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ABSTRACT. This work is concerned with the Cauchy problem for a Zakharov system with initial data in
Sobolev spaces Hk(Rd)×H l(Rd)×H l−1(Rd). We recall the well-posedness and ill-posedness results known
to date and establish new ill-posedness results. We prove C2 ill-posedness for some new indices (k, l) ∈R2.
Moreover, our results are valid in arbitrary dimension. We believe that our detailed proofs are built on a
methodical approach and can be adapted to obtain similar results for other systems and equations.
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1 INTRODUCTION

This work is concerned with the Cauchy problem for the following Zakharov system
i∂tu + ∆u = nu , u : R×Rd → C ,

∂
2
t n − ∆n = ∆|u|2, n : R×Rd → R,

(u,n,∂tn)|t=0 ∈ Hk,l ,

(Z)

where Hk,l is a short notation for the Sobolev space Hk(Rd ;C)×H l(Rd ;R)×H l−1(Rd ;R), (k, l) ∈
R2 and ∆ is the laplacian operator for the spatial variable.

V. E. Zakharov introduced the system (Z) in [19] to describe the long wave Langmuir turbulence
in a plasma. The function u represents the slowly varying envelope of the rapidly oscillating
electric field and the function n denotes the deviation of the ion density from its mean value.

In this note we prove that, for any dimension d, the system (Z) is C2 ill-posed in Hk,l , for the
indices (k, l) displayed in Figure 1 and Figure 2 (see Theorem 1.2 and Theorem 1.3 for the
precise statements). The first C2 ill-posedness result was proved by Tzvetkov in [18] for the KdV
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506 A NOTE ON C2 ILL-POSEDNESS RESULTS FOR THE ZAKHAROV SYSTEM IN ARBITRARY DIMENSION

equation, improving the previous C3 ill-posedness result of Bourgain found in [6]. We essentially
follow the same ideas of [18], but our proofs are structured as in [9]. Two slightly different senses
of C2 ill-posedness are considered in our results (see also Remark 1).
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Figure 1: S t is not C2. Theorem 1.2.
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Figure 2: S is not C2. Theorem 1.3.

Ginibre, Tsutsumi and Velo introduced in [11] a heuristic critical regularity for the system (Z),
which is given by (k, l)= (d/2− 3/2 , d/2− 2). In particular, our result in Theorem 1.2 with
d = 3 (physical dimension) shows that the critical regularity (0,−1/2) is the endpoint for achiev-
ing well-posedness by fixed point procedure. We point out that local well-posedness at critical
regularity is an open problem for d ≥ 3.

The system (Z) has been studied in several works. Bourgain and Colliander proved in [7] local
well-posedness in the energy norm for d = 2,3. They construct local solutions applying the con-
traction principle in X s,b spaces introduced in [5]. Local well-posedness in arbitrary dimension
under weaker regularity assumptions was obtained in [11] by Ginibre, Tsutsumi and Velo. We
recall the last result in the next theorem (see Figure 3).

Theorem 1.1. (Ginibre, Tsutsumi and Velo [11]) Let d ≥ 1. The system (Z) is locally well-posed,
provided

−1/2 < k− l ≤ 1, 2k ≥ l +1/2 ≥ 0, for d = 1
l ≤ k ≤ l +1, for all d ≥ 2
l ≥ 0, 2k− (l +1)≥ 0, for d = 2,3
l > d/2−2, 2k− (l +1)> d/2−2, for all d ≥ 4.

(1.1)

Now, we list the best results to date (as far as we know) for the system (Z).

For d = 1, Theorem 1.1 is the best result for l.w.p. Concerning ill-posedness: Biagioni and
Linares proved in [4] non-existence of uniformly continuous solution mapping, for k < 0 and
l ≤ −3/2; Holmer proved in [12] norm inflation for 0 < k < 1 and l > 2k− 1/2 and for k ≤ 0
and l > −1/2; Also in [12], non-existence of uniformly continuous solution mapping is proved

Trends Comput. Appl. Math., 24, N. 3 (2023)
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Figure 3: Regions corresponding to (1.1) for each case of dimension d.

for k = 0 and l < −3/2; Theorem 1.2 (see Remark 1) and Theorem 1.3 are the best results for
the remaining region.

For d = 2, Bejenaru, Herr, Holmer and Tataru in [2] proved l.w.p. for (k, l)=(0,−1/2) and The-
orem 1.1 is the best result for the remaining indices k and l. Concerning ill-posedness, Theorem
1.2 (see Remark 1) and Theorem 1.3 are the best results.

For d = 3, Theorem 1.1 is the best result for l.w.p. Concerning ill-posedness: Theorem 1.2 and
Theorem 1.3 are the best results.

For d = 4, Bejenaru, Guo, Herr and Nakanishi in [1] proved l.w.p. for l ≥ 0, k < 4l+1, max{(l+
1)/2 , l − 1} ≤ k ≤ min{l + 2,2l + 11/8} and (k, l) ̸= (2,3). Theorem 1.1 is the best result for
the remaining indices k and l. Concerning ill-posedness: Non-existence of solution is also proved

Trends Comput. Appl. Math., 24, N. 3 (2023)



i
i

“A8-1688” — 2023/6/22 — 18:51 — page 508 — #4 i
i

i
i

i
i

508 A NOTE ON C2 ILL-POSEDNESS RESULTS FOR THE ZAKHAROV SYSTEM IN ARBITRARY DIMENSION

in [1]. Theorem 1.2 (see Remark 1) and Theorem 1.3 are the best results for the remaining indices
k and l.

For d > 4, Theorem 1.1 is the best result for l.w.p. Concerning ill-posedness: Theorem 1.2 and
Theorem 1.3 are the best results. The next figure illustrates all these results.
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Figure 4: ■ l.w.p. Thm 1.1 ■ l.w.p. [2] ■ l.w.p. [1] ■ ill-p. (at least C2).

For d ≥ 4, Kato and Tsugawa in [13] proved the global well-posedness of the Zakharov system
for small data in the mixed inhomogeneous and homogeneous space Hk(Rd)×Ḣ l(Rd)×Ḣ l−1(Rd)

at critical regularity (k, l) = (d/2 − 3/2 , d/2 − 2). Global well-posedness for the Zakharov
system is also studied in [16], [17], [8], [10], [15] and [1].

Trends Comput. Appl. Math., 24, N. 3 (2023)
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Now we start to state our results. First, we outline some definitions. Assume that the system (Z) is
locally well-posed in the time interval [0,T ]. Then the solution mapping associated to the system
(Z) is the following map

S : Br −→ C ( [0,T ] ; Hk,l ) (1.2)

(ϕ,ψ,φ) 7→ (u
(ϕ,ψ,φ)

, n
(ϕ,ψ,φ)

, ∂tn(ϕ,ψ,φ)
) ,

where C ([0,T ] ; Hk,l) is a short notation for C([0,T ];Hk(Rd))× C([0,T ];H l(Rd))×
C([0,T ];H l−1(Rd)),
Br = {(ϕ,ψ,φ) ∈ Hk,l : ∥(ϕ,ψ,φ)∥Hk,l < r} and u

(ϕ,ψ,φ)
and n

(ϕ,ψ,φ)
are local solutions1

for system (Z) with initial data (u,v,∂tn)|t=0 = (ϕ,ψ,φ).

Since Theorem 1.1 was obtained by means of contraction method, one can conclude the follow-
ing: If (k, l) satisfies conditions (1.1) then for every fixed r > 0 there is a T = T (r,k, l)> 0 such
that the solution mapping (1.2) is analitic (see Theorem. 3 in [3]). So, if the system (Z) is locally
well-posed in Hk,l and the solution mapping (1.2) fails to be m-times differentiable, then the
usual contraction method can not be applied to prove the local well-posedness. In this case, we
have a sense of ill-posedness and we say that the system (Z) is ill-posed by the method or simply
the system (Z) is Cm ill-posed2

in Hk,l .

Now fix t ∈ [0, T ]. Hereafter we call flow mapping associated to the system (Z) the following
map

S t : Br −→ Hk(Rd)×H l(Rd)×H l−1(Rd) (1.3)

(ϕ,ψ,φ) 7→
(

u
(ϕ,ψ,φ)

(t) , n
(ϕ,ψ,φ)

(t) , ∂tn(ϕ,ψ,φ)
(t)

)
.

We are now ready to enunciate our results. Our first theorem shows that, in any dimension, the
regularity (k, l) = (0,−1/2) is the endpoint for achieving well-posedness by contraction method
(see Figure 1).

Theorem 1.2. Let d ∈ N. Assume that the system (Z) is locally well-posed in the time interval
[0,T ]. For any fixed t ∈ (0,T ], the flow mapping (1.3) fails to be C2 at the origin in Hk,l , provided
l <−1/2 or l > 2k−1/2 . According to [11] (see p. 387), the optimal relation between k and
l is l − k+ 1/2 = 0. Our next theorem shows that when |l − k+ 1/2| > 3/2 (i.e., l < k− 2 or
l > k+1) the system (Z) is C2 ill-posed (see Figure 2).

Theorem 1.3. Let d ∈ N. Assume that the system (Z) is locally well-posed in the time interval
[0,T ]. The solution mapping (1.2) fails to be C2 at the origin in Hk,l , provided l < k − 2 or
l > k+1.

1Precisely, u
(ϕ,ψ,φ)

, n
(ϕ,ψ,φ)

, ∂t n(ϕ,ψ,φ)
satisfy the integral equations (3.1), (3.2), (3.3) associated to the system (Z), for all

t ∈ [0,T ].
2Actually, Cm ill-posedness means that the solution mapping is not m-times Fréchet differentiable.

Trends Comput. Appl. Math., 24, N. 3 (2023)
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Remark 1. The sense of ill-posedness stated in Theorem 1.2 is slightly stronger than the sense
stated in Theorem 1.3. Indeed, if the flow mapping (1.3) is not C2, neither is, a fortiori, the
solution mapping (1.2). Thus, Theorem 1.2 slightly improves the ill-posedness results in [12]
and [2], for d = 1 and d = 2, respectively, both establishing that the solution mapping (1.2) is
not C2 for l <−1/2 or l > 2k−1/2 .

Remark 2. Theorem 1.3 establishes C2 ill-posedness for new indices (k, l) (see Figure 2). For
such indices, the difference of regularity between the initial data is large (i.e., l ≫ k or k ≫ l).
Such result seems natural, due to coupling of the system via nonlinearities. Indeed, for instance,
high regularity for u(t) is not expect when n(t) has low regularity, in view of (3.1). By the way,
the C2 ill-posedness for l < k−2 is obtained by dealing with (3.1).

Remark 3. In the periodic setting, Kishimoto proved in [14] the C2 ill-posedness3 of the
Zakharov system in Hk(Td)×H l(Td)×H l−1(Td) for d ≥ 2, provided l < max{0 , k − 2} or
l > min{2k− 1 , k+ 1}. These indices (k, l) are exactly the same of Theorems 1.2 and 1.3, ex-
cepting for admitting −1/2 ≤ l < 0. We point out that in [2] was proved, by means of contraction
method, that the system (Z) is locally well-posed for d = 2, k = 0 and l =−1/2.

This paper is organized as follows. In Section 2, we introduce some notations to be used through-
out the whole text. In Section 3, is presented a preliminary analysis which provides a methodical
approach to our proofs, exposing the main ideas. In Section 4, we prove Theorem 1.2 and in
Section 5, we prove Theorem 1.3.

2 NOTATIONS

• (∗.∗)R (or (∗.∗)L) denotes the right(or left)-hand side of an equality or inequality numbered
by (∗.∗).

• ∥(ϕ,ψ,φ)∥2
Hk,l = ∥ϕ∥2

Hk + ∥ψ∥2
H l + ∥φ∥2

H l−1 , where Hk,l = Hk(Rd ;C)× H l(Rd ;R)×
H l−1(Rd ;R).

• ⟨ξ ⟩=
√

1+ |ξ |2 , ξ ∈ Rd .

• χ
Ω

denotes the characteristic function of Ω ⊂ Rd .

• |Ω| denotes de Lebesgue measure of the set Ω, i.e., |Ω|=
∫

χ
Ω
(ξ )dξ .

• S (Rd) denotes the Schwartz space and S ′(Rd) denotes the space of tempered
distributions.

• f̂ and f̌ denote, respectively, the Fourier transform and the inverse Fourier transform of
f ∈ S ′(Rd).

3C2 ill-posedness in the slightly weaker sense (see Remark 1). However, for d = 2 and particular (k, l) is proved in [14]
ill-posedness in much stronger senses, namely norm inflation and non-existence of continuous solution mapping.

Trends Comput. Appl. Math., 24, N. 3 (2023)
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3 PRELIMINARY ANALYSIS

The integral equations associated to the system (Z) with initial data (u,v,∂tn)|t=0 = (ϕ,ψ,φ) are

u(t) = eit∆
ϕ − i

∫ t

0
ei(t−s)∆u(s)n(s)ds, (3.1)

n(t) = W (t)(ψ,φ) +
∫ t

0
W1(t − s)∆|u|2(s)ds, (3.2)

∂tn(t) = W (t)(φ ,∆ψ) +
∫ t

0
W0(t − s)∆|u|2(s)ds, (3.3)

where {eit∆}t∈R is the unitary group in Hs(Rd) associated to the linear Schrödinger equation,
given by eit∆ϕ := {e−it|·|2 ϕ̂(·)}ˇ and {W (t)}t∈R is the linear wave propagator W (t)(ψ,φ) :=
W0(t)ψ +W1(t)φ , where W0 and W1 are given by W0(t)ψ = cos

(
t
√
−∆

)
ψ := {cos(t| · |)ψ̂(·)}ˇ

and W1(t)φ =
sin(t

√
−∆)√

−∆
φ :=

{
sin(t|·|)

|·| φ̂(·)
}

.̌

Assume that the system (Z) is locally well-posed in Hk,l , in the time interval [0,T ]. Suppose
also that there exists t ∈ [0,T ] such that the flow mapping (1.3) is two times Fréchet differen-
tiable at the origin in Hk,l . Then, the second Fréchet derivative of S t at origin belongs to B, the
normed space of bounded bilinear applications from Hk,l ×Hk,l to Hk,l . In particular, we have
the following estimate for the second Gâteaux derivative of S t at origin∥∥∥∥∥ ∂S t

(0,0,0)

∂Φ0∂Φ1

∥∥∥∥∥
Hk,l

=
∥∥∥D2S t

(0,0,0)(Φ0,Φ1)
∥∥∥

Hk,l
≤

∥∥∥D2S t
(0,0,0)

∥∥∥
B
∥Φ0∥Hk,l ∥Φ1∥Hk,l (3.4)

for all Φ0,Φ1 ∈ Hk,l . Similarly, assuming solution mapping (1.2) two times Fréchet differen-
tiable at the origin, we have D2S(0,0,0) belonging to BC , the normed space of bounded bilinear
applications from Hk,l ×Hk,l to C ([0,T ];Hk,l). Then

sup
t∈[0,T ]

∥∥∥∥∥ ∂S t
(0,0,0)

∂Φ0∂Φ1

∥∥∥∥∥
Hk,l

≤
∥∥D2S(0,0,0)

∥∥
BC

∥Φ0∥Hk,l ∥Φ1∥Hk,l , ∀Φ0,Φ1 ∈ Hk,l . (3.5)

Thus, we can prove Theorem 1.2 by showing that estimate (3.4) is false for (k, l) in the region of
Figure 1. In the case of Theorem 1.3, the indices (k, l) in the region of Figure 2 impose additional
technical difficulties to get good lower bounds for (3.4)L. To overcome such difficulties, we made
use of a sequence tN → 0, in consequence, we merely prove that estimate (3.5) is false, obtaining
an ill-posedness result in a slightly weaker sense.

Since S t
(0,0,0) = (0,0,0), for each direction Φ = (ϕ,ψ,φ) ∈ S (Rd)×S (Rd)×S (Rd), the

first Gâteaux derivatives of (3.1)R, (3.2)R and (3.3)R at the origin are eit∆ϕ , W (t)(ψ,φ)

and W (t)(φ ,∆ψ), respectively. Further, from (3.4), we deduce the following estimates

Trends Comput. Appl. Math., 24, N. 3 (2023)
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for the second Gâteaux derivatives of u(t), n(t) and ∂tn(t) in the directions (Φ0,Φ1) =

((ϕ0,ψ0,φ0) , (ϕ1,ψ1,φ1)) ∈ (S (Rd)×S (Rd)×S (Rd))2∥∥∥∥∥ ∂ 2u
(0,0,0)

∂Φ0∂Φ1
(t)

∥∥∥∥∥
Hk

=

∥∥∥∥∫ t

0
ei(t−s)∆{eis∆

ϕ0W (s)(ψ1,φ1)+ eis∆
ϕ1W (s)(ψ0,φ0)}ds

∥∥∥∥
Hk

≲ ∥Φ0∥Hk,l ∥Φ1∥Hk,l , (3.6)

∥∥∥∥∥ ∂ 2n
(0,0,0)

∂Φ0∂Φ1
(t)

∥∥∥∥∥
Hl

=

∥∥∥∥∫ t

0
W1(t − s)∆{eis∆

ϕ0 eis∆ϕ1 + eis∆ϕ0 eis∆
ϕ1}ds

∥∥∥∥
Hl

≲ ∥Φ0∥Hk,l ∥Φ1∥Hk,l , (3.7)

∥∥∥∥∥∂ 2∂tn(0,0,0)
∂Φ0∂Φ1

(t)

∥∥∥∥∥
Hl−1

=

∥∥∥∥∫ t

0
W0(t − s)∆{eis∆

ϕ0 eis∆ϕ1 + eis∆ϕ0 eis∆
ϕ1}ds

∥∥∥∥
Hl−1

≲ ∥Φ0∥Hk,l ∥Φ1∥Hk,l . (3.8)

Hence, the proof of Theorem 1.2 boils down to getting sequences of directions Φ showing that
one of these last three estimates fails for the fixed t ∈ [0,T ]. For Theorem 1.3, such sequences
just need to show that one of (3.6)-(3.8) can not hold uniformly for t ∈ [0,T ].

We deal with (3.6) by choosing directions Φ0 = Φ1 = (ϕ,ψ,0) with ϕ,ψ ∈ S(Rd). Since in
S (Rd) the Fourier transform convert products in convolutions, from (3.6) we conclude the
following estimate∥∥∥∥⟨ξ ⟩k

∫ t

0
e−i(t−s)|ξ |2

∫
Rd

e−is|ξ1|2 ϕ̂(ξ1)cos(s|ξ −ξ1|)ψ̂(ξ −ξ1)dξ1ds
∥∥∥∥

L2
ξ

≲∥ϕ∥2
Hk
+∥ψ∥2

Hl
, (3.9)

for all ϕ,ψ ∈ S (Rd). Hereafter we will denote, as usual, ξ2 := ξ −ξ1, then

ξ1 + ξ2 = ξ . (3.10)

For bounded subsets A,B⊂Rd , by taking ϕ,ψ ∈S (Rd) such that4 ⟨·⟩k ϕ̂ ∼ χA and ⟨·⟩l ψ̂ ∼ χB ,
we conclude from (3.9) that∥∥∥∥∫ t

0

∫
Rd

⟨ξ ⟩k

⟨ξ1⟩k⟨ξ2⟩l cos(s|ξ |2−s|ξ1|2)cos(s|ξ2|)χA(ξ1)χB(ξ2)dξ1ds
∥∥∥∥

L2
ξ

≲ |A|+ |B| . (3.11)

We can rewrite (3.11)L as∥∥∥∥∫ t

0

∫
Rd

⟨ξ ⟩k

⟨ξ1⟩k⟨ξ2⟩l
1
2 [cos(σ+s)+ cos(σ−s)] χA(ξ1)χB(ξ2)dξ1ds

∥∥∥∥
L2

ξ

, (3.12)

4Precisely, χA ≤ ⟨·⟩k ϕ̂ with ∥ϕ∥Hk ≤ 2∥χA∥L2 and χB ≤ ⟨·⟩l ψ̂ with ∥ψ∥H l ≤ 2∥χB∥L2 .

Trends Comput. Appl. Math., 24, N. 3 (2023)
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where σ+ and σ+ are what we call the algebraic relations associated to (3.6), given by

σ± := |ξ |2 −|ξ1|2 ±|ξ2|. (3.13)

Finally, we have to choose sequences of sets {AN}N∈N and {BN}N∈N such that, for ξ1 ∈ AN and

ξ2 ∈ BN , yields increasing ⟨ξ ⟩k

⟨ξ1⟩k⟨ξ2⟩l , small σ+ and large σ−, when N → +∞. It allows us to get
good lower bounds for (3.12), since

cos(θ)> 1/2 , ∀θ ∈ (−1,1) and
∫ t

0
cos(ks)ds =

sin(kt)
k

, ∀k ̸= 0. (3.14)

Moreover, we will need a lower bound for ∥χ
AN
∗ χ

BN
∥L2 . For this purpose, the next elementary

result is very useful.

Lemma 3.1. ( [9]) Let A,B,R ⊂ Rd . If R−B = {x− y : x ∈ R and y ∈ B} ⊂ A then

|R|
1
2 |B| ≤ ∥χA ∗χB∥L2(Rd )

.

Remark 1. For the case l <−1/2 in Theorem 1.2, by a good choice of AN and BN , it is possible

to obtain a “high + high = high” interaction in (3.10) providing “high” ⟨ξ ⟩k

⟨ξ1⟩k⟨ξ2⟩l , “low” σ+

and “high” σ−, which yield good lower bounds for (3.12). But for the case k− l > 2 in Theorem
1.3, to obtain “high” ⟨ξ ⟩k

⟨ξ1⟩k⟨ξ2⟩l , the interaction must be of type “low + high = high”, implying
“high” σ+ and “high” σ−, which do not provide lower bound for (3.12). Then we choose a
sequence tN → 0, allowing us to obtain lower bounds directly from (3.11)L.

4 PROOF OF THEOREM ??

Assume that, for a fixed t ∈ (0,T ], the flow mapping (1.3) is C2 at the origin. Then, from (3.11),
(3.12) and (3.13), we get the following estimate for bounded subsets A,B ⊂ Rd

∥I+
A ,B

(ξ )∥
L2

ξ

− ∥I−
A ,B

(ξ )∥
L2

ξ

≲ |A|+ |B| , (4.1)

where
I±

A ,B
(ξ ) :=

∫ t

0

∫
Rd

⟨ξ ⟩k

⟨ξ1⟩k⟨ξ2⟩l cos(σ±s)χA(ξ1)χB(ξ2)dξ1ds. (4.2)

Note that, for ξ1 = (ξ 1
1 , · · · ,ξ d

1 ) ∈ Rd and ξ2 = (ξ 1
2 , · · · ,ξ d

2 ) ∈ Rd , we can rewrite (3.13) as

σ± =
d

∑
j=1

(
|ξ j

1 +ξ
j

2 |
2 −|ξ j

1 |
2
)
± |ξ2| = ξ

1
2 (2ξ

1
1 +ξ

1
2 ±1) ± (|ξ2|−ξ

1
2 ) +

d

∑
j=2

ξ
j

2 (2ξ
j

1 +ξ
j

2 ).

(4.3)

In order to obtain a lower bound for ∥I+
A ,B

∥
L2 and an upper bound ∥I−

A ,B
∥

L2 , we choose the sets
A,B ⊂ Rd taking (4.3) into account. So, for N ∈ N and 0 < δ < min{ 1

7t ,1}, we define5

5Evidently, if d = 1 then A and B are just intervals, the last sum in (4.3) does not exist and (4.6)R should be ignored.
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A = AN :=
[
−N , −N + δ

N

]
×
[
0 , δ

d−1

]d−1

and
B = BN :=

[
2N −1 , 2N −1+ δ

2N

]
×
[
0 , δ

2(d−1)

]d−1
.

Then, for (ξ1,ξ2) ∈ AN ×BN , we have

⟨ξ1⟩ ∼ ⟨ξ2⟩ ∼ ⟨ξ1 +ξ2⟩ ∼ N (4.4)

and since δ < 1 we also have ξ 1
2 ∈ [N , 2N] and (2ξ 1

1 +ξ 1
2 ) ∈ [−1 , −1+ 5δ

2N ]. Thus,

ξ
1
2 (2ξ

1
1 +ξ

1
2 +1) ∈ [0 , 5δ ] , ξ

1
2 (2ξ

1
1 +ξ

1
2 −1) ∈ [−4N , −N] , (4.5)

(|ξ2|−ξ
1
2 ) ∈

[
0 , δ

2

]
and

d

∑
j=2

ξ
j

2 (2ξ
j

1 +ξ
j

2 ) ∈
[
0 , 5δ 2

4(d−1)

]
. (4.6)

Therefore, combining (4.3), (4.5)L and (4.6) we obtain

σ+ ∈ [0 , 7δ ) (4.7)

and combining (4.3), (4.5)R and (4.6) we obtain

σ− ∈
(
−5N , − 1

2 N
)
. (4.8)

Since δ < 1
7t , from (4.7) and (3.14), we have cos(σ+s) > 1/2. Moreover, from (4.4), yields

<ξ>k

<ξ1>k<ξ2>l ∼ Nl . Hence, we conclude from (4.2) that

I+
A ,B

(ξ ) ≥ 1
2

∫ t

0

∫
Rd

⟨ξ ⟩k

⟨ξ1⟩k⟨ξ2⟩l χA(ξ1)χB(ξ2)dξ1ds ≳ tN−l
χA ∗χB(ξ ). (4.9)

Now, Lemma 3.1 allows us to get a lower bound for I+
A ,B

(ξ ). For this purpose, consider the set

R = RN :=
[
N −1+ δ

2N , N −1+ δ

N

]
×
[

δ

2(d−1) ,
δ

d−1

]d−1
.

Then we have R−B ⊂ A. Also, computing the Lebesgue measure of these cartesian products of
intervals, we have

|R| ∼ |A| ∼ |B| ∼ N−1. (4.10)

Using (4.9), Lemma 3.1 and (4.10) we obtain that

∥I+
A ,B

∥
L2 ≳ tN−l |R|

1
2 |B| ∼ tN−l− 3

2 . (4.11)

On the other hand, using (4.2), the Fubini’s theorem, (3.14)R, (4.4), (4.8), Young’s convolution
inequality and (4.10), we get that

∥I−
A ,B

∥
L2 =

∥∥∥∥∫Rd

⟨ξ ⟩k

⟨ξ1⟩k⟨ξ2⟩l
sin(σ−t)

σ−
χA(ξ1)χB(ξ2)dξ1

∥∥∥∥
L2

ξ

≲

∥∥∥∥ 1
Nl

1
N

χA ∗χB

∥∥∥∥
L2

≤ |A||B| 1
2

Nl+1 ∼ N−l− 5
2 . (4.12)
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Finally, combining (4.1), (4.11), (4.12) and (4.10) we conclude that

tN−l− 3
2 −N−l− 5

2 ≲ N−1, ∀N ∈ N.

Hence l ≥ −1/2 when the flow mapping (1.3) is C2 at the origin.

Now we will show that l ≤ 2k−1/2 dealing with (3.7). Similarly to the manner that we obtained
(3.9), using now Φ0 = (ϕ,0,0) and Φ1 = (υ ,0,0) in (3.7) with ϕ,υ ∈ S (Rd), we obtain∥∥∥∥∥⟨ξ ⟩l

∫ t

0

ei(t−s)|ξ |−e−i(t−s)|ξ |

2i|ξ | |ξ |2
∫
Rd

{
e−is|ξ1|2 ϕ̂(ξ1)eis|ξ2|2 υ̂(−ξ2)

+eis|ξ1|2 ϕ̂(−ξ1)e−is|ξ2|2 υ̂(ξ2)
}

dξ1ds
∥∥∥

L2
ξ

≲ ∥ϕ∥
Hk

∥υ∥
Hl
.

Similarly to (3.9) and (3.11), from the last estimate follows that, for bounded subsets A,B ⊂Rd ,
we have∥∥∥∥∥

∫ t

0

∫
⟨ξ ⟩l |ξ |

⟨ξ1⟩k⟨ξ2⟩k

(
ei(t−s)|ξ |−e−i(t−s)|ξ |

)(
e−is(|ξ1|2−|ξ2|2)χ

A
(ξ1)χ−B

(ξ2)

+eis(|ξ1|2−|ξ2|2)χ
−A
(ξ1)χB

(ξ2)
)
dξ1ds

∥∥∥∥∥
L2

ξ

≲ |A|
1
2 |B|

1
2 .

So, under the additional assumption that the sets (A+(−B)) and ((−A)+B) are disjoint6, the
last estimate can be used to obtain

∥J+
A,B
(ξ )∥

L2
ξ

− ∥J−
A,B
(ξ )∥

L2
ξ

≤

≤

∥∥∥∥∥
∫ t

0

∫
Rd

⟨ξ ⟩l |ξ |
⟨ξ1⟩k⟨ξ2⟩k

(
eit|ξ |−isζ+−e−it|ξ |−isζ−

)
χ

A
(ξ1)χ−B

(ξ2)dξ1ds

∥∥∥∥∥
L2

ξ

≲ |A|
1
2 |B|

1
2 , (4.13)

where ζ+ and ζ− are the algebraic relations associated to (3.7) given by

ζ± := |ξ1|2 −|ξ2|2 ±|ξ | = ξ
1(ξ 1

1 −ξ
1
2 ±1) ± (|ξ |−ξ

1) +
d

∑
j=2

ξ
j(ξ j

1 −ξ
j

2 ) (4.14)

and
J±

A,B
(ξ ) := |ξ |

∫ t

0

∫
Rd

⟨ξ ⟩l

⟨ξ1⟩k⟨ξ2⟩k e−isζ±χ
A
(ξ1)χ−B

(ξ2)dξ1ds.

6Since χ
X
(ξ1)χY

(ξ2) = χ
X+Y

(ξ = ξ1 +ξ2)χ
X
(ξ1)χY

(ξ2) and ∥ f χ
Z
+g χ

W
∥2

L2 = ∥ f χ
Z
∥2

L2 +∥g χ
W
∥2

L2 ≥ ∥ f χ
Z
∥2

L2 when
Z ∩W = /0.
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Now, in view of (4.14), we choose the sets A and B. So, for N ∈ N and 0 < δ < min{ 1
7t ,1}, we

define
A = AN :=

[
N , N + δ

N

]
×
[
0 , δ

d−1

]d−1

and
B = BN :=

[
−N −1 , −N −1+ δ

2N

]
×
[
− δ

2(d−1) , 0
]d−1

.

Then (A+(−B))∩ ((−A)+B) = /0 and ⟨ξ1⟩ ∼ ⟨ξ2⟩ ∼ ⟨ξ1 +ξ2⟩ ∼ N, for (ξ1,ξ2) ∈ AN ×BN .
Moreover, following the procedure used in (4.3)-(4.8), one can verify that ζ+ ∈ (−δ , 7δ ) and
ζ− ∈ (−7N , −N). Therefore, we have

|J+
A,B
(ξ )| ≳ tNl−2k+1

χA ∗χB(ξ ). (4.15)

Consider the set

R = RN :=
[
2N +1 , 2N +1+ δ

2N

]
×
[

δ

2(d−1) ,
δ

(d−1)

]d−1

and note that R− (−B) ⊂ A and |R| ∼ |A| ∼ |B| ∼ N−1. Then, using (4.15) and Lemma 3.1, we
obtain that

∥J+
A,B
∥

L2 ≳ tNl−2k+1|R|
1
2 |B| ∼ tNl−2k− 1

2 . (4.16)

On the other hand, similarly to (4.12), we get that

∥J−
A,B
∥

L2 =

∥∥∥∥|ξ |∫Rd

⟨ξ ⟩l

⟨ξ1⟩k⟨ξ2⟩k
(e−itζ−−1)

−iζ−
χ

A
(ξ1)χ−B

(ξ2)dξ1

∥∥∥∥
L2

ξ

≲ Nl−2k− 3
2 . (4.17)

Finally, combining (4.13), (4.16) and (4.17) we conclude that

tNl−2k− 1
2 −Nl−2k− 3

2 ≲ |A|
1
2 |B|

1
2 ∼ N−1, ∀N ∈ N.

Hence l ≤ 2k−1/2 when the flow mapping (1.3) is C2 at the origin. □

5 PROOF OF THEOREM ??

Assume that the solution mapping (1.2) is C2 at the origin. Employing the same procedure that
yields (3.11) from (3.4), one can conclude, from (3.5), the following estimate for bounded subsets
A,B ⊂ Rd

sup
t∈[0,T ]

∥∥∥∥∫ t

0

∫
Rd

⟨ξ ⟩k

⟨ξ1⟩k⟨ξ2⟩l cos(s|ξ |2−s|ξ1|2)cos(s|ξ2|)χA(ξ1)χB(ξ2)dξ1ds
∥∥∥∥

L2
ξ

≲ |A|+ |B| . (5.1)

For N ∈ N, defining N⃗ := (N,0, . . . ,0) ∈ Rd ,

AN := {ξ1 ∈ Rd : |ξ1|< 1/2}, BN := {ξ2 ∈ Rd : |ξ2 − N⃗|< 1/4},
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RN := {ξ ∈ Rd : |ξ − N⃗|< 1/4} and tN :=
1

4N2 · T
1+T

,

then RN −BN ⊂ AN , tN ∈ (0,T ) and, for (ξ1,ξ2) ∈ AN ×BN , we have

⟨ξ ⟩k

⟨ξ1⟩k⟨ξ2⟩l ∼ Nk−l and cos(s|ξ |2−s|ξ1|2)cos(s|ξ2|)> 1/4 , ∀s ∈ [0, tN ].

Thus, from Lemma 3.1 and (5.1) yields

tN |RN |
1
2 |BN |Nk−l ≲

∥∥∥∥Nk−l
χAN

∗ χBN
(ξ )

∫ tN

0
ds
∥∥∥∥

L2

≲ |AN |+ |BN |, ∀N ∈ N. (5.2)

Note that |AN | , |BN | and |RN | are independent of N. Hence l ≥ k−2 when the solution mapping
(1.2) is C2.

Now we will show that l ≤ k+ 1. From (3.5) follows that (3.8) holds uniformly for t ∈ [0,T ].
Let A,B ⊂ Rd symmetric sets. By using, in (3.8), Φ0 = (ϕ,0,0) and Φ1 = (υ ,0,0) such that
ϕ,υ ∈ S (Rd), ⟨·⟩k ϕ̂ ∼ χA and ⟨·⟩k υ̂ ∼ χB we conclude the following estimate for bounded
subsets A,B ⊂ Rd

sup
t∈[0,T ]

∥∥∥∥∥
∫ t

0
cos((t − s)|ξ |)|ξ |2

∫
Rd

⟨ξ ⟩l−1

⟨ξ1⟩k⟨ξ2⟩k cos(|ξ1|2s−|ξ2|2s)χ
A
(ξ1)χB

(ξ2)dξ1ds

∥∥∥∥∥
L2

ξ

≲ |A|
1
2 |B|

1
2 . (5.3)

For N ∈ N, define

AN := {ξ1 ∈ Rd : |ξ1 − N⃗|< 1/2} ∪ {ξ1 ∈ Rd : |ξ1 + N⃗|< 1/2},

BN := {ξ2 ∈ Rd : |ξ2|< 1/4},

RN := {ξ ∈ Rd : |ξ − N⃗|< 1/4} and tN :=
1

4N2 · T
1+T

.

Note that AN and BN are symmetric. Similarly to (5.1)-(5.2), from (5.3) we get the following
estimate

tN |RN |
1
2 |BN |Nl−k+1 ≲

∥∥∥∥Nl−1−k |ξ |2 χAN
∗ χBN

(ξ )
∫ tN

0
ds
∥∥∥∥

L2

≲ |AN |
1
2 |BN |

1
2 ,

for all N ∈ N. Note that |AN | , |BN | and |RN | are independent of N. Hence l ≤ k+ 1 when the
solution mapping (1.2) is C2. square
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