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ABSTRACT. The d-minimal path (d-MP) problem is to find all the system state vectors (SSV) under
which d units of data can be transmitted from a source node to a destination node in a stochastic-flow
network (SFN). This problem has been very attractive in the last decades as one can compute the exact
amount of the network’s reliability through the d-MPs. Although several algorithms have been proposed
in the literature to address the problem, the research continues because it is NP-hard. Since the number of
d-MPs grows exponentially with the size of the network, the available algorithms in the literature are not so
practical. Hence, we employ the vectorization techniques for proposing an improved algorithm to address
the problem. We conduct many experimental results on the known benchmarks and two hundred randomly
generated SFNs in the sense of performance profile introduced by Dolan and Moré. The experimental results
show the vectorization algorithm to be considerably more efficient than the non-vectorization ones.

Keywords: vectorization techniques, network reliability, d-MP problem, stochastic-flow network.

1 INTRODUCTION

A stochastic-flow network (SFN) is a flow network whose components, and consequently itself,
can have more than two different states [14,20,28]. The components’ states in an SFN are repre-
sented by a vector, the so-called system state vector (SSV), in which each component represents
the state of a corresponding component of the SFN. There are three types of data transmission
in an SFN: (1) two-terminal, in which the data is transmitted from a source node to a sink node,
(2) k-terminal, in which the data is transmitted among k components, and (3) all-terminal, in
which the data is transmitted among all the components in the network. The focus of this work
is on the first case, where the network reliability at demand level d, denoted by Rd , is the prob-
ability of transmitting at least d units of data from a source node to a destination node in the
network [15, 19, 31].
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20 A VECTORIZATION ALGORITHM FOR THE d-MP PROBLEM

System reliability is indeed one of the most essential and widely-used indices for measuring the
performance of real-world systems. One can model many real-world systems such as transporta-
tion networks, computer and communication networks, distribution systems, and power trans-
mission systems as SFNs [4, 13, 22, 38]. Therefore, the reliability evaluation of SFNs has been a
very attractive problem in the last decades, and several direct and indirect algorithms have been
proposed in the literature to address it [1,4,5,7,8,9,10,11,12,13,14,16,17,18,22,23,25,26,27,
28, 29, 30, 31, 34, 35, 36, 37, 39].

The network reliability, Rd , can be assessed indirectly in terms of minimal paths (MPs) [4, 9, 11,
12, 17, 23, 25, 30, 31, 34, 36, 39] or minimal cuts (MCs) [1, 5, 7, 10, 13, 14, 16, 22, 27, 28, 29, 35]
through a three-stage process; (1) calculating all the MPs or MCs, (2) determining all the d-MPs
in the case of MPs or d-minimal cuts (d-MC) in the case of MCs, and (3) calculating a union
probability as the network reliability.

We focus on the second stage and d-MP problem which aims to find all the d-MPs.

A path is a sequence of adjacent arcs through which the data can be sent from a source node to
a sink node, and an MP is a path with no proper subset being a path from the source node to the
sink node.

Several authors have worked to improve the solution of the d-MP problem. Forghani-elahabad
and Bonani [9] proposed an improved algorithm to address the problem and showed its efficiency
in comparison with others in the literature by providing the complexity and numerical results. Lin
and Chen [26] proposed a new algorithm to the problem by using the maximal flow evaluation
and fast enumeration technique. Based on a breadth-first search technique, Chen et al. [4] pro-
posed a recursive algorithm for the determination of all the d-MPs for all the demand values d.
Considering a budget constraint, Forghani-elahabad and Kagan [11] proposed an improved algo-
rithm for the determination of all the d-MPs within a limited budget. The authors showed their
proposed algorithm’s efficiency and explained how it could be adopted to assess the reliability of
a multi-source multi-sink communication smart grid network. Balan and Traldi [2] first showed
that listing the MPs by their sizes is not indeed an optimal choice for the sum of disjoint products
algorithms and then proposed a more efficient strategy to be used. By employing heuristic and
recursive techniques and using the state-space decomposition technique, Bai et al. [1] proposed
an MP-based algorithm to address the problem. In [34], a novel technique was presented to iden-
tify the duplicate solutions by using which an improved MP-based algorithm was proposed for
reliability evaluation of SFNs. Pointing out some of the obstacles in the available algorithms in
the literature, Yeh [37] proposed an improved addition-based algorithm to overcome those ob-
stacles. Yeh and Zuo [39] proposed a subtraction-based algorithm to determine all the d-MPs
for all the d values and showed its practical efficiency to the available algorithms in the liter-
ature. Forghani-elahabad et al. [12] developed an approximation algorithm based on the exact
algorithms to address the problem. By presenting a simple method for checking the candidates
and a new technique to remove the duplicates, Niu et al. [31] proposed an improved algorithm
to address the problem. The authors also conducted a sensitivity analysis to explore the most
effective arc in improving network reliability. Lamalem et al. [23] proposed an addition-based

Trends Comput. Appl. Math., 24, N. 1 (2023)
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M. FORGHANI-ELAHABAD and E. FRANCESQUINI 21

algorithm to solve the problem for all the d values that recognized which MPs can lead to the
valid (i+1)-MPs starting from i-MPs.

However, no vectorization algorithms have been published in the literature on this problem to
the best of our knowledge. Hence, in this work, we first state a slightly improved version of an
available algorithm in the literature, based on which we propose a vectorization algorithm to
address the problem efficiently. These are the main contributions of this work. We also show its
practical efficiency by conducting several experimental results on the known benchmarks and
one thousand randomly generated SFNs in the sense of the performance profile introduced by
Dolan and Moré [6].

The remaining of the paper is organized as follows. Section 2 states the required notations,
acronyms and assumptions and also provides some preliminaries on the problem. Section 3
presents a background on the vectorization process. The experimental results are provided in
Section 4, and the concluding remarks are given in Section 5.

2 THE d-MP PROBLEM

2.1 Acronyms

MP Minimal path
SFN Stochastic-flow network
SSV System state vector
FFV Feasible flow vector

2.2 Nomenclature

Following the literature [14, 23, 25, 26, 27, 35], we use the following nomenclature.

• For two system state vectors (SSV) X = (x1,x2, · · · ,xm) and Y = (y1, y2, · · · ,ym), it is said
that X ⪯ Y if xi ≤ yi, for any i = 1,2, · · · ,m. And X ≺ Y when X ⪯ Y and there exists
at least one 1 ≤ j ≤ m with x j < y j. For instance, setting X = (2,2,2), Y = (2,2,1) and
Z = (2,1,2), we have Y ≺ X , Y ⊀ Z and Z ⊀ Y .

• Letting Ψ be an arbitrary set of vectors, we say X ∈ Ψ is a minimal vector if there is no
any Y ∈ Ψ such that Y < X . For instance, every vector in {(1, 2, 3), (2, 3, 1), (3, 2, 1)} is a
minimal vector.

2.3 Assumptions

We consider the same assumptions as many other related works in the literature [1, 4, 9, 14, 25,
26, 28, 30, 31, 35, 39]. We note that assumptions 1 to 4 are required to have an integer SFN with
reliable nodes, and assumption five is meant to highlight that finding the minimal paths is not
considered a part of our algorithm.

Trends Comput. Appl. Math., 24, N. 1 (2023)
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22 A VECTORIZATION ALGORITHM FOR THE d-MP PROBLEM

1. The capacity of arc ai ∈ A takes random integer values from {0,1, · · · ,Mi} according to a
given probability distribution function, for i = 1,2, · · · ,m.

2. Every node is perfectly reliable.

3. The arcs’ capacities are statistically independent one from the other.

4. Flow in the network satisfies the flow conservation law.

5. All the minimal paths of the network are given in advance.

2.4 The algorithm

Let G = G(N,A,M) be a stochastic-flow network (SFN), where N = {1,2, · · · ,n} is the set of
nodes with nodes 1 and n being the source and destination nodes, respectively, A = {ai| 1 ≤ i ≤
m} is the set of arcs, and M = (M1,M2, · · · , Mm) is a vector in which Mi gives the maximum
capacity of arc ai, for i = 1,2, · · · ,m. The vector X = (x1,x2, · · · ,xm) is a state vector in which xi

represents the current capacity of ai, for i = 1,2, · · · ,m. Let V (X) be the maximum flow of the
network from nodes 1 to n under SSV X , Z(X) = {ai ∈ A|xi > 0} be the set of arcs with positive
capacity, and ei = 0(ai) be a system vector in which the capacity level is 1 for ai and 0 for the
other arcs. Let also P1, P2, · · · , Ph be all the MPs in the network (so h is the number of all MPs)
and K j = min{Mr|ar ∈ Pj} be the capacity of the jth MP, for j = 1,2, · · · ,h.

For instance, in the given network in Fig. 1, we have N = {1,2,3,4} and A = {a1,a2,a3,a4,a5}.
Assuming M = (3,1,1,2,2), any non-negative integer-valued vector (x1,x2,x3,x4,x5) ≤ M can
be considered as an SSV for the network. We also have four MPs, P1 = {a1,a4}, P2 = {a1,a3,a5},
P3 = {a2,a5}, and P4 = {a2,a3,a4} in this network. So, considering M =(3,1,1,2,2), it is easy to
see that K1 =min{M1,M4}=min{3,2}= 2, K2 =min{M1,M3,M5}= 1, K3 =min{M2,M5}= 1
and K4 = min{M2,M3,M4}= 1. Next, we have three definitions from the literature [12, 31].

Figure 1: A simple benchmark network example taken from the literature [9].

Trends Comput. Appl. Math., 24, N. 1 (2023)
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Definition 2.1. Assuming f j as the amount of flow on MP Pj, for j = 1, · · · ,h, the vector F =

( f1, f2, · · · , fh) is called a feasible flow vector (FFV) at demand level d, denoted by d-FFV here,
when it satisfies the following system.

(i) f1 + f2 + · · ·+ fh = d,
(ii) 0 ≤ f j ≤ min{K j,d}, j = 1,2, · · · ,h,
(iii) ∑ j: ai∈Pj f j ≤ min{Mi,d}, i = 1,2, · · · ,m.

(2.1)

For example, it can be calculated that f1 = f2 = f3 = 1 and f4 = 0 satisfy the system (2.1) for
d = 3 in the given network in Fig. 1. Therefore, F = (1,1,1,0) is a 3-FFV in this network.

Definition 2.2. An SSV X = (x1,x2, · · · ,xm) is a d-MP if and only if the following system is
satisfied.

(i) V (X) = d,
(ii) V (X − ei) = d −1, for each i that ai ∈ Z(X).

(2.2)

For example, considering X = (2,1,1,1,2) in the network given in Fig. 1, we have V (X) = 3,
V (X−e1)=V (1,1,1,1,2)= 1, V (X−e2)= 1, V (X−e3)= 1, V (X−e4)= 1, and V (X−e5)= 1.
As a result, X is a 3-MP for this network.

Definition 2.3. An SSV X = (x1,x2, · · · ,xm) is called a d-MP candidate when there is a d-FFV,
say F = ( f1, · · · , fh), that satisfies the following equation:

xi = ∑
j: ai∈Pj

f j, ∀i = 1,2, · · · ,m. (2.3)

The obtained d-MP candidate from a d-FFV through Eq. (2.3) is called the associated d-MP
candidate with that d-FFV. For instance, we know that F = (1,1,1,0) is a 3-FFV in Fig. 1. Now,
we use Eq. (2.3) to calculate its associated SSV. We have x1 = ∑ j: a1∈Pj f j = f1 + f2 = 1+1 = 2,
x2 =∑ j: a2∈Pj f j = f3+ f4 = 1+0= 1, x3 =∑ j: a3∈Pj f j = f2+ f4 = 1+0= 1, x4 =∑ j: a4∈Pj f j =

f1 + f4 = 1+ 0 = 1, x5 = ∑ j: a5∈Pj f j = f2 + f3 = 1+ 1 = 2. As a result, X = (2,1,1,1,2) is a
3-MP candidate associated with F = (1,1,1,0). Notably, this vector is also a (real) 3-MP. The
following result, which is proven in [25], shows the relation between the (real) d-MPs and the
candidates.

Theorem 2.1. Every d-MP is a d-MP candidate.

Although one can use the given condition in Definition 2.2 to check each candidate for being a
d-MP, Lin and his co-workers [25] proposed the following theorem which can be employed to
determine all the d-MPs among the candidates.

Theorem 2.2. Let Ψd be the set of all the d-MP candidates. Then, Ψd,min =

{X | X is a minimal vector in Ψ} is the set of all the d-MPs.

Trends Comput. Appl. Math., 24, N. 1 (2023)



i
i

“A3-1668-9819” — 2023/2/28 — 18:25 — page 24 — #6 i
i

i
i

i
i

24 A VECTORIZATION ALGORITHM FOR THE d-MP PROBLEM

We remind that a vector X ∈ Ψ is a minimal vector if there is no other vector Y ∈ Ψ such
that Y < X , namely, X is not necessarily less than all the vectors in Ψ; however, there is no
another vector in Ψ less than it. Therefore, one can: (1) find all the d-FFVs by solving the
Diophantine system (2.1); (2) then calculate the associated d-MP candidates with the d-FFVs by
using Eq. (2.3); and finally (3) remove the possible duplicates and the non-minimal vectors to
determine the set of all the d-MPs.

The proposed algorithm in [25] does not remove the duplicate solutions first, and in fact, it
removes the duplicates and non-minimal vectors simultaneously. Hence, in the worst case, it
needs to compare all the vectors. However, suppose one first removes the duplicates, which can
be done efficiently using vectorization techniques, and subsequently removes the non-minimal
vectors. In that case, we have less work to do in the later stage, and, in practice, keeping a
reduced number of items in memory could lead to better performance. As a result, Algorithm 1,
shown below, which first removes the duplicates and then the non-minimal vectors, is a slightly
improved version of the proposed algorithm by Lin et al. [25].

Algorithm 1
Step 1. Solve the system (2.1) for determination of all the d-FFVs.
Step 2. Use Eq. (2.3) to calculate the associate d-MP candidate with each d-FFV obtained in
Step 1.
Step 3. Remove the duplicate d-MP candidates.
Step 4. Remove the non-minimal d-MP candidates.

Although some algorithms in the literature are more efficient than Algorithm 1, they are either
not efficient enough for using in real-world systems or not directly optimizable by vectorization,
parallelism, or cache-friendly approaches. On the other hand, the focus of this paper is to show
how the usage of the vectorization techniques can be effective on the d-MP problem algorithms.
Therefore, in this case, the choice of algorithm is arbitrary as any of them would be adequate
(though some are more convenient than others) to generate the experimental evaluation results
shown in Section 4.

3 VECTORIZATION

Vectorization can be described as the process of converting the application of an operation to a
single value (a scalar) to the application of the same operation to multiple values (a vector) at
once [32]. It is, therefore, a parallelization technique that can improve the performance of many
kinds of computer loads. It should not be confused with the application of standard paralleliza-
tion techniques, which use multiple processors to achieve similar results since vector operations
happen in the context of a single processor and a single instruction [24].

Vector processors have existed in one form or another since the ’70s, and virtually all modern
processors provide some form of SIMD (Single Instruction Multiple Data) capabilities. Intel x86,

Trends Comput. Appl. Math., 24, N. 1 (2023)
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for example, offers multiple versions of their SSE and AVX extensions. Other processor vendors
such as ARM also provide extensions such as Neon. More recently, GPUs have also begun to
include vector instructions [21].

Invariably all these approaches work using long registers that are usually several times the size
of regular registers used for scalar operations. While 128 and 256-bit registers are commonplace,
4096-bit registers are also available in some specialized architectures. For example, consider
128-bit vector registers. Typical integers are stored in 32 bits which means that the time it takes
to, for instance, sum one pair of integers using scalar operations is the same as summing four
pairs of integers when using vector instructions.

Most optimizing compilers and numeric computing suites such as Mathematica, MATLAB, and
NumPy offer some support for SIMD operations. However, effectively and automatically vector-
izing code that was not explicitly written to profit from these SIMD instructions is still a very
active research problem in Computer Science.

In this work, we leverage vectorization explicitly, using 128-bit vectors to improve the algo-
rithm’s performance. In particular, for increased compatibility we focus on Intel’s x86 architec-
ture with SSE2 extensions. While some more recent extensions such as SSE4.3 and AVX offer
larger vector registers, these extensions are only available in most recent processors1.

To exemplify how vector instructions can be used, let us examine a simple example in which
we want do compare if two vectors are equal, element-wise. A traditional implementation might
look like this:

1 int vequals (int n, const uint8_t *v1, const uint8_t *v2) {

2 for (int i = 0; i < n; ++i)

3 if (v1[i] != v2[i])

4 return 0;

5 return 1;

6 }

We compare each element of v1 to its respective element in v2 (lines 2-4). If any of these com-
parisons determines that a pair of elements are not equal, we stop the execution and return 0
(false, i.e., vectors are not equal) in line 4. If, after all the elements have been compared, we have
not found a pair which was different, we conclude the vectors are the same and return 1 (true) in
line 5.

1Intel Intrinsics Guide, Version 3.6.1. Last accessed in December 2021. Available at: https://www.intel.com/

content/www/us/en/docs/intrinsics-guide/index.html.

Trends Comput. Appl. Math., 24, N. 1 (2023)



i
i

“A3-1668-9819” — 2023/2/28 — 18:25 — page 26 — #8 i
i

i
i

i
i

26 A VECTORIZATION ALGORITHM FOR THE d-MP PROBLEM

This same idea is used in the vectorized version of the algorithm:

1 int vequals2 (int n, const uint8_t *v1, const uint8_t *v2) {

2 // Each char is 8 bits, thus we can perform 16 comparisons at

3 // once using a 128-bit register. This code assumes n is

4 // multiple of 16.

5 for (int i = 0; i < n; i += 16) {

6 // The following lines load 16 integers from each vector

7 // starting at index into 128-bit registers

8 __m128i d1 = _mm_loadu_si128((__m128i *)&v1[i]);

9 __m128i d2 = _mm_loadu_si128((__m128i *)&v2[i]);

10 // Using a single machine instruction, compares the 16

11 // integers

12 __m128i eq = _mm_cmpeq_epi8(d1, d2);

13 // Since each byte only contains a boolean value, movemask

14 // gathers all booleans into a single 32-bit integer.

15 int ieq = _mm_movemask_epi8(eq) == 0xffff;

16 // one-bit difference is enough to determine inequality

17 if (!ieq)

18 return 0;

19 }

20 return 1;

21 }

The difference is that, in this case, we perform multiple comparisons per step. The code starts
with a loop (line 5-19) that scans both vectors. Since we are performing 16 comparisons at
once, we step 16 positions at a time. Then, using special compiler intrinsic functions we load 16
integers into 128-bit registers (lines 8-9). The comparison of these 16-element vectors is done in
a single instruction (line 12). The results are placed in a vector, also with 16 elements. To avoid
comparing each of these 16 elements one at a time (and thus doing exactly the same thing we
did with the traditional approach) we use another intrinsic function (line 15) which is able to, in
a single instruction, gather the results of all comparisons into a single 32 bit integer (although
we use only the least significant 16 bits). If any of these bits is 0, it means that at least a pair of
elements of the vectors is different and thus we can stop the execution and return 0 (line 17-18).
If no such element is found, we conclude the vectors are equal (line 20).

We use vector instructions to compare, sum, determine minimality, and sort vectors (to remove
duplicates) as explained in Section 2.4.

4 EXPERIMENTAL RESULTS

We first compare three versions of Algorithm 1 on known benchmarks. Then, we conduct numer-
ical results on two hundred randomly generated test problems in the sense of the performance

Trends Comput. Appl. Math., 24, N. 1 (2023)



i
i

“A3-1668-9819” — 2023/2/28 — 18:25 — page 27 — #9 i
i

i
i

i
i

M. FORGHANI-ELAHABAD and E. FRANCESQUINI 27

profile introduced by Dolan and Moré [6]. These results show clearly the practical efficiency of
using vectorization techniques in solving the d-MP problem.

4.1 Comparing three versions on known benchmarks

Here, we make several numerical comparisons between the three versions of Algorithm 1. The
first one (A1) is Algorithm 1. The second one (MA) is an improved version of Algorithm 1 in
which steps 2 and 3 are merged so that no duplicate candidate is generated. The third version
(VMA) is the vectorized version of the second one.

The experiments were done on a computer Intel(R) Core(TM) i7-7500U CPU 2.7 GHz, with 16
GB of RAM. We employ three benchmark networks taken from the literature given in Figs. 2, 3
and 4. The maximum capacities of arcs in all of these benchmarks are set to be 3, i.e., Mi = 3.

Figure 2: A benchmark network example with 14 arcs taken from the literature [9].

1

2 4
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6
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11

13

1410
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Figure 3: The NSF benchmark network with 14 nodes and 101 MPs taken from [12].

All the generated results are summarized in Tables 1 and 2. The columns in the tables are d, the
demand value, ncan, the number of candidates, nd−MP, the number of d-MPs. Also, tA1, tMA, tV MA

are respectively the running times of A1, MA and VMA. We note that Table 2 provides the related
results to the general network in Fig. 4 whose size varies with u, and the first column in this table,
u, lists the parameter used to generate the corresponding network. Comparing the running times
of the three algorithms given in Table 1 clearly shows the practical efficiency of MA and VMA

Trends Comput. Appl. Math., 24, N. 1 (2023)
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28 A VECTORIZATION ALGORITHM FOR THE d-MP PROBLEM

Figure 4: The general network topology taken from the literature [9].

compared to A1. Hence, we did not run A1 on the general network topology resulting in the
absence of column tA1 in Table 2. The presented results in the tables are an average of at least ten
executions. The standard deviation of the samples is shown alongside the average.

Table 1: The final results on the benchmarks given in Figs. 2 and 3.

Benchmarks d ncan nd−MP tA1 (s) tMA (s) tV MA (s) tMA/tV MA

Fig. 2 4 76530 8071 474,18 ± 0,25 3.52 ±0.02 1.63 ± 0.00 2.16
Fig. 2 5 180266 12292 14,15 ± 0,07 16.31 ±0.15 5.84 ± 0.01 2.79
Fig. 2 6 220762 12639 197,47 ± 0,07 21.54 ±0.13 7.99 ± 0.04 2.70
Fig. 2 7 149408 7350 958,25 ± 0,38 9.76 ±0.08 4.95 ± 0.02 1.97
Fig. 2 8 62748 3011 1354,26 ± 4,93 4.58 ±0.04 3.98 ± 0.04 1.15

Geo. Mean 2.06
Fig. 3 4 616152 18950 717,18 ± 1,13 132.95 ±0.33 38.80 ± 0.07 3.43
Fig. 3 5 1069403 20153 3413,77 ± 1,24 229.83 ±0.34 70.49 ± 0.10 3.26
Fig. 3 6 689297 12387 5006,83 ± 2,45 100.61 ±0.21 39.40 ± 0.06 2.55
Fig. 3 7 193204 3109 1371,52 ± 0,27 25.69 ±0.05 21.85 ± 0.21 1.18
Fig. 3 8 24170 438 78,41 ± 0,05 25.25 ±0.10 25.31 ± 0.20 1.00

Geo. Mean 2.02
Full Geo. Mean 2.04

Trends Comput. Appl. Math., 24, N. 1 (2023)
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Table 2: The final results on the general network topology given in Fig. 4.

u d ncan nd−MP tMA (s) tV MA (s) tMA/tV MA

10 93511 6485 4,42 ± 0.04 2,38 ± 0.02 1,86
11 44292 2702 0,83 ± 0.01 0,61 ± 0.00 1,36

5 12 13495 805 0,19 ± 0.00 0,18 ± 0.00 1,05
13 2834 155 0,13 ± 0.00 0,12 ± 0.00 1,03
14 304 19 0,12 ± 0.00 0,12 ± 0.00 1,01

Geo. Mean 1.22
13 870069 25554 252,67 ± 0.75 70,97 ± 0.22 3,56
14 304361 8170 32,13 ± 0.39 12,24 ± 0.07 2,63

6 15 72792 1876 5,80 ± 0.04 5,04 ± 0.05 1,15
16 10648 281 4,56 ± 0.05 4,57 ± 0.04 1,00
17 832 26 4,52 ± 0.04 4,56 ± 0.05 1,00

Geo. Mean 1.60
16 6439087 82614 6853.59 ± 10.77 1784.97 ± 2.96 3.84
17 1749225 21198 669.61 ± 0.53 287.60 ± 1.13 2.33

7 18 324272 3906 186.45 ± 0.55 174.31 ± 0.95 1.07
19 36512 469 170.31 ± 1.34 169.85 ± 0.36 1.00
20 2176 34 171.71 ± 1.55 169.54 ± 0.40 1.01

Geo. Mean 1.58
Full Geo. Mean 1.45

If Eq. (2.3) is naively applied during Step 2, duplicate candidates might be generated. Therefore
MA employs a radix-tree with a branching factor of M to merge steps 2 and 3 in A1. During
the generation of the candidates, MA performs a synchronized walk of the radix-tree contain-
ing all candidates already generated, and only generates values for each element of the under-
construction candidate vector which have not yet been explored. Therefore, in O(logMncan) steps,
it can determine if a newly generated candidate was already known. Computationally, this is more
efficient than generating all the candidates and then removing the duplicates, not due to lower
algorithmic complexity, but because of the savings in memory usage for the temporary storage
of duplicates, and thus a more efficient use of the processor caches. The use of the radix-tree,
although beneficial for the reduction of total execution time, comes at a cost. Some of the op-
erations of the merged procedure are not directly suitable for vectorization. In fact, in any code
in which control flow is present (which MA needs to perform the walk on the radix-tree) the
application of regular vectorization techniques can be severily compromised [33]. Therefore, our
code is a carefully chosen mix of regular and vector instructions intended to minimize execution
time.

The effect of this approach can be seen in the number of candidates, ncan, and execution times. For
instance, in the network given in Fig. 2, considering d = 4, ncan is lower than the respective value
when d = 5 (76530 vs. 180266). The results provided in tables 1 and 2 clearly show the practical
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efficiency of VMA compared to the other ones. One notes that as the number of candidates or
d-MPs increases, so does VMA’s performance due to more efficient use of vectorization.

The performance bottleneck of the current implementation is in the fourth step of Algorithm 1,
i.e., the removal of the non-minimal candidates. More than 95% and 75% of the execution times
for MA and VMA are spent in this step, respectively. Currently, the complexity of this step
is quadratic. However, one may improve it by using multidimensional divide-and-conquer ap-
proaches such as the one proposed by Bentley [3] which we aim to investigate in our future
works.

4.2 Comparing the two best versions on random networks

In addition to tables 1 and 2, to have a more intuitive comparison between the two best versions
of Algorithm 1, we solve two hundred randomly generated test problems by these two versions.
To not have very complex test problems, we consider n = 6,7, and 8 as the number of nodes in
the randomly generated SFNs. For the number of arcs in each network, a random integer number
between or equal to u = ⌈ (n−1)(n+2)

4 ⌉ and l = u− 4 is considered. We note that u is the average
of the minimum and maximum possible numbers of arcs in a connected graph, i.e., n− 1 and
n(n−1)

2 , respectively. The capacity of each arc in the randomly generated test problems is also set
to Mi = 3 as for the benchmarks.

This way, we consider the running times of the two best versions on these two hundred ran-
dom test problems for producing the performance profile introduced by Dolan and Moré [6], in
which the proportion of the executing times of the desired algorithms versus the best ones are
considered. Assuming ti,MA and ti,VMA, respectively, as the running times of the versions MA
and VMA, for i = 1,2, · · · ,200, the performance ratios are ri,s =

ti,s
min{ti,s: s = MA, VMA} , for

s = MA, VMA [6]. For each algorithm, the performance is calculated by Prs(T ) = Ns
200 ,

where Ns is the number of SFNs for which ri,s ≤ T, i = 1,2, · · · ,200.

Fig. 5 shows the final result of the Dolan and Moré performance profile for the desired versions
of Algorithm 1. In this figure, at any τ on the horizontal axis, the difference between the diagrams
shows the percentage of the test problems solved τ times faster by the algorithm whose diagram
lies above the other one. Hence, the figure expresses that VMA solves 95% of the test problems
faster than MA (see the difference between the diagrams at τ = 1). Or observing at τ = 2 in
the figure, one can see that VMA solves around 25% of the test problems at least two times
faster than MA. It also shows that VMA solves some test problems more than four times more
quickly than MA. In this profile, the algorithm whose performance diagram lies above the other
is preferred [6].
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Figure 5: CPU time performance profiles for versions MA and VMA.

All the provided numerical results, including Fig. 5 and Tables 1 and 2 show the superiority of
VMA to MA, and that as the network’s size grows, this superiority increases.

5 CONCLUDING REMARKS

The d-MP problem has been very attractive in recent decades as the reliability of stochastic-
flow networks can be computed indirectly through d-MPs. This work proposed a vectorization
algorithm based on the literature’s available regular (non-vectorization) algorithms. We first im-
proved the first version of the algorithm so that no duplicate candidate is produced (see Step 3
in Algorithm 1) and then enhanced its practical efficiency using vectorization techniques. Three
known benchmarks were employed to generate the numerical results in which our proposed vec-
torization algorithm outperformed the others considerably. Moreover, we compared the two best
versions on the two hundred randomly generated test problems in the sense of Dolan and Moré’s
performance profile to have a more intuitive comparison. This performance showed that the vec-
torization algorithm solves some cases at least four times faster than the other versions. We
plan to improve candidates’ checking process, use longer vector registers, and use parallelization
techniques for future works.
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