
i
i

“A4-1684” — 2023/6/22 — 18:34 — page 437 — #1 i
i

i
i

i
i

in Computational and 
Applied Mathematics

Trends Trends in Computational and Applied Mathematics, 24, N. 3 (2023), 437-457
Sociedade Brasileira de Matemática Aplicada e Computacional
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ABSTRACT. In this article a preconditioned version of the Delayed Weighted Gradient Method (DWGM)
is presented and analyzed. In addition to the convergence, some nice properties as the A- orthogonality of
the current transformed gradient with all the previous gradient vectors as well as finite convergence are
demonstrated. Numerical experimentation is also offered, exposing the benefits of preconditioning.
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1 INTRODUCTION

Many real-life applications lead to large-scale convex quadratic optimization problems. Among
other, low-cost gradient methods have widely been effective in solving challenging instances of
this class of optimization problems (see for instance [8, 16, 26] and references therein). Gradient
methods for the unconstrained minimization problem

minimizex∈Rn f (x)

generate a sequence of solution approximations xk satisfying

xk+1 = xk −αkgk,

where f : Rn → R is continuously differentiable, gk = ∇ f (xk) and αk > 0. The selection of the
step length αk depends on the chosen method. The classical steepest decent (SD) method was
proposed in [10] to solve nonlinear systems of equations. In this case,

α
SD
k = argminα f (xk −αgk). (1.1)
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438 ON THE PRECONDITIONED DWGM

Assuming the objective function f to be a strictly convex quadratic function, that is, for a sym-
metric and positive definite (SPD) matrix A ∈ Rn×n, the unconstrained optimization problem
becomes

minimizex∈Rn f (x) =
1
2

xT Ax−bT x. (1.2)

It is well known that the unique minimizer of this problem also solves the linear equation Ax = b,
and so we can denote it by A−1b. Under this assumption, simple calculations on (1.1) give

α
SD
k =

gT
k gk

gT
k Agk

.

It is proven the SD method converges Q-linearly [1]. Instead of minimizing the objective function
f , the Minimum Gradient (MG) step length [3] aims to minimize the gradient norm, i.e.

α
MG
k = argminα ||∇ f (xk −αgk)||2,

which can be written as

α
MG
k =

gT
k Agk

gT
k A2gk

. (1.3)

Despite the optimal properties on the definitions of αSD
k and αMG

k , the steepest descent method
converges slowly and is badly affected by ill conditioning (see [1] and [18]). An overcome for
this issue was proposed by Barzilai and Borwein [5]. The Barzilai-Borwein (BB) methods is
based on a secant condition. They propose two possible step sizes

α
BB1
k = argminα∥s̃k−1 −α ỹk−1∥2 and α

BB2
k = argminα

∥∥∥∥ 1
α

s̃k−1 −α ỹk−1

∥∥∥∥
2
,

where s̃k−1 = xk − xk−1 and ỹk−1 = ∇ f (xk)−∇ f (xk−1). Thus obtaining, respectively

α
BB1
k =

∥s̃k−1∥2
2

s̃T
k−1ỹk−1

and α
BB2
k =

s̃T
k−1ỹk−1

∥ỹk−1∥2
2
.

If we restrict f to be a strictly convex quadratic function, we obtain

α
BB1
k =

gT
k−1gk−1

gT
k−1Agk−1

= α
SD
k−1 and α

BB2
k =

gT
k−1Agk−1

gT
k−1A2gk−1

= α
MG
k−1.

which satisfy [14]
1
λ1

⩽ α
BB2
k ⩽ α

BB1
k ⩽

1
λn

where, λ1 and λn are the maximum and the minimum eigenvalues of A, respectively. Basically,
the BB step-sizes coincide with SD and MG with a retard of −1. The BB methods converge

Trends Comput. Appl. Math., 24, N. 3 (2023)
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R-linearly [12]. Friedlander et al. [19] generalized the BB approach and proposed the Gradient
Methods with Retards (GMR). In this case,

α
GMR
k =

gT
ν(k)gν(k)

gT
ν(k)Agν(k)

= α
SD
ν(k),

where ν(k) is chosen in the set {k,k−1,max{0,k−m}} and m is a given positive integer.

Yuan [29] proposed the following step length which also includes retard in its definition,

aY
k = 2

 1
αSD

k−1
+

1
αSD

k
+

√√√√( 1
αSD

k−1
− 1

αSD
k

)2

+
4∥gk∥2

2

(αSD
k−1∥gk−1∥2)2


−1

.

Yuan’s method present a good performance for small-scale problems. Note that all the gradient
method variants presented so far are one-step methods.

Methods which use two step-sizes are alternatives to accelerate gradient based methods, by im-
posing retard on the process (see [11]). Recently, Oviedo-Leon [25] proposed to combine a
smoothing technique with a delayed gradient step to construct the promising Delayed Weighted
Gradient Method (DWGM), which exhibits an impressive fast convergence behavior that com-
pares favorable with the conjugate gradient method (CG), sharing other nice properties as finite
termination and A-orthogonality of its iterated points (gradients) (see [2, 25]). The DWGM can
be seen as a variant of the parallel tangent method (PARTAN) in the sense that it uses two line
searches in the iteration, with information of previous points to accelerate the gradient method
[18, 27, 28]. In [24] a smoothing technique is introduced to prevent the so called zigzagging
behavior on the sequence of the gradient norms, which is characteristic of CG methods.

In most practical applications, it is convenient to introduce preconditioning to accelerate the
convergence of the process. Preconditioners are useful in iterative methods to solve a linear sys-
tem. Since the larger the condition number, the larger the rate of convergence, for most iterative
solvers, and the preconditioning is meant to decrease the condition number, then it is expected to
improve the convergence rate (see for example [7]). Given the positive definite matrix C2 (precon-
ditioner), the two sided preconditioning designated to deal with the system of equations Ax = b,
first solves the related system C−1AC−1y =C−1b, with better condition number, and then Cx = y
to obtain the solution x. There are different choices for preconditioning matrices, as Jacobi, in-
complete LU factorization, incomplete Cholesky factorization, successive over-relaxation, etc.
Preconditioning has been widely implemented to deal with conjugate gradient type methods,
(see [7]). In [2] was noticed finite termination of DWGM in p < n iterations, when the n× n
Hessian matrix has only p distinct eigenvalues, as it also happens with CG methods, motivating
the use of preconditioning strategies when solving large-scale symmetric and positive definite
linear systems. The aim of this work is to propose, analyze and exhibit the numerical behavior of
the preconditioned version of the recently introduced DWGM algorithm.

Trends Comput. Appl. Math., 24, N. 3 (2023)
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440 ON THE PRECONDITIONED DWGM

The remainder of this article is organized as follows: In the next section we describe the DWGM,
and expose some of its properties. In section 3 we develop the preconditioned version. The anal-
ysis of our preconditioned version is the topic of section 4. Numerical experimentation, and
conclusions are the topics of sections 5 and 6 respectively.

2 DELAYED WEIGHTED GRADIENT METHOD

We consider the strictly convex quadratic minimization problem (1.2). Since the gradient g(x)≡
∇ f (x) = Ax−b, then the unique global solution A−1b for the problem (1.2) also solves the linear
system Ax = b. For large n, many low cost iterative methods have been proposed and analyzed.
The so-called gradient type methods emerge as competitive choices since they show fast linear
convergence (see [3, 4, 9, 11, 14, 21]).

From a starting point x0 ∈Rn, consider gk = g(xk). The minimum gradient method (MG) (see [3])
is given by the iteration

xk+1 = xk −α
MG
k gk.

Here, the step-size αMG
k was defined in (1.3). Denoting wk := Agk, we can write the step size as

α
MG
k =

gT
k wk

∥wk∥2
2
.

The minimum gradient norm method calculates the next iterated point as the vector alongside the
current gradient at which the norm of the next gradient is minimized.

As a two step gradient method, DWGM incorporates a delaying step defined as follows [25]:
The first stage uses the ordinary minimum gradient point yk = xk −αMG

k gk. Then, by defining
βk = argminβ∈R ∥∇ f (xk−1 +β (yk − xk−1))∥2, at the second stage

xk+1 = xk−1 +βk(yk − xk−1)

is calculated. It is straightforward to see that ∇ f (xk−1+β (yk −xk−1)) = gk−1−β (gk−1−rk), for
rk = gk −αkwk. This leads to

βk = gT
k−1(gk−1 − rk)/∥gk−1 − rk∥2

2.

By merging the definition of yk into xk+1 and after simple manipulation, the next iterated point
can be rewritten as

xk+1 = (1−βk)xk−1 +βkxk −βkαkgk. (2.1)

This expression leads us to interpret the choice of βk as that it decides simultaneously for choos-
ing a point on the line passing through the two previous iterated points, and how much to ad-
vance alongside the current gradient direction in such way that the gradient on the next iteration
is minimized. The resulting DWGM algorithm is:

Trends Comput. Appl. Math., 24, N. 3 (2023)
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Algorithm 1 DWGM

Require: A ∈ Rn×n SPD, x0 ∈ Rn, x−1 = x0, g0 = g(x0), g−1 = g0, ε > 0.

1: k = 0

2: while ∥gk∥2 > ε do
3: wk = Agk

4: αk = gT
k wk/wT

k wk

5: yk = xk −αkgk

6: rk = gk −αkwk

7: βk = gT
k−1(gk−1 − rk)/∥gk−1 − rk∥2

2

8: xk+1 = xk−1 +βk(yk − xk−1)

9: gk+1 = gk−1 +βk(rk −gk−1)

10: k = k+1

11: end while

Some of the properties that DWGM enjoys, established in [25] and [2] include the nonnegativity
of βk for all k, the monotonic decreasing of {∥gk∥2} as well as the Q-linear convergence of
{gk} to zero when k goes to infinity (which implies that {xk} converges to the unique global
minimizer of f ), and finite convergence by using A-orthogonality of the gradient vector at the
current iteration with all previous gradient vectors.

3 PRECONDITIONED DWGM

In this section we present the preconditioned DWGM derivation. Preconditioners play an impor-
tant role in the theory of iterative methods. Quoting [7] “... lack of robustness and sometimes
erratic convergence behavior are recognized weakness of iterative solvers. These issues hamper
the acceptance of iterative methods despite their intrinsic appeal for very large linear systems.
Both the efficiency and robustness of iterative techniques can be very much improved by using
preconditioning.”

Let M be a positive definite preconditioner, then exists an unique symmetric positive definite
matrix C, such that M =C2 (see [20]). This positive definite matrix, as well as it inverse allow us
to define the so-called “hat” transformations, that conduce us to transform the space where the
original iterated point xk belongs into the transformed space where the x̂k are calculated:

Â =C−1AC−1; b̂ =C−1b; x̂ =Cx. (3.1)

Note that Â is SPD. Let us define the auxiliary convex quadratic minimization problem

minimizex̂∈Rn f̂ (x̂) =
1
2

x̂T Âx̂− b̂T x̂. (3.2)

Trends Comput. Appl. Math., 24, N. 3 (2023)
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442 ON THE PRECONDITIONED DWGM

Evaluating the function f at x =C−1x̂ we obtain f̂ (x̂) = f (x), where f (x) is given in (1.2). Once
we have the “hat” quadratic minimization problem (3.2), one could apply the delayed weighted
gradient method to solve it. However, the algorithm is better defined if the preconditioning part
is incorporated into the DWGM algorithm. The preconditioned DWGM algorithm generates a
sequence {x̂k} in the transformed space, which is translated to the original space of x. Let us
denote the current iterated point by x̂k ∈ Rn, and consider ĝk = ∇ f̂ (x̂k) and ŵk = Âĝk. Then the
MG step size α̂k is defined by α̂k = argminα>0 ∥∇ f (x̂k −α ĝk)∥2. Note that

ĝk = Âx̂k − b̂ =C−1(Axk −b) =C−1gk,

and
ŵk = Âĝk =

(
C−1AC−1)C−1gk.

Now define zk, qk and pk such that,

Mzk := gk, qk :=Cŵk = Azk and Mpk := qk. (3.3)

The first and third definitions in (3.3) are meant to avoid inverse matrix calculations. From the
definition of the step size we obtain α̂k = ĝT

k ŵk/∥ŵk∥2
2. We transform through (3.3) the numerator

as
ĝT

k ŵk = (C−1gk)
T Â(C−1gk) = gT

k M−1AM−1gk = zT
k Azk = zT

k qk,

and the denominator becomes

ŵT
k ŵk = zT

k AC−1C−1Azk = qT
k M−1qk = qT

k pk,

obtaining

α̂k =
zT

k qk

qT
k pk

. (3.4)

Now, we shall reproduce the smoothing technique as in [24]. Consider the next MG iterated point

ŷk = x̂k − α̂kĝk =Cxk − α̂kC−1gk =C(xk − α̂kzk),

and
r̂k = ĝk − α̂kŵk =C−1(gk − α̂kAzk) =C−1(gk − α̂kqk),

from which we express uk :=C−1ŷk and vk :=Cr̂k by

uk = xk − α̂kzk and vk = gk − α̂kqk. (3.5)

The delaying smoothing step-size is defined for the “hat” system as

β̂k := argminβ∈R ∥∇ f̂ (x̂k−1 +β (ŷk − x̂k−1))∥2,

Trends Comput. Appl. Math., 24, N. 3 (2023)
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which can be written as
β̂k = ĝT

k−1(ĝk−1 − r̂k)/∥ĝk−1 − r̂k∥2
2.

Each factor gives

ĝT
k−1(ĝk−1 − r̂k) = gT

k−1C−1(C−1gk−1 − r̂k) = gT
k−1M−1(gk−1 − vk)

and
∥ĝk−1 − r̂k∥2

2 = (ĝk−1 − r̂k)
T (ĝk−1 − r̂k) = (gk−1 − vk)

T M−1(gk−1 − vk),

from which we obtain

β̂k =
gT

k−1sk

(gk−1 − vk)T sk
, where Msk := gk−1 − vk. (3.6)

Lastly, from
x̂k+1 = x̂k−1 + β̂k(ŷk − x̂k−1)

and
ĝk+1 = ĝk−1 + β̂k(r̂k − ĝk−1)

we obtain

xk+1 = xk−1 + β̂k(uk − xk−1) and gk+1 = gk−1 + β̂k(vk −gk−1). (3.7)

The preconditioned delayed weighted gradient method can be summarized by equations (3.3)
– (3.7) in the Algorithm 2. The input data for the algorithm are the coefficient matrix A, the
preconditioner M, the observation vector b, and the starting point x0.

The computational cost of the preconditioned delayed weighted gradient method is the compu-
tational cost of DWGM plus the cost of solving three linear systems. Of course, three linear sys-
tems increases the computational cost. But, as we are working with symmetric definite systems,
Jacobi, SSOR or incomplete Cholesky preconditioners are good choices that make the cost not
increase excessively. In short, although it is necessary to solve three linear systems per iteration,
they all have the same associated matrix which is typically diagonal or triangular. Thus, as men-
tioned in section 5, each linear system can be solved with a cost O(n) or O(n2) operations. In the
end, we expect the higher computational cost per iteration of PDWGM algorithm is compensated
by the smaller number of iterations when compared to the DWGM algorithm. The convergence
properties for PDWGM are inherited from DWGM, since the iterations are equivalent through
the “hat” transformations.

Trends Comput. Appl. Math., 24, N. 3 (2023)
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Algorithm 2 PDWGM

Require: A,M ∈ Rn×n SPD, x0 ∈ Rn, x−1 = x0, g0 = g(x0), g−1 = g0, ε > 0.

1: Solve Mz0 = g0

2: k = 0

3: while ∥gk∥2 > ε do
4: qk = Azk

5: Solve Mpk = qk

6: αk = zT
k qk/qT

k pk

7: uk = xk −αkzk

8: vk = gk −αkqk

9: Solve Msk = gk−1 − vk

10: βk = gT
k−1sk/(gk−1 − vk)

T sk

11: xk+1 = xk−1 +βk(uk − xk−1)

12: gk+1 = gk−1 +βk(vk −gk−1)

13: Solve Mzk+1 = gk+1

14: k = k+1

15: end while

4 CONVERGENCE

We now present the convergence result of the PDWGM. As the matrix C is a linear operator on
a finite-dimensional linear space, then C is continuous. It means that convergence properties for
{x̂k} or {ĝk} follow directly from the convergence of {xk} or {gk}, and vice-versa. Associated to
a positive definite matrix B, let us denote the B−norm by ∥ · ∥B = ∥B(·)∥2.

Lemma 4.1. Let {xk} be the sequence generated by the Algorithm 1. Then for each k

∥gk+1∥2
M−1/2 ≤ ∥rk∥2

M−1/2 < ∥gk∥2
M−1/2 ≤ ∥rk−1∥2

M−1/2 . (4.1)

Proof. From Lemma 1 in [25], when applied to the “hat” problem (3.2), we have ∥ĝk+1∥2 ≤
∥r̂k∥2 < ∥ĝk∥2 ≤ ∥r̂k−1∥2, which in turn can be written as in (4.1). □

The next lemma establishes bounds on the eigenvalues of a product of definite positive matrices
in terms of a product on the eigenvalues of their factors.

Trends Comput. Appl. Math., 24, N. 3 (2023)
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Lemma 4.2. Given definite positive matrices A and B, λ1(A) ≥ λ2(A) ≥, . . . ,≥ λn(A) > 0 and
λ1(B) ≥ λ2(B) ≥, . . . ,≥ λn(B) > 0 the respective eigenvalues, then for all i, j,k ∈ {1,2, . . . ,n}
such that j+ k ≤ i+1,

λi(AB)≤ λ j(A)λk(B) (4.2)

and λn− j+1(A)λn−k+1(B)≤ λn−i+1(AB). (4.3)

In particular, for i = 1, . . . ,n

λi(A)λn(B)≤ λi(AB)≤ λ1(A)λi(B). (4.4)

For a proof see [6, Fact 8.18.17]. We shall apply this lemma to express the convergence rate of
Algorithm 1 while running with preconditioning:

Theorem 4.1. Consider the problem (1.2), the sequence {xk} generated by Algorithm 2, and
let the eigenvectors for A1/2 and M−1 be λ1(A1/2) > λ2(A1/2) > .. . > λn(A1/2) > 0 and
λ1(M−1/2)> λ2(M−1/2)> .. . > λn(M−1/2)> 0 respectively. Then the sequence {xk} converges
to A−1b Q-linearly with convergence factor

λ1(A1/2)λ1(M−1/2)−λn(A1/2)λn(M−1/2)

(λ1(A1/2)+λn(A1/2))λn(M−1/2)
.

Proof. By the Theorem 1 in [25] applied to the “hat” problem (3.2), we have for each k that

∥ĝk+1∥ ≤

(
λ̂1 − λ̂n

λ̂1 + λ̂n

)
∥ĝk∥, (4.5)

where λ̂i stands for the i-th eigenvalue of Â1/2. Now, since Â = M−1/2AM−1/2 we have for each
i, λi(Â1/2) = λi((M−1/2AM−1/2)1/2) = λi(A1/2M−1/2). Then we can write the factor as

λ1(A1/2M−1/2)−λn(A1/2M−1/2)

λ1(A1/2M−1/2)+λn(A1/2M−1/2)
.

By using (4.4) twice, with i = 1 and i = n we get

λ1(A1/2)λn(M−1/2)≤ λ1(A1/2M−1/2)≤ λ1(A1/2)λ1(M−1/2)

and
λn(A1/2)λn(M−1/2)≤ λn(A1/2M−1/2)≤ λ1(A1/2)λn(M−1/2).

From above relations we obtain

λ1(A1/2M−1/2)−λn(A1/2M−1/2)≤ λ1(A1/2)λ1(M−1/2)−λn(A1/2)λn(M−1/2)

Trends Comput. Appl. Math., 24, N. 3 (2023)
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and

λ1(A1/2M−1/2)+λn(A1/2M−1/2)≥ λ1(A1/2)λn(M−1/2)+λn(A1/2)λn(M−1/2),

which leads to the factor. Now, by using the relation ∥ĝk∥= ∥gk∥M−1/2 , we can write (4.5) as

∥gk+1∥M−1/2 ≤

(
λ1(A1/2)λ1(M−1/2)−λn(A1/2)λn(M−1/2)

(λ1(A1/2)+λn(A1/2))λn(M−1/2)

)
∥gk∥M−1/2 .

It follows that {gk} converges to zero Q-linearly with convergence factor

λ1(A1/2)λ1(M−1/2)−λn(A1/2)λn(M−1/2)

(λ1(A1/2)+λn(A1/2))λn(M−1/2)

and hence, since A is positive definite, we also conclude that {xk} tends to the unique minimizer
of f when k goes to infinity. □

Let us consider the spectral condition number κ2(Â) of Â. Since preconditioners are meant to
improve the conditionning of a matrix, in general we will have κ2(A)⩾ κ2(Â). The convergence
factor can be rewritten as (κ2(Â)− 1)/(κ2(Â)+ 1). Since the function f (x) = (x− 1)/(x+ 1)
is increasing and κ2(A) ⩾ κ2(Â), then the preconditioned DWGM converges in fewer iterations
than the ordinary DWGM.

Now, we want to prove that PDWGM admits finite termination, in exact arithmetic.

In [2] it was demonstrated the A−orthogonality property of all previous gradients. Applied to the
“hat” problem (3.2), it follows that for all k,

ĝT
k Âĝ j = 0, ∀ j ≤ k−1. (4.6)

By translating to the original problem we obtain for each k,

gT
k M−1AM−1g j = 0, ∀ j ≤ k−1. (4.7)

In other words, gk is M−1AM−1−orthogonal to all previous gradient vectors. Notice that (4.7)
can be written as zT

k Az j = 0, ∀ j ≤ k− 1. The property (4.7) leads to the demonstration of the
finite convergence theorem.

Theorem 4.2. For any initial guess x0 ∈ Rn, PDWGM applied to problem (1.2) generates the
iterated points xk, k ≥ 1 such that xn = A−1b.

Proof. From (4.7) we have that the n vectors gk, k = 0,1, . . . ,n − 1 form an
M−1AM−1−orthogonal set, and then they form a linearly independent set of n vectors in Rn.
Therefore, the next vector, gn ∈Rn must be zero to be able to keep the M−1AM−1−orthogonality
with all the previous gradient vectors. Since, gn = Axn −b = 0 we obtain our claim. □

Trends Comput. Appl. Math., 24, N. 3 (2023)
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Another nice property of the DWGM algorithm preserved by our preconditioned version is that
it terminates at p iterations, where p stands for the number of distinct eigenvalues of M−1AM−1.
The key related results are Lemma 7 and Theorem 9 on [2], which we write without proof at the
sequel. Notice that for each k the gradient vector generated by PDWGM belongs to the Krylov
subspace Kk+1(M−1AM−1,g0) depending on A, g0 and M.

Lemma 4.3. In the algorithm PDWGM, for all k ≥ 1,

gk ∈ Kk+1(M−1AM−1,g0) := span{g0,M−1AM−1g0, . . . ,(M−1AM−1)kg0}.

Theorem 4.3. If M−1AM−1 has only p< n distinct eigenvalues, then for any initial guess x0 ∈Rn,
the algorithm PDWGM generates the iterated points xk, k ≥ 1, such that xp = A−1b.

Notice from (2.1) that to move from xk to xk+1 the Algorithm 1 looks for a point in the line
which passes through xk−1 and xk from which walk in the gradient direction, involving these two
search directions. Analogously, in the case of Algorithm 2, the search involves the directions
xk−1 − xk and the transformed gradient zk. The next theorem establishes the A-orthogonality of
the sequences of these search directions. First notice that

ĝT
k Â(x̂k − x̂k−1) = gT

k M−1(gk −gk−1) = zT
k+1(gk −gk−1).

Lemma 4.4. In the algorithm PDWGM, the following statements hold for all k ≥ 1.

a) zT
k+1(vk −gk−1) = 0.

b) zT
k+1(gk −gk−1) = 0.

c) zT
k+1gk+1 = zT

k+1gk = zT
k+1gk−1.

d) βk = zT
k−1(gk−1 − vk)/(∥gk−1 −gk∥2

M−1/2 − [(zT
k Azk)

2/∥Azk∥2
M−1/2 ])> 1.

Proof.

a) From steps 10, 12 and 13 of the algorithm we get

zT
k+1(vk −gk−1)

= gT
k+1M−1(vk −gk−1)

= (gk−1 +βk(vk −gk−1))
T M−1(vk −gk−1)

= gT
k−1M−1(vk −gk−1)+

gT
k−1M−1(gk−1 − vk)

(gk−1 − vk)T M−1(gk−1 − vk)
(vk −gk−1)

T M−1(vk −gk−1)

= 0.

Trends Comput. Appl. Math., 24, N. 3 (2023)
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b) From step 8, (a) and (4.7) we have

zT
k+1(gk −gk−1) = gT

k+1M−1(gk −gk−1) = gT
k+1M−1(vk +αkAzk −gk−1)

= gT
k+1M−1(vk −gk−1)+αkgT

k+1M−1AM−1gk = 0.

c) By steps 8, 12 and 13

zT
k+1gk+1 = gT

k+1M−1gk+1 = gT
k+1M−1(gk−1 +βk(vk −gk−1))

= gT
k+1M−1(gk−1 +βk(gk −gk−1)−αkβkAzk)

= gT
k+1M−1gk−1 +βkgT

k+1M−1(gk −gk−1)−αkβkgT
k+1M−1AM−1gk.

The second term is zero by part (b) and the third by (4.7). Then, we obtain zT
k+1gk+1 =

zT
k+1gk−1. Again from (b) we notice that zT

k+1gk = zT
k+1gk−1 obtaining our claim.

d) By Cauchy-Schwarz inequality and step 13 we obtain

zT
k−1gk = gT

k−1M−1gk = ∥ĝk−1∥∥ĝk∥< ∥ĝk−1∥2

= gT
k−1M−1gk−1 = zT

k−1gk−1.

Also,
zT

k−1vk = zT
k−1(gk −αkAzk) = zT

k−1gk −αkzT
k−1Azk.

By using the A-orthogonality property (4.7) we obtain zT
k−1vk = zT

k−1gk. Therefore, the last
two expressions lead to

zT
k−1(gk−1 − vk) = zT

k−1(gk−1 −gk)> 0.

This means that the numerator on step 10 is positive, and so, since the denominator can be
written as ∥gk−1 − vk∥2

M−1/2 , also βk > 0 for all k ≥ 0. Now we examine the denominator.
By steps 4, 6 and 8, and algebraic manipulation we get

∥gk−1 − vk∥2
M−1/2

= ∥gk−1 −gk +αkAzk∥2
M−1/2

= ∥gk−1 −gk∥2
M−1/2 +2αkzT

k AM−1(gk−1 −gk)+α2
k zT

k AM−1Azk

= ∥gk−1 −gk∥2
M−1/2 +2αk(zT

k Azk−1 − zT
k Azk)+α2

k zT
k AM−1Azk

= ∥gk−1 −gk∥2
M−1/2 −2

(
zT

k Azk

zkAM−1Azk

)
zT

k Azk +

(
zT

k Azk

zT
k AM−1Azk

)2

zT
k AM−1Azk

= ∥gk−1 −gk∥2
M−1/2 −

(zT
k Azk)

2

zT
k AM−1Azk

.

So, βk = zT
k−1(gk−1 − vk)/(∥gk−1 − gk∥2

M−1/2 − [(zT
k Azk)

2/∥Azk∥2
M−1/2 ]). Since βk and the

numerator zT
k−1(gk−1 − vk) are strictly positive, then the denominator must also be strictly

positive. Then,
0 < (zT

k Azk)
2/∥Azk∥2

M−1/2 < ∥gk−1 −gk∥2
M−1/2 .

Trends Comput. Appl. Math., 24, N. 3 (2023)
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From (c) we know zT
k (gk −gk−1) = 0, and hence

0 = (gk −gk−1 +gk−1)
T M−1(gk −gk−1) = ∥gk−1 −gk∥2

M−1/2 − zT
k−1(gk−1 −gk),

obtaining that zT
k−1(gk−1 −gk) = ∥gk−1 −gk∥2

M−1/2 . By step 8 and (4.7) we have

zT
k−1(gk − vk) =−αkzT

k−1Azk = 0,

so zT
k−1gk = zT

k−1vk. This fact is used to conclude that the numerator in (d) is strictly bigger
than the denominator and since both are positive we finally have βk > 1 for all k.

□

Now we are ready to establish the abovementioned orthogonality result:

Theorem 4.4. The algorithm PDWGM generates sequences gk and zk such that, for k ≥ 2,

zT
k (g j −g j−1) = 0, ∀1 ≤ j ≤ k. (4.8)

Proof. From Lemma 4.4 (b) we get zT
2 (g1 − g0) = 0, and so the result is true for k = 2. Let us

assume by induction on k that (4.8) holds up to k = k̂ ≥ 3 and consider the next iteration. So we
need to show that zT

k̂+1
(g j − g j−1) = 0 for all 1 ≤ j ≤ k̂. When j = k̂ the result follows directly

from part (b) of lemma above. Now, if j ≤ k̂−2, by using steps 8 and 12, the inductive hypothesis
and (4.7) we have

zT
k̂+1

(g j −g j−1) = gT
k̂+1

M−1(g j −g j−1)

= [gk̂−1 +βk̂(vk̂ −gk̂−1)]
T M−1(g j −g j−1)

= [(1−βk̂)gk̂−1 +βkvk̂]
T M−1(g j −g j−1)

= βk̂vT
k̂

M−1(g j −g j−1)

= βk̂(gk̂ −αk̂Azk̂)
T M−1(g j −g j−1)

=−βk̂αk̂gT
k̂

M−1AM−1(g j −g j−1) = 0.

Finally, when j = k̂−1, by using steps 8, 12 and 13, as well as the inductive hypothesis and (4.7)
we have

zT
k̂+1

(gk̂−1 −gk̂−2) = gT
k̂+1

M−1(gk̂−1 −gk̂−2)

= gT
k̂+1

M−1(gk̂−1 − vk + vk −gk̂−2)

= gT
k̂+1

M−1(gk̂ −αk̂Azk̂ −gk̂−2)

= gT
k̂+1

M−1(gk̂ −gk̂−2)

= gT
k̂+1

M−1(gk̂−2 +βk̂−1(vk̂−1 −gk̂−2)−gk̂−2)

= βk̂−1gT
k̂+1

M−1(vk̂−1 −gk̂−2)

= βk̂−1zT
k̂+1

(vk̂−1 −gk̂−2).

Trends Comput. Appl. Math., 24, N. 3 (2023)



i
i

“A4-1684” — 2023/6/22 — 18:34 — page 450 — #14 i
i

i
i

i
i

450 ON THE PRECONDITIONED DWGM

Therefore, (βk̂−1)zT
k̂−1

(vk̂−1−gk̂−2) = 0. Since βk̂ > 1 for all k ≥ 1 and noticing that zT
k̂−1

vk̂−1 =

zT
k̂−1

gk̂−1, we conclude zT
k̂−1

(vk̂−1 −gk̂−2) = 0, and so (4.8) is established. □

5 NUMERICAL EXPERIMENTS

In this section we show the preconditioned DWGM algorithm has a numerical behaviour similar
to the preconditioned CG algorithm. We present some numerical experiments to validate our
claim. In all examples we compare the performance of the CG [22], preconditioned CG [22],
DWGM [25] and the preconditioned DWGM algorithms. All the experiments were performed
on an intel(R) CORE(TM) i7-4770, CPU 3.40 GHz with 16 GB RAM.

We propose, initially, an experiment to compare the performance of DWGM and PDWGM with
the most robust iterative method for solving strictly convex quadratic problems, the conjugate
gradient method and its preconditioned version.

We obtained seventy matrices from the SuiteSparse Matrix Collection1 [13,23]. Then we solved
the resulting seventy linear systems with the CG, preconditioned CG, DWGM and the precondi-
tioned DWGM algorithms with b = [1,1, . . . ,1]T and x0 = [0,0, . . . ,0]T . The stopping criterium
used is

∥∇ f (xk)∥2 ⩽ 10−5.

For the seventy experiments we used the Jacobi preconditioner [20] to perform this experiment.
But similar results are obtained if we use different preconditioners, like incomplete Cholesky
factorization [17] or SSOR [17], for example.

Performance profiles [15] comparing CPU time and number of iterations are presented on Figure
1. Note that CG and DWGM algorithms have similar behaviour in terms of CPU time and num-
ber of iterations. On the other hand, the comparison between PCG and PDWGM present some
differences. First, we can note that, in general, PDWGM converge in less iterations than PCG,
but with a higher CPU time. But we emphasize the differences are not significant.

Table 1 presents, for fourteen selected matrices, the number of iterations (niter), the error norm
(ek = ∥xk − x∗∥2) and the gradient error norm (rk = ∥Axk −b∥2).

The most evident characteristic that we can observe in Table 1 is that the DWGM algorithm
reaches the given tolerance in fewer iterations than the CG algorithm, this fact was also observed
in [2]. A second observation is that both PCG and PDWGM have a similar behavior. It means
they reach the given tolerance with a similar number of iterations. The CPU times of PCG and
PDWGM are also similar, sometimes PCG is faster, sometimes PDWGM is faster. But, overall
the CPU times do not differ a lot. Moreover, as shown in the next figure, the gradient curves of
PCG and PDWGM are resemblant. In short, the differences between PDWGM and PCG are not
significant.

1formerly the University of Florida Sparse Matrix Collection.

Trends Comput. Appl. Math., 24, N. 3 (2023)
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Table 1: Iteration information of CG, PCG, DWGM and PDWGM for fourteen models.

mesh3em5 Muu

niter ek rk CPU(s) niter ek rk CPU(s)

CG 13 2.7597e-005 4.1695e-005 0.0010 84 2.1429e-004 9.6983e-009 0.0849

PCG 13 1.8247e-005 3.5884e-005 0.0009 30 1.0021e-004 7.8161e-009 0.0329

DWGM 13 2.9586e-005 4.0226e-005 0.0009 83 3.3700e-004 7.6887e-009 0.1019

PDWGM 13 2.0587e-005 3.4235e-005 0.0019 30 1.2917e-004 6.8319e-009 0.0369

Chem97ZtZ bodyy4

niter ek rk CPU(s) niter ek rk CPU(s)

CG 137 3.1782e-010 9.6090e-009 0.0199 273 1.4529e-009 9.7342e-009 0.274857

PCG 32 4.5905e-010 6.6680e-009 0.0059 214 3.7600e-009 9.7342e-009 0.229854

DWGM 135 9.0344e-010 7.5092e-009 0.0239 262 5.7226e-009 9.3859e-009 0.336092

PDWGM 34 1.0241e-010 3.1926e-009 0.0069 212 5.7226e-009 9.7141e-009 0.318831

bundle1 nasa2146

niter ek rk CPU(s) niter ek rk CPU(s)

CG 242 4.1278e-019 9.3649e-009 0.9597 429 3.9752e-014 9.2289e-009 0.1979

PCG 66 1.8484e-019 7.1148e-009 0.2953 323 4.1317e-014 9.7221e-009 0.1479

DWGM 241 8.7440e-019 9.4834e-009 0.9444 414 1.9318e-013 9.4622e-009 0.1971

PDWGM 65 3.7965e-019 8.3751e-009 0.2758 312 1.3832e-013 9.4843e-009 0.1559

wathen120 msc00726

niter ek rk CPU(s) niter ek rk CPU(s)

CG 413 2.2624e-009 9.2956e-009 1.4831 1512 9.5563e-014 7.8397e-009 0.3557

PCG 51 2.0597e-010 6.2655e-009 0.1848 126 2.9107e-015 7.0725e-009 0.0339

DWGM 405 6.9872e-009 9.2236e-009 1.6300 1520 3.4609e-013 1.9936e-008 0.3957

PDWGM 50 4.4364e-010 8.1356e-009 0.2158 122 1.7645e-014 7.0100e-009 0.0309

bcsstm12 Pres Poisson

niter ek rk CPU(s) niter ek rk CPU(s)

CG 4313 1.5650e-005 6.9687e-009 0.8158 2243 5.3538e-005 9.8029e-007 8.7070

PCG 504 7.2098e-006 7.1205e-009 0.0999 767 2.8998e-005 9.8692e-007 3.1102

DWGM 3396 3.0353e-004 1.9472e-008 0.8019 2119 5.7822e-004 4.8639e-006 8.5900

PDWGM 464 9.3194e-005 8.9432e-009 0.1019 758 7.2819e-005 1.2784e-006 3.2261

msc04515 1138 bus

niter ek rk CPU(s) niter ek rk CPU(s)

CG 4812 4.8974e-014 9.6160e-007 2.9952 2000 4.1944e-005 8.8203e-005 0.2198

PCG 3825 1.4561e-012 8.6307e-007 2.4625 970 1.7307e-005 9.6794e-005 0.1249

DWGM 4698 1.0657e-012 6.0433e-005 3.1961 1966 2.5406e-004 1.0520e-004 0.2188

PDWGM 3771 1.7856e-012 6.8977e-005 2.4694 975 3.1397e-005 6.8587e-005 0.1329

cbuckle cvxbqp1

niter ek rk CPU(s) niter ek rk CPU(s)

CG 4944 7.4180e-005 8.7746e-005 17.4160 8148 8.6930e-006 9.8426e-005 23.7433

PCG 970 7.9553e-005 9.7548e-005 3.7778 5103 8.6930e-006 9.9575e-005 16.9593

DWGM 3960 9.6921e-004 9.9202e-005 15.3422 5942 2.7696e-004 9.9960e-005 22.8188

PDWGM 785 0.0021630 9.6522e-005 3.0412 3793 3.1636e-004 9.9852e-005 16.0228

Trends Comput. Appl. Math., 24, N. 3 (2023)
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(a) CG/DWGM CPU time comparison.

1 1.1 1.2 1.3 1.4 1.5
0

0.2

0.4

0.6

0.8

1

τ

ρ(
τ)

CPU Time

PCG
PDWGM
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(c) CG/DWGM number of iterations comparison.
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Figure 1: Performance profiles comparing CG, PCG, DWGM and PDWGM.

To corroborate the results presented in Table 1 we display six graphs with the conjugate gra-
dient, preconditioned conjugate gradient, DWGM and PDWGM number of iterations versus
log10(∥∇ f (xk)∥2) comparison. As pointed out above, PCG and PDWGM have a similar be-
haviour. Note that the gradient curves of PCG and PDWGM have similar pattern. Nevertheless,
as pointed out by [25], the computational cost per iteration for CG is 2n2 + 9n− 2 flops while
the computation cost per iteration for PCG is 2n2 +17n−4 flops. Thus, the computational cost
of PCG is the cost of CG plus the resolution of a linear system, while the computational cost
of PDWM is the cost of DWGM plus the resolution of three linear systems. Note that, by using
the Jacobi preconditioner or a preconditioner based on the incomplete Cholesky factorization the
linear systems to be solved, for each iteration are either diagonal or triangular with computational
costs of O(n) and O(n2) flops, respectively. As final observation, another effect we note is the
smoothed curves of DWGM and PDWGM when compared to the well known “crispness” of the
CG and PCG curves.

Trends Comput. Appl. Math., 24, N. 3 (2023)
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Figure 2: Comparison between CG, PCG, DWGM and PDWGM for six different models.
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The experiment described above has, as objective, the comparison between the DWGM/PDWGM
and CG/PCG algorithms. Now we propose a second experiment in order to illustrate the finite
termination property in the number of distinct eigenvalues of the PDWGM algorithm (Theorem
4.3), and how preconditioning can influence over the number of steps.

This experiment is based on a construction of a preconditioned matrix with a predefined number
of distinct eigenvalues. In the following procedure we present how to construct a matrix A and a
preconditioner M =C2 such that Â =C−1AC−1 has a defined number of distinct eigenvalues.

• Let Q ∈ Rn×n be an orthogonal matrix;

• Let v ∈ Rn be a vector with random entries between 0 and 1;

• Define A = QT1QT , with T1 =diag(v);

• Let l ∈ Rp such that l1 > l2 > · · ·> lp (eigenvalues);

• Define the algebraic multiplicity ni of each li, i = 1, . . . , p such that n1 +n2 + · · ·+np = n;

• Define L =diag(l1, . . . , l1, l2, . . . , l2, . . . , lp, . . . , lp) ∈ Rn×n;

• Define a diagonal matrix T2 such that T2(i, i) = L(i, i)/T1(i, i), i = 1, . . . ,n;

• Define M−1 = QT2QT or C−1 = QT 1/2
2 QT .

Note that,
Â = C−1AC−1 =

(
QT 1/2

2 QT
)(

QT1QT
)(

QT 1/2
2 QT

)
= Q

(
T 1/2

2 T1T 1/2
2

)
QT = QLQT .

Then, Â is a preconditioned matrix with clustered eigenvalues.

The objective of this experiment is to present some examples of the finite termination of DWGM
and PDWGM. Firstly, a random orthogonal matrix Q is defined based on the QR decomposition
[20] of a given random matrix. Then, the procedure above is run 15 times, generating 15 pairs
(A,M). As in the first example we compare DWGM and PDWGM 15 times and then we take the
average and the standard deviation of the results.

The results are presented in Table 2. For DWGM and PDWGM we compare the number of
iterations, the absolute error, the norm of the residual and CPU time. Moreover, n an p represent
the problem dimension and the number of distinct eigenvalues of Â, respectively. Observe that for
small instances the number of iterations of the algorithm without preconditioning is proportional
to the dimension n, while the number of iterations of the preconditioned is proportional to the
number of different eigenvalues p on the problem, as Theorem 4.3 claim.

Trends Comput. Appl. Math., 24, N. 3 (2023)
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Table 2: Iteration information of CG, PCG, DWGM and PDWGM.

n=7 and p=3

niter ek rk CPU(s)

DWGM 7 ± 0 2.8042e-013 ± 8.5845e-013 1.7165e-013 ± 5.2349e-013 1.0973e-003 ± 1.0944e-003

PDWGM 3 ± 0 4.6075e-013 ± 1.4180e-012 1.5011e-013 ± 4.6798e-013 6.9978e-004 ± 9.4906e-004

n=100 and p=11

niter ek rk CPU(s)

DWGM 50.70 ± 10.79 1.3530e-005 ± 1.4383e-005 7.7019e-007 ± 1.7123e-007 1.1192e-002 ± 2.3468e-003

PDWGM 10.90 ± 0.31 1.2297e-007 ± 3.8885e-007 7.0609e-008 ± 2.2328e-007 4.4976e-003 ± 7.0674e-004

n=1000 and p=51

niter ek rk CPU(s)

DWGM 143.50 ± 26.69 1.0365e-004 ± 4.9420e-005 9.4354e-007 ± 4.3212e-008 0.0785 ± 0.0138

PDWGM 33.00 ± 4.24 1.6387e-006 ± 8.6370e-007 5.6995e-007 ± 1.5505e-007 0.0620 ± 0.0101

n=7000 and p=623

niter ek rk CPU(s)

DWGM 373.40 ± 73.30 1.1075e-003 ± 7.3672e-004 9.6649e-007 ± 1.7105e-008 14.9948 ± 2.9115

PDWGM 121.40 ± 31.77 2.3420e-006 ± 7.2454e-007 9.1388e-007 ± 5.6455e-008 12.2710 ± 3.2368

6 CONCLUSIONS

The delayed weighted gradient method is a two-step gradient method that aims to correct the
Cauchy’s point and produce a faster solution than the classical gradient method. We have pre-
sented and discussed the derivation of the preconditioned delayed weighted gradient method.
Also we have shown the preconditioned conjugate gradient and the preconditioned delayed
weighted gradient method have similar results, and preconditioned conjugate gradient has a sim-
ilar computational cost per iteration than the preconditioned delayed weighted gradient method.
Convergence and theoretical properties of the preconditioned delayed weighted gradient method
are proved.
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[15] E.D. Dolan & J.J. Moré. Benchmarking optimization software with performance profiles.
Mathematical Programming, 91 (2002), 201–213. doi:10.1007/s101070100263.

[16] M.A. Figueiredo, R. Nowak & S. Wright. Projection for sparse reconstruction: application to
compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process, (1) (2007),
586–597.

[17] W. Ford. “Numerical Linear Algebra with Applications: Using MATLAB”. Elsevier Inc, New York
(2015).

[18] G.E. Forsythe & T.S. Motzkin. Asymptotic properties of the optimum gradient method, Preliminary
report. Bull. Amer. Math. Soc, 57 (1951), 304–305.

[19] A. Friedlander, J.M. Martı́nez, B. Molina & M. Raydan. Gradient method with retards and
generalizations. SIAM Journal on Numerical Analysis, 36(1) (1999), 275–289.

[20] G.H. Golub & C.F. Van Loan. “Matrix Computations”. Johns Hopkins Studies in the Mathematical
Sciences. Johns Hopkins University Press, 4th ed. (2012).

[21] Y. Huang, Y.H. Dai, X.W. Liu & H. Zhang. Gradient methods exploiting spectral properties.
Optimization Methods and Software, 35(4) (2020), 681–705.

[22] C.T. Kelley. “Iterative Methods for Linear and Nonlinear Equations”. Society for Industrial and
Applied Mathematics (1995).

Trends Comput. Appl. Math., 24, N. 3 (2023)



i
i

“A4-1684” — 2023/6/22 — 18:34 — page 457 — #21 i
i

i
i

i
i

R. ALEIXO and H. LARA URDANETA 457

[23] S.P. Kolodziej, M. Aznaveh, M. Bullock, J. David, T.A. Davis, M. Henderson, Y. Hu & R. Sandstrom.
The SuiteSparse Matrix Collection Website Interface. Journal of Open Source Software, 4(35) (2019),
1244. doi:10.21105/joss.01244.

[24] J.L. Lamotte, B. Molina & M. Raydan. Smooth and adaptive gradient method with retards.
Mathematical and Computer Modelling, 36 (2002), 1161–1168.

[25] H.F. Oviedo-Leon. A delayed weighted gradient method for strictly convex quadratic minimization.
Computational Optimization and Applications, 74 (2019), 729–746.

[26] T. Serafini, G. Zanghirati & L. Zanni. Gradient projection methods for large quadratic programs and
applications in training support vector machines. Optimization Methods and Software, (20) (2005),
353–378.

[27] B.V. Shah, R.J. Buehler & O. Kempthorne. Some Algorithms for Minimizing a Function of Several
Variables. Journal of the Society for Industrial and Applied Mathematics, 12(1) (1964), 74–92.

[28] H. Sorenson. Comparison of some conjugate direction procedures for function minimization. Journal
of the Franklin Institute, 288(6) (1969), 421–441.

[29] Y.X. Yuan. A new stepsize for the steepest decent method. Journal of Computational Mathematics,
24(2) (2006), 149–156.

Trends Comput. Appl. Math., 24, N. 3 (2023)


