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Abstract. In this paper, we focus on the development of an adaptive control
scheme for systems with unknown backlash. More specifically, we propose a discrete-
time adaptive backlash inverse based controller for plants that have a known linear
part and an unknown backlash at its input. We also demonstrate that the harmful
effects of backlash can be cancelled by adding two control blocks. These blocks are
the following: an adaptive backlash inverse structure and an adaptive linear filter
controller. The latter block provides a new adaptive law for the updating of the
backlash parameters. We show by simulations that our adaptive control approach
improves the system performance once the difference between the backlash output
and the adaptive backlash inverse input, converges to a very small value. The simu-
lations involve a third order system that highlights the efficiency of the proposed
adaptive control approach.
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1. Introduction

Backlash nonlinearities are common in control system components, such as, mecha-
nical connections and electromagnetic devices with hysteresis [15], [10], [8], [9]. The
undesirable effects of backlash are the main factors of severely limiting the perfor-
mance of feedback systems. These undesirable effects consist of non-differentiable
nonlinearities and include the decrease of static output accuracy, poor transient
performance, limit cycles and instability [12].

A commonly used approach of cancelling the harmful effects of nonlinearities
is the implementation of their inverse characteristics into the controller structure.
Notice that this technique of cancelling of harmful effects can be applied to discrete-
time models with backlash [13], [14].

Adaptive systems are inherently nonlinear in general. Their behaviors are there-
fore quite complex, making them difficult to be analyzed. Much work remains before
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a reasonably complete, coherent theory be available for such systems. Due to the
complex behavior of adaptive systems, it is necessary to consider several aspects of
them [1], [4], depending on the considered circumstances.

For the development of our work, adaptive control techniques are useful and
important tools once they can be used to recognize the nonlinearities as well as to
compensate their harmful effects. The application of adaptive controllers in system
processing nonlinearities can simplify the component specifications of the system,
reduce the total system cost and increase its reliability [5], [7].

In this paper, we develop a novel adaptive inverse control approach in discrete-
time. We propose an adaptive control scheme consisting of an adaptive backlash
inverse and an adaptive filter for a controller structure. The backlash inverse allows
that the undesirable effects of the nonlinearity be cancelled when considering its
exact parameters. Then, it is important to minimize the control error of the system,
that is, the difference between the backlash output and the adaptive inverse backlash
input in order to eliminate the damaging effects caused by backlash.

A wide variety of recursive algorithms has been developed in the literature for
the training of adaptive filters and linear controllers [11], [2]. The operation of an
adaptive filtering algorithm involves two basic procedural steps: a filtering proce-
dure designed to produce an output in response to a sequence of input data and
an adaptive procedure, whose function is to provide a mechanism for the adaptive
control of an adjustable set of parameters used in the filtering procedure [5]. In fact,
in this work we aim at including a basic adaptive linear filter block (proportional
controller) to enhance the adaptive controlling of the backlash inverse parameters.

In [15], the authors present a controller structure to compensate the backlash
effects in continuous-time. In this same work, an update law for the estimation
of the backlash parameters are suggested. In our adaptive control approach, we
consider a feedback block to compensate the damaging caused by backlash. This
feedback block consists of a linear adaptive controller that provides a new update
law for the estimation of the backlash parameters.

The paper is organized as follows: in Section 2 we present the backlash com-
pensation, that is, the backlash model and its inverse in discrete-time and also the
adaptive backlash inverse. In Section 3, we introduce the adaptive backlash in-
verse control model, the controller structure and the proposed adaptive parameter
training. Finally in Section 4, we analyze the performance of our adaptive control
approach through a numerical example and in Section 5, we present the conclusions
of this work.

2. Backlash Compensation

2.1. Backlash model

The backlash model considered in this paper as well as a simple mechanical con-
nection example taken from [15] are both presented in Figure 1.

In the backlash characteristic shown in Figure 1.a, v(t) is the input, u(t) is the
output, and ¢, > 0 is the right “crossing” on the v-axis, while ¢; < 0 is the left
“crossing” on the v-axis [16].
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Figure 1: (a) Backlash model; (b) Mechanical connection.

The discrete-time model of the backlash is given by:

mu(t) —¢) if v(t) <v =204
u(t) =3 mo(t) —¢) if v(t)>v, =40 e (2.1)
u(t — 1) otherwise

where the values v; and v, are the v-axis projections of the intersections of the two
parallel lines of slope m with the horizontal inner segment containing u(t — 1) [13].

Equation (2.1) is the so-called friction driven hysteresis backlash model, i.e., the
driven member retains its position when the backlash gap is not closed, as if kept
in place by strong friction [16]. It can be verified that (2.1) is a piecewise-linear
dynamical system with three distinct regions of behavior, here called upward active,
downward active and gap regions.

2.2. Backlash inverse model

The desired function of a backlash inverse is to cancel the harmful effects of backlash
on system performance: the delay corresponding to the time needed to traverse an
inner segment of B( * ) and the information loss occurring on an inner segment
when the output u(t) remains constant while the input v(¢) continues is changed.
That is, given a desired signal uq(t) for u(t), a backlash inverse BI( - ) is such that
uq(t) = B(BI(u4(t))) (Figure 2).

Uq v U = Uqg
W BI( ) B( )

Figure 2: Inverting a backlash.

The discrete-time model of the backlash inverse is represented by the following
mapping:
vt —1) if ug(t) = uq(t —1)
o(t) =& BB i ug(t) < uglt —1) (2.2)
uall) 4 e if ug(t) > ualt — 1)
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Notice that the formulation of the backlash inverse in discrete-time do not make
use of the derivatives of u4(t). Another advantage of the discrete-time formulation
over the continuous-time one is that closed-loop signal bounds can be established
even for the case of different slopes m [16].

2.3. Adaptive backlash inverse

The backlash inverse BI( ) defined by (2.2) can be approximated by replacing the
vertical jumps between its upward and downward lines by continuous curves with
bounded gains. For example, a vertical transition is replaced with a line segment
which links two sides of BI( - ) and has a slope of a positive and finite value.

For an adaptive backlash inverse BI( - ), we replace the backlash parameters
m, ¢, and ¢; by their estimates m, ¢, and ¢ that are obtained from the adaptive
update law as the following:

v(t —1) if wug(t) =wuq(t—1)
o(t) =4 B 4 &5 ug(t) < ug(t — 1) (2.3)
@ + ¢, if ’U,d(t) > ’U,d(t — 1)

In the next section, we use an adaptive backlash inverse BI ( +) as part of the
proposed adaptive control algorithm for plants with an unknown backlash B( - ).

3. Adaptive Backlash Inverse Control

We consider a discrete plant with a linear part G(D) and a backlash nonlinearity
B( *) at its input
y(t) = G(D)u(t),u(t) = Bluv(t)] (3.1)

where G(D) = KP% with K, being a nonzero constant gain and monic polynomi-
als denoted by Z(D) and P(D). Here the symbol D is used to denote a z-transform
variable or an advance operator. In our control problem, the input u(¢) to the linear
plant is not accessible for measurement, and the backlash B( * ) is unknown while
the linear part G(D) is known. Our objective is to design a feedback control v(t)
using an adaptive linear controller parameter (f) to achieve the stabilization and a
close match of the system response to the desired one.

Our control strategy consists of including a linear adaptive controller with gain
parameter f in the controller structure to cancel the harmful effects of backlash
and to decrease the control error in an adaptive environment, i. e., we adaptively
compute the backlash parameters. Therefore, the adaptive linear controller f has
an important role in our control scheme.

3.1. The controller structure

A controller structure that compensates the backlash effects in continuous-time can
be found in [15]. We follow the same structure configuration of that paper, that is, a
feedback control v(t) that uses the measurement plant output y(t) to achieve global
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stabilization and close tracking of a reference signal y,,, (t) by the measurement plant
output y(t).

Similarly to the controller used in [15], in the reference [3], the author included
one more feedback block control. The controllers proposed in [15] and [3] are both
adaptive but they differ in the involved time consideration. The first one is in
continuous-time and the second one is in discrete-time. In this paper we work in
a discrete-time environment. Thus, the examples given in [3] are appropriate and
will be considered in Section 4.

Ym Ud S v ) u

BI( ) B( G(D) ——

Figure 3: Adaptive backlash inverse controller structure.

Different from [3], in this work we add an unique feedback block (adaptive linear
controller) to compensate the damage caused by backlash. Figure 3 shows our
adaptive backlash inverse controller structure, in which the desired control signal
uq(t) is generated by:

ua(t) = ym(t) + fo(t) (3.2)
where y,,, (t) is the reference signal and f is the adaptive linear controller parameter.
Substituting (2.3) into (3.2), we have:

Ym + f’U(t — 1) if Ud(t) = ’u,d(t — ]_)
ua(t) = ¢ Ym + fudT(t) +é it ug(t) <ug(t—1) (3.3)
Y+ FED LG ug(t) > uglt — 1)

Many control problems can be solved by using techniques based on the mean
square error minimization [17]. For example, one can obtain the adaptive filter
parameters or estimate some parameters of a feedback control system through the
least-mean-square (LMS) algorithm [17], [6].

In our problem, the control error is defined as:

e(t) = u(t) — uq(t) (3.4)

That is, our aim is to cancel the backlash undesirable effects using its inverse as
shown in Figure 2. Let J be the performance control function given in terms of the
mean squared error as follows:

J = E{(t)} (3.5)

where E{ * } denotes the expectation operator.
Now, by substituting the equation (3.4) into (3.5) we can write the performance
control function J as:

J = B{(u(t) - ua(t))*} (3.6)
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In the next subsection, we describe how the adaptive linear control parameter
f and the backlash inverse parameters are updated in our proposal.

3.2. Adaptive laws

As described earlier, we define a performance function J that is related to the
elimination of the undesirable backlash effects when applying an adaptive backlash
inverse.

In this section, we find the adaptive rules to update our control scheme parame-
ters. Our objective is to minimize J, that is, to reduce the difference between wu(t)
and wug(t). To this end, we deduce the partial derivatives in relation of the control
parameters and make them equal to zero, as presented below:

0J

3_f =0 (3.7)
g};{b ~0 (3.8)
g—c‘{r —0 (3.9)
g;: —0 (3.10)

The above equations allow us to obtain the adaptive linear parameter in (3.7)
and the backlash inverse estimated parameters 1, ¢, ¢ in (3.8), (3.9) and (3.10),
respectively. More explicitly, the updating equations for the parameters f, m, ¢,
¢; are expressed as:

f:_ m:% A_Cln A_CQn

, , Cpr=——, (=—— 3.11
Fa My Cid "7 Ca (3.11)

where

Fr = uymin® + uwiin® — y2,m? — ymw

Fi = wymm + ypmm?® + w*m® + uiin?
M, = wym f? + uf3w
Mg = uymf + ’U,f21f1 - y72nf - 2ymf2w - f31f12

Cip = ufﬁ’L2 — quﬁ”L - ymﬁ”LQf

Cia = f2m?
Con = wfin® — uf?m — ymm?®f
Coq = f2m?

We included a new parameter to simplify the notation of the updating parameter
equations. This parameter is: w. The parameter w corresponds to a choice between
¢ and ¢;. The values of the parameter w depend on the backlash region. If the
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backlash region is in the upward active region, this parameter will be: w = ¢, else
if it is in the downward active region it will be: @w = ¢. Otherwise, if the backlash
region is in the gap region, we assume the same previous values for the parameters
w.

4. Numerical Example

In this section, we follow the same illustrative example presented in [3]. The example
consists of controlling a third order system.
The third order linear plant is

(D) = 1 107922 +4x 10752 +1x 1077
T 23— 2.8850422 + 2.771962 — 0.88692

with unknown B( - ):
m=13,¢, =3,¢; = -3

We adopted the following configuration set for the closed-loop system: vy, =
10 sin 12.6¢, and the initial values equal to: m = 0.696, ¢, = 0.5, & = —0.5 and
filter parameter f = 0.22. The difference between the backlash B( - ) parameters
and their inverse BI( * ) parameters are depicted in Figure 4.

Cr— Crym — 1M, — ¢

-25

0 5 0 15 20 25 30
Time (sec)

Figure 4: The difference between the backlash parameters and their estimated parameters
¢r — & (black dotted), m — 7 (thick gray solid), ¢; — é (black solid).

Figure 5 compares the control error results obtained by using the approach de-
scribed in [3] and our control error results (thick black solid curve). It can be
observed that the control errors given by our adaptive control approach are similar
to those given by [3]. As a consequence, our approach is more suitable for adap-
tive systems due to its lower computational complexity. This lower computational
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complexity can be easily verified once, different from [3], our proposal involves the
insertion of only one feedback block.

25

20} . . . 1

15| 1

Control error: u — ug

-10 i i i i i
0 5 10 15 20 25 30

Time (sec)
Figure 5: Control error of [3] (gray solid) and ours (thick black solid).

In this example, one can see that the backlash inverse parameters approximately
reach the same values of the backlash parameters, once the difference between them
converges to zero.

5. Conclusion

We have developed a discrete-time adaptive backlash inverse based controller for
plants which have a known linear part and an unknown backlash at its input. Our
controller structure is composed of an adaptive linear proportional controller and
an adaptive backlash inverse to cancel the harmful effects of backlash.

We verified through simulations that the backlash inverse parameter values reach
the backlash parameter values in a short time interval. Moreover, we obtained
a satisfactory control error compared to the errors achieved with more complex
algorithms such as that presented in [3], for example.

It is relevant to comment that in the approach of [3], it was added three ad-
ditional structures to compensate the backlash effects. On the other hand, in this
paper we used only one additional block (adaptive proportional controller block)
maintaining the control error at lower levels. That is, our control approach, besides
reaching high efficiency, it requires less computational effort. These characteristics
make the proposed control scheme attractive for applications that demand fast pro-
cessing (e.g., real-time applications). Therefore, we can conclude that this work
provides an important contribution for discrete-time systems with unknown back-
lash.



An Adaptive Control Approach for Discrete-Time Systems 339

As a future work, we intend to extrapolate our control scheme to the continuous-

time case. However, in this case, it is necessary to take into account the derivatives
of ’U,d(t).
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Resumo. Neste artigo, focamos no desenvolvimento de um esquema de controle
adaptativo para sistemas com folga desconhecida. Mais especificamente, propomos
um controlador adaptativo baseado na (fun¢ao) inversa da folga para plantas dis-
cretas no tempo que tem como entrada uma parte linear e uma folga desconhecida.
Demonstramos também que os efeitos prejudiciais da folga podem ser cancelados
adicionando dois blocos de controle. Estes blocos sdo os seguintes: uma estru-
tura inversa da folga e um filtro controlador linear adaptativo. O segundo bloco
mencionado fornece novas regras adaptativas para a atualizacdo adaptativa dos
parametros da folga inversa. Através de simulagGes, mostramos que nossa proposta
de controle adaptativo melhora o desempenho do sistema uma vez que a diferenga
entre a saida da folga e a entrada da folga inversa adaptativa converge para um
valor baixo. As simulagoes envolvem um sistema de terceira ordem a fim de verificar
a eficiéncia do algoritmo proposto de controle adaptativo.
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