆S∆Ai + A′
iE

∆
i (Sn−1)Ai.
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