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ABSTRACT. The numerical solution to the Poisson Problem is widely known and studied in various
fields of science for its vast applications. However, most applications consider the case in two dimensions,
with fewer studies addressing the problem in dimension three or higher. Most literature texts present a two-
dimensional case implementation using an approach that makes it difficult to extend to higher dimensions.
Our work aims to propose a generalization of the numerical solution to the Poisson problem that can be
implemented for any dimension. The strategy used considers an index function that enumerates the mesh
points so that, using this index, the implementation is easily extended to any dimension. In addition to the
numerical solution extension, we developed the mathematical foundation for the consistency and stability
of the solution in arbitrary dimension. The preliminary results consider the implementation in Python and
experiments that demonstrate the feasibility of the proposed methodology.

Keywords: Poisson’s equation, Dirichlet boundary condition, numerical solution.

1 INTRODUCTION

It is a known fact that many models exist in the literature for the Poisson Problem in one and two
dimensions, both demonstrated with the necessary mathematical rigor and implemented in some
programming language. However, there is a smaller amount of work on mathematical modeling
for the three-dimensional case of the Poisson Problem. There is also a difficulty when trying
to expand the modeling to a new dimension, requiring a new implementation, with non-trivial
changes, for each desired dimension. In the present work, we note that the creation of an index
function to enumerate the mesh points corresponding to unknown values, not only facilitates the
implementation for the two-dimensional and three-dimensional case, but also creates a gener-
alization that facilitates the implementation in any dimension. This approach, using the index
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2 A DIMENSION-INDEPENDENT FDM FOR THE POISSON EQUATION

function, was not found in any other work during our literature review. This function plays a very
important role in the implementation because, by enumerating sampled elements of the domain,
it simplifies the construction of the coefficient matrix of the sparse linear system that arises in the
modeling of the solution. The index function allows this to be done systematically and efficiently
and, moreover, it can be rewritten very easily so that the path to access the elements is not unique
and depends on the enumeration one chooses, without this choice interfering with the solution.

In this work, therefore, we generalize the numerical solution to the Poisson problem using the
finite difference method in the n dimension, with n ≥ 1. Consider the second-order elliptical
problem, in the dimension n, given by

−∆u(x) = f (x), x ∈ Ω, (1.1)

with the Dirichlet boundary condition

u(x) = g(x) , x ∈ ∂Ω,

where Ω= (r1,s1)× . . .×(rn,sn), r j < s j, for j = 1, . . . ,n, ∂Ω is the boundary of Ω and ∆ denotes
the Laplacian operator, given by

∆u(x) =
n

∑
j=1

∂ 2u
∂x2

j
(x).

There are different approaches to solving these problems, depending on the geometry of the
domain. Some recent studies, including the one, two and three dimensional Poisson equation,
present numerical solutions using increasingly accurate and efficient methods [19], [18]. There
is a large amount of literature about the numerical solution of a Poisson equation, and a good
review of results on this important subject can be found in [4], [12], [8], [7], [17], [21], [22], [27].

In this paper, motivated by the two-dimensional case [6], [15] and [24], the finite difference
method is preferred due to the ease of implementation and computational efficiency for lin-
ear problems in rectangular regions of R2. In practice, problems may be nonlinear, have non-
rectangular domains, and be defined in Rn with n > 2. Therefore, extending the method to handle
these cases is of great importance for solving real-world problems.

In recent decades, numerous applications and extensions of the finite difference method for non-
linear Poisson-type differential equations have emerged. Owing to the nonlinear behavior of
the partial differentiable equation under consideration, the theoretical analysis has been proved
to be considerably difficult, especially for problems with irregular geometries and non-uniform
boundary conditions. To study the nonlinearity in complex solution domain, it is a long history
in resorting to numerical solutions. So far, different numerical techniques, including finite dif-
ference method [1], [5], [16], exponential finite difference method [20], quasilinear boundary
element method [14], hybrid fundamental solution-based finite element method [26], the method
of fundamental solution [2], [3], among others, have been developed to solve nonlinear Poisson-
type problems. More discussions on this topic, using other numerical techniques, can be found
in the literature [28], [9].

Trends Comput. Appl. Math., 26 (2025), e01704
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There are several studies in the literature in which the finite difference method is applied to solve
elliptic equations in the irregular domain [11], [13]. In principle, its application is restricted to a
domain with a boundary that has a relatively simple geometry [10], but for a domain with a more
general boundary, certain special steps must be taken, with an exploratory approach to overcome
this fact, as reported in the literature [23].

Although the finite difference formulation in Rn follows classical generalizations, our focus is
on an efficient computational abstraction via an index function that is rarely addressed explicitly
in the literature. In most cases, the solution goes through the construction of a system of linear
equations AU = B, where A is a sparse matrix in which the location of non-zero elements is not
trivial, especially as the dimension n of the domain increases. Once the problem is formulated
as a linear system, a wide range of existing numerical solvers and optimization techniques can
be employed to improve CPU efficiency, particularly given that the resulting system matrix is
highly sparse. This opens up opportunities for further performance improvements through the
use of specialized sparse matrix libraries and parallel computing techniques.

The main contributions of this paper are the generalization of the numerical solution of the Pois-
son equation, with Dirichlet boundary conditions, in the dimension n, for all n ≥ 1, and the
introduction of an index function I that facilitates the numerical modeling of the solution, and its
computational implementation, using the sparse system of linear equations AU = B that results
from the numerical problem studied, as seen in Section 2. The index function I, while enumer-
ating the unknown elements of the discrete sample of the domain, facilitates the determination
of the numerical solution of the Poisson Problem in any dimension of the Euclidean space and,
using it, it is possible to know, for example, in which line and in which column each non-null
element of the matrix A of the above system is located.

The rest of the article is organized as follows: In Section 2, we formulate the finite difference
method of 2n+1 points, with n ≥ 1, to obtain a numerical solution of the Poisson equation, with
Dirichlet boundary conditions. In Section 3, we demonstrate the convergence of the method. For
this, its consistency and stability is ensured. The computational implementation of the method
is discussed in Section 4. In Section 5, we present experimental results to validate the pro-
posed method in the solution of some elliptic problems and, finally, in Section 6, we present
the conclusions and future directions of the study.

2 THE FINITE DIFFERENCE METHOD IN DIMENSION N

First, consider u a real function of n real variables sufficiently differentiable, x = (x1, . . . ,xn) in
Rn and h j > 0, with j = 1, . . . ,n. Using Taylor’s formula, we get the central difference formula

∂ 2u
∂x2

j
(x) =

u(x+h je j)−2u(x)+u(x−h je j)

(h j)
2

−
(h j)

2

12
∂ 4u
∂x4

j
(x+(ρ j − x j)e j) ,

(2.1)

Trends Comput. Appl. Math., 26 (2025), e01704
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4 A DIMENSION-INDEPENDENT FDM FOR THE POISSON EQUATION

where ρ j ∈ (x j −h j,x j +h j) and e j = (0, ...,0,1,0, ...,0) is a vector of the canonical basis of Rn,
with the jth coordinate equal to one and the others null, for j = 1, . . . ,n.

To approximate second-order partial derivatives ∂ 2u
∂x2

j
, j = 1, . . . ,n , by finite differences, we cover

the region Ω∪ ∂Ω with a mesh. The points of this mesh are denoted by xi1,...,in = (xi1
1 , . . . ,x

in
n ),

where x
i j
j = r j + i j.h j, h j =

s j−r j
M j

with i j = 0,1, . . . ,M j and j = 1, . . . ,n.

We denote by Ωδ the set of mesh points that are interior to Ω and by ∂Ωδ the set of mesh points
that are on the border of Ω. Then, using the equations (1.1) and (2.1), we get the finite difference
method of 2n+1 points,

∆δUi1,...,in =− f (xi1,...,in) in Ωδ (2.2)

and
Ui1,...,in = g(xi1,...,in) on ∂Ωδ , (2.3)

where Ui1,...,in is the numerical solution and ∆δ is the discrete Laplacian operator given by

∆δUi1,...,in =
n

∑
j=1

Ui1,...,i j+1,...,in −2Ui1,...,in +Ui1,...,i j−1,...,in

(h j)
2 .

By substituting into the equation (2.2) each of the (M1 −1) · (M2 −1) · . . . · (Mn −1) points from
Ωδ and using the equation (2.3), we get the linear system AU = B, with (M1 −1) · (M2 −1) · . . . ·
(Mn −1) equations and the same number of unknowns, where U is the column vector given by

U =(U1,1,...,1, . . . ,UM1−1,1,...,1, . . . ,U1,M2−1,...,Mn−1, . . . ,

UM1−1,M2−1,...,Mn−1)
T ,

A =



a b1 bn

b1 a b1
. . . 0

. . . . . . . . . 0
. . .

bn
. . . . . . . . . bn

. . . 0
. . . . . . . . .

0
. . . b1 a b1

bn b1 a


and

B =(B1,1,...,1, . . . ,BM1−1,1,...,1, . . . ,B1,M2−1,...,Mn−1, . . . ,

BM1−1,M2−1,...,Mn−1)
T ,

where
B1,1,...,1 =− f (x1,1,...,1)− g(x0,1,...,1)

(h1)2 − g(x1,0,...,1)
(h2)2 − . . .− g(x1,1,...,0)

(hn)2 ,

BM1−1,1,...,1 =− f (xM1−1,1,...,1)− g(xM1 ,1,...,1)
(h1)2 − g(xM1−1,0,...,1)

(h2)2 − . . .− g(xM1−1,1,...,0)
(hn)2 ,

B1,M2−1,...,Mn−1 =− f (x1,M2−1,...,Mn−1)− g(x0,M2−1,...,Mn−1)
(h1)2 − . . .− g(x1,M2−1,...,Mn )

(hn)2

Trends Comput. Appl. Math., 26 (2025), e01704
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and
BM1−1,M2−1,...,Mn−1 =− f (xM1−1,M2−1,...,Mn−1)− g(xM1 ,M2−1,...,Mn−1)

(h1)2 − . . .

− g(xM1−1,M2−1,...,Mn )
(hn)2 .

The notation XT represents the transpose of the X matrix. The matrix A is a sparse matrix, with
non-zero elements at 2n+1 diagonals. The values a,b1, . . . , bn that appear on the diagonals are
the coefficients of the discretization of 2n+1 point, with n ≥ 1, and are given by

a =−2
n

∑
j=1

1

(h j)
2 and b j =

1

(h j)
2 ,

for j = 1, . . . ,n. Each number b j vanishes to zero in some positions of the matrix A. These
positions, which depend on the dimension of Euclidean space and the value of each M j, with j =
1, . . . ,n, obey a specific rule and will be seen in Section 4, where an index function enumerates
the unknowns of the problem and determines the position of each non-zero element in matrix A.

In the next Section, the convergence of the method will be verified.

3 METHOD CONVERGENCE

To show that the method is convergent, consistency and stability will be analyzed. Thus, for the
following definitions and results, given a discrete function V : Ωδ ∪ ∂Ωδ → R, consider the
operator ∆δV : Ωδ ∪∂Ωδ → R given by

∆δV (x) =
n

∑
j=1

V (x+h je j)−2V (x)+V (x−h je j)

(h j)2 ,

for all x ∈ Ωδ ∪∂Ωδ .

Definition 3.1. The local truncation error, denoted by τi1,...,in , is defined as

τi1,...,in = ∆δ u(xi1,...,in)+ f (xi1,...,in). (3.1)

The next lemma shows that the local truncation error decreases as we refine the mesh and gives
us the convergence rate of this error.

Lemma 3.1. If the solution u of the equation (1.1) is differentiable up to order four in Ω, with
limited fourth-order partial derivatives, then the local truncation error satisfies the inequality

|τi1,...,in | ≤C
n

∑
j=1

(h j)
2 ,

where C is a positive constant independent of h j, with j = 1, . . . ,n.

Trends Comput. Appl. Math., 26 (2025), e01704
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6 A DIMENSION-INDEPENDENT FDM FOR THE POISSON EQUATION

Proof. Applying 2n times the Taylor’s formula, we get the following developments around the
point xi1,...,in :

u(xi1,...,in +h je j) = u(xi1,...,in)+h j
∂u
∂x j

(xi1,...,in)

+
(h j)

2

2!
∂ 2u
∂x2

j
(xi1,...,in)+

(h j)
3

3!
∂ 3u
∂x3

j
(xi1,...,in)

+
(h j)

4

4!
∂ 4u
∂x4

j
(xi1,...,in +(ρ1

j − x
i j
j )e j)

and

u(xi1,...,in −h je j) = u(xi1,...,in)−h j
∂u
∂x j

(xi1,...,in)

+
(h j)

2

2!
∂ 2u
∂x2

j
(xi1,...,in)−

(h j)
3

3!
∂ 3u
∂x3

j
(xi1,...,in)

+
(h j)

4

4!
∂ 4u
∂x4

j
(xi1,...,in +(ρ2

j − x
i j
j )e j),

where ρ1
j ∈
(

x
i j
j ,x

i j
j +h j

)
and ρ2

j ∈
(

x
i j
j −h j,x

i j
j

)
, with j = 1, . . . ,n.

By replacing these expansions into (3.1), simplifying the similar terms and using the fact that
the function u satisfies the equation (1.1) at the point xi1,...,in , we get

τi1,...,in =
1
4!

n

∑
j=1

(h j)
2 ∂ 4u

∂x4
j
(xi1,...,in +(ρ1

j − x
i j
j )e j)

+
1
4!

n

∑
j=1

(h j)
2 ∂ 4u

∂x4
j
(xi1,...,in +(ρ2

j − x
i j
j )e j).

(3.2)

Since the fourth-order partial derivatives are limited, it follows from (3.2) that

|τi1,...,in | ≤C
n

∑
j=1

(h j)
2 ,

for some positive constant C, independent of h j, with j = 1, . . . ,n.

Thus, we conclude that the method is of second order. This completes the proof. □

Definition 3.2. The global error, denoted by ei1,...,in , is defined as

ei1,...,in = u(xi1,...,in)−Ui1,...,in , (3.3)

where Ui1,...,in denotes the numerical solution of the Poisson problem calculated at the point
xi1,...,in .

In the following theorem, we demonstrate that the numerical method is stable. For this, we use
the Discrete Maximum Principle [25].

Theorem 3.1. (Discrete Maximum Principle) Consider V : Ωδ ∪∂Ωδ →R a discrete function.

Trends Comput. Appl. Math., 26 (2025), e01704
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(i) If ∆δV (x)≥ 0, for all x ∈ Ωδ , then

max
x∈Ωδ

V (x)≤ max
x∈∂Ωδ

V (x).

(ii) If ∆δV (x)≤ 0, for all x ∈ Ωδ , then

min
x∈Ωδ

V (x)≥ min
x∈∂Ωδ

V (x).

Proof.

(i) Suppose the maximum of V does not occur on the boundary of Ωδ . This implies that there
is P0 ∈ Ωδ so that V (P0) = M0, with V (P)≤ M0, for all P ∈ Ωδ , and V (P)< M0, for any
P ∈ ∂Ωδ . Now consider the points given by

P1
j = P0 +h je j and P2

j = P0 −h je j,

where j = 1, . . . ,n. Hence,

∆δV (P0) =
n

∑
j=1

(h j)
−2[V (P1

j )+V (P2
j )]−2V (P0)

n

∑
j=1

(h j)
−2.

As ∆δV (P0)≥ 0, we conclude that

2V (P0)
n

∑
j=1

(h j)
−2 ≤

n

∑
j=1

(h j)
−2[V (P1

j )+V (P2
j )].

Consequently,

M0 ≤

(
n

∑
j=1

(h j)
−2

)−1 n

∑
j=1

(h j)
−2 V (P1

j )+V (P2
j )

2
. (3.4)

Since V (Q)≤ M0, for all Q ∈ Ωδ ∪∂Ωδ , we conclude that V (P1
j ) = M0 and V (P2

j ) = M0,
for all j = 1, . . . ,n. In fact, suppose V (P1

j )< M0 or V (P2
j ) < M0, for some j = 1, . . . ,n. It

follows from (3.4) that

M0 <

(
n

∑
j=1

(h j)
−2

)−1 n

∑
j=1

(h j)
−2 M0 +M0

2
= M0.

Which is absurd. Therefore, V (P1
j ) = M0 and V (P2

j ) = M0, for all j = 1, . . . ,n.

This argument is repeated for each of the interior points P1
j and P2

j instead of P0. By
repetition, each point of Ωδ ∪ ∂Ωδ appears as one of P1

j and P2
j , for some corresponding

P0.

Thus, we conclude that

V (P) = M0, for all P ∈ Ωδ ∪∂Ωδ .

But this contradicts the fact that V (P) < M0, for all P ∈ ∂Ωδ . Thus, the item (i) is
established.

Trends Comput. Appl. Math., 26 (2025), e01704
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8 A DIMENSION-INDEPENDENT FDM FOR THE POISSON EQUATION

(ii) Firstly, note that

max [−V (x)] =−min V (x) and ∆δ (−V ) =−∆δV .

Suppose ∆δV (x)≤ 0, for all x ∈ Ωδ . So,

∆δ (−V (x))≥ 0,

for all x ∈ Ωδ . By the item (i),

max
x∈Ωδ

[−V (x)]≤ max
x∈∂Ωδ

[−V (x)]

and consequently,
min
x∈Ωδ

V (x)≥ min
x∈∂Ωδ

V (x).

Which completes the proof. □

The next theorem gives us a bound for the solution of the equation (2.2).

Theorem 3.2. (A Priori estimate) Consider V : Ωδ ∪∂Ωδ → R a discrete function. Then,

max
x∈Ωδ

|V (x)| ≤ max
x∈∂Ωδ

|V (x)|+ r2
1 + s2

1
2

max
x∈Ωδ

|∆δV (x)|. (3.5)

Proof. Consider ψ : Ωδ ∪ ∂Ωδ → R a discrete function defined by ψ(x) = 1
2 x2

1, for all x =

(x1, . . . ,xn) ∈ Ωδ ∪∂Ωδ . Note that, for all x ∈ Ωδ ∪∂Ωδ ,

0 ≤ ψ(x)≤ r2
1 + s2

1
2

and ∆δ ψ(x) = 1.

Consider V+ : Ωδ ∪∂Ωδ → R and V− : Ωδ ∪∂Ωδ → R two discrete functions defined by

V+(x) =V (x)+N0ψ(x) and V−(x) =−V (x)+N0ψ(x),

where
N0 = max

x∈Ωδ

|∆δV (x)|.

So, for every x ∈ Ωδ , we have that ∆δV+(x) = ∆δV (x)+N0 ≥ 0 and ∆δV−(x) = −∆δV (x)+
N0 ≥ 0.

By applying the item (i) of the Theorem 3.1 to V+, we get

V (x)≤ max
x∈Ωδ

V+(x)≤ max
x∈∂Ωδ

[V (x)+N0ψ(x)]

≤ max
x∈∂Ωδ

V (x)+N0
r2

1 + s2
1

2

≤ max
x∈∂Ωδ

|V (x)|+ r2
1 + s2

1
2

max
x∈Ωδ

|∆δV (x)|,

(3.6)

Trends Comput. Appl. Math., 26 (2025), e01704
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for all x ∈ Ωδ .

Using the Theorem 3.1, item (i), again, we deduce that

−V (x)≤ max
x∈∂Ωδ

|V (x)|+ r2
1 + s2

1
2

max
x∈Ωδ

|∆δV (x)|, (3.7)

for all x ∈ Ωδ . As a consequence of (3.6) and (3.7), we get (3.5). □

Note 3.1. In the proof of Theorem 3.2, we can replace r2
1+s2

1
2 in (3.5) for

r2
j+s2

j
2 , with j = 2, . . . ,n,

as long as we use one of the discrete functions ψ j, defined by ψ j(x) =
x2

j
2 , for x = (x1, . . . ,xn), in

place of ψ .

Now, let’s get an estimate for the global error. Then, consider the discrete function ei1,...,in defined
in (3.3). By the Theorem 3.2 , we deduce that

|ei1,...,in | ≤ max
∂Ωδ

|ei1,...,in |+
r2

1 + s2
1

2
max
Ωδ

|∆δ ei1,...,in |.

Once we have, by the equation (2.3),

ei1,...,in = u(xi1,...,in)−g(xi1,...,in) = 0

over the boundary of Ωδ , we get

|ei1,...,in | ≤
r2

1 + s2
1

2
max
Ωδ

|∆δ ei1,...,in |. (3.8)

From (2.2) and (3.1), we conclude that

∆δ ei1,...,in = ∆δ u(xi1,...,in)−∆δUi1,...,in

= ∆δ u(xi1,...,in)+ f (xi1,...,in)

= τi1,...,in .

Using this, (3.8) and the Lemma 3.1, we have that

|ei1,...,in | ≤C
n

∑
j=1

(h j)
2 , (3.9)

for some positive constant C, independent of h j, with j = 1, . . . ,n.

Note 3.2. We conclude, from Lemma 3.1 and from (3.9), that the numerical method is convergent.

The next result establishes the uniqueness of the solution of the system AU = B and is a
consequence of the Discrete Maximum Principle.

Corollary 3.1. The resulting system of linear equations AU = B has a unique solution.

Trends Comput. Appl. Math., 26 (2025), e01704
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Proof. It is sufficient to show that the only solution of the homogeneous linear system AU = 0 is
the trivial solution. For this, consider the homogeneous problem{

−∆u = 0, in Ω,

u = 0, on ∂Ω.
(3.10)

The function u = 0 is the only solution to the above problem. Discretizing the problem (3.10),
we obtain a homogeneous linear system for the unknowns Ui1,...,in . Since Ui1,...,in is a solution of
the difference equation (2.2), with f = 0, we conclude that

∆δUi1,...,in = 0 in Ωδ and Ui1,...,in = 0 on ∂Ωδ .

By theorem 3.1, item (i), we have

max
Ωδ

Ui1,...,in ≤ max
∂Ωδ

Ui1,...,in = 0.

Applying again the Theorem 3.1, item (ii), we obtain

min
Ωδ

Ui1,...,in ≥ min
∂Ωδ

Ui1,...,in = 0.

Thus, Ui1,...,in = 0 in Ωδ . Therefore, U = 0 is the only solution for the linear system AU = 0 and
the proof of the corollary is complete. □

In the next section the numerical method, given by the equations (2.2) and (2.3), will be
implemented computationally.

4 COMPUTER IMPLEMENTATION

We consider the function u with domain [r1,s1]×·· ·× [rn,sn] ⊂ Rn and the discrete sample of
(M1 + 1) · (M2 + 1) · . . . · (Mn + 1) domain points. Along each axis x j, for j = 1, . . . ,n, uniform
sampling of points defines segments of length

dx j =
s j − r j

M j
.

Initially, we build a multidimensional matrix G with the dimension (M1+1) ·(M2+1) · . . . ·(Mn+

1), whose elements must be images from the function u, known on the domain boundary, that is,

G[i1, i2, . . . , in] = u(r1 + i1dx1,r2 + i2dx2, . . . ,rn + indxn).

Note that only the values of u on the domain boundary are known, that is, we know G[i1, i2, . . . , in]
only when i j = 0 or i j = M j, for some j ∈ {1,2, . . . ,n}. Within the domain, when 0 < i j < M j

for all j, the values G[i1, i2, . . . , in] are unknown.

Trends Comput. Appl. Math., 26 (2025), e01704
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The next step is the construction of a multidimensional matrix F with dimension (M1+1) ·(M2+

1) · . . . · (Mn +1), whose elements must be values of the Laplacian ∆u, that is,

F [i1, i2, . . . , in] = ∆u(r1 + i1dx1,r2 + i2dx2, . . . ,rn + indxn).

In this case, only the values of ∆u in the domain interior are known, that is, we know
F [i1, i2, . . . , in] only when 0 < i j < M j, for all j ∈ {1,2, . . . ,n}.

Finally, each known element of matrix F is related to unknown elements of matrix G by the
equation,

F [i1, ..., in] =
n

∑
j=1

{
b jG[i1, ..., i j −1, ..., in]+b jG[i1, ..., i j +1, ..., in]

}
+aG[i1, i2, ..., in],

(4.1)

where a =−2
n

∑
j=1

1
dx2

j
and b j =

1
dx2

j
, for j = 1, ...,n.

The same equation (4.1) can be rewritten considering all the elements of the matrix G, in order
to obtain an equation with (M1 −1)...(Mn −1) unknowns, given by

F [i1, ..., in] =
M1−1

∑
l1=1

...
Mn−1

∑
ln=1

α(l1, ..., ln)G[l1, ..., ln], (4.2)

with i j = 1, . . . ,M j − 1 and j = 1, . . . ,n, where the coefficients α(l1, ..., ln) are null, except for
the following cases: 

α(i1, i2, ..., in) = a;

α(i1, ..., i j −1, ..., in) = b j;

α(i1, ..., i j +1, ..., in) = b j.

(4.3)

To construct a system of linear equations, the unknowns G[i1, i2, . . . , in] are enumerated by an
index function

I : {1, . . . ,M1 −1}×{1, . . . ,M2 −1}× ...×{1, . . . ,Mn −1}→ N

defined by

I(i1, . . . , in) =(i1 −1)+(M1 −1)(i2 −1)+(M1 −1)(M2 −1)(i3 −1)+ . . .

+(M1 −1)(M2 −1) . . .(Mn−1 −1)(in −1).
(4.4)

Thus, we have (M1−1) . . .(Mn−1) equations, with the same number of unknowns, determining
a linear system AU = B, whose solution vector U provides the searched unknowns, that is,

G[i1, i2, ..., in] =U [I(i1, i2, ..., in)]. (4.5)
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The matrix A is a sparse matrix with null elements, except for:
A[I(i1, i2, ..., in), I(i1, i2, ..., in)] = a;

A[I(i1, i2, ..., in), I(i1, ..., i j −1, ..., in)] = b j if i j > 1 and

A[I(i1, i2, ..., in), I(i1, ..., i j +1, ..., in)] = b j if i j < M j −1,

for j = 1, ...,n.

(4.6)

Note that the index I(i1, . . . , in) indicates that the coefficient α(i1, i2, ..., in) = a of the equation
(4.2) associated with the unknown G[i1, . . . , in] will appear in the line I(i1, . . . , in) and column
I(i1, . . . , in) of the matrix A. The indices I(i1, . . . , i j −1, . . . , in) and I(i1, . . . , i j +1, . . . , in) indicate
that the coefficients α(i1, . . . , i j−1, . . . , in)= b j and α(i1, . . . , i j+1, . . . , in)= b j, j = 1, . . . ,n, will
appear in the line I(i1, . . . , in) and columns I(i1, . . . , i j−1, . . . , in) and I(i1, . . . , i j+1, . . . , in) of the
matrix A, respectively. In the other positions of the line I(i1, . . . , in) the coefficients α(l1, ..., ln)
of the equation (4.2) are all null. Figure 1 illustrates the final position of each element in matrix
A, for the case n = 3.

Now, notice that the vector B, which has (M1 − 1) . . .(Mn − 1) independent terms, is not given
just by values of the Laplacian F [i1, i2, . . . , in], but known boundary values G[i1, i2, . . . , in], for
i j = 0 or i j = M j , are incorporated into the independent terms as follows:

B[I(i1, i2, . . . , in)] = F [i1, i2, . . . , in]

−
n

∑
j=1

s jG[i1, . . . , i j −1, . . . , in]

−
n

∑
j=1

t jG[i1, . . . , i j +1, . . . , in],

where the coefficients s j and t j, for j = 1, . . . ,n, are all null, except in the cases:{
s j = b j if i j = 1;

t j = b j if i j = M j −1.

Using the implementation details above, below is a code example, in Python, for solving the
following Problem in R3: {

∆u = 12x2 +12y2 +12z2, in Ω,

u = x4 + y4 + z4, on ∂Ω,

where Ω = (−1,1)× (−1,1)× (−1,1).

Trends Comput. Appl. Math., 26 (2025), e01704
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import numpy as np

from scipy.sparse import lil_matrix

from scipy.sparse.linalg import spsolve

M1=M2=M3= 50

r1=r2=r3= -1

s1=s2=s3= 1

dx1=(s1-r1)/M1

dx2=(s2-r2)/M2

dx3=(s3-r3)/M3

a=-2/(dx1 **2) -2/( dx2 **2) -2/( dx3 **2)

b1 = 1/(dx1 **2)

b2 = 1/(dx2 **2)

b3 = 1/(dx3 **2)

S = (M1 -1)*(M2 -1)*(M3 -1) # number of elements interior to domain

A = lil_matrix ((S,S),dtype=’float32 ’) # Coefficient matrix

B = np.zeros ((S, 1)) # Vector of independent values

G = np.zeros ((M1+1,M2+1,M3+1))

F = np.zeros ((M1+1,M2+1,M3+1))

def u(x,y,z):

return x**4+y**4+z**4

def f(x,y,z):

return 12*x**2+12*y**2+12*z**2

def I(i1,i2,i3):

return (M1 -1)*(M2 -1)*(i3 -1) + (M1 -1)*(i2 -1) + (i1 -1)

for i1 in range(0,M1+1):

for i2 in range(0, M2+1):

for i3 in range(0, M3+1):

if i1==0 or i2==0 or i3==0 or i1==M1 or i2==M2 or i3==M3:

G[i1,i2 ,i3]=u(s1+i1*dx1 ,s2+i2*dx2 ,s3+i3*dx3)

else:

F[i1,i2 ,i3]=f(s1+i1*dx1 ,s2+i2*dx2 ,s3+i3*dx3)

for i1 in range(1,M1):

for i2 in range(1, M2):

for i3 in range(1, M3):

A[I(i1,i2,i3),I(i1,i2 ,i3)]=a

if i1 >1: A[I(i1 ,i2,i3),I(i1 -1,i2,i3)]=b1

if i2 >1: A[I(i1 ,i2,i3),I(i1,i2 -1,i3)]=b2

if i3 >1: A[I(i1 ,i2,i3),I(i1,i2,i3 -1)]=b3

if i1 <(M1 -1): A[I(i1,i2,i3),I(i1+1,i2,i3)]=b1

if i2 <(M2 -1): A[I(i1,i2,i3),I(i1 ,i2+1,i3)]=b2

if i3 <(M3 -1): A[I(i1,i2,i3),I(i1 ,i2,i3+1)]=b3

B[I(i1,i2,i3)]= F[i1][i2][i3]

if i1==1: B[I(i1,i2 ,i3)]=B[I(i1,i2 ,i3)]-b1*G[i1 -1][i2][i3]

if i2==1: B[I(i1,i2 ,i3)]=B[I(i1,i2 ,i3)]-b2*G[i1][i2 -1][i3]

if i3==1: B[I(i1,i2 ,i3)]=B[I(i1,i2 ,i3)]-b3*G[i1][i2][i3 -1]

if i1==(M1 -1): B[I(i1,i2,i3)]=B[I(i1 ,i2,i3)]-b1*G[i1+1][i2][i3]

Trends Comput. Appl. Math., 26 (2025), e01704
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if i2==(M2 -1): B[I(i1,i2,i3)]=B[I(i1 ,i2,i3)]-b2*G[i1][i2+1][i3]

if i3==(M3 -1): B[I(i1,i2,i3)]=B[I(i1 ,i2,i3)]-b3*G[i1][i2][i3+1]

U = spsolve(A,B) # Find solution vector

for i1 in range(1,M1): # Construct solution for interior points

for i2 in range(1, M2):

for i3 in range(1, M3):

G[i1][i2][i3]=U[I(i1,i2,i3)]

5 EXPERIMENTS

In this section, we present numerical experiments to evaluate the effectiveness of the proposed
method. To illustrate the implementation and computational performance, we consider a set of
test cases. In each case, the integration domain is a rectangular block discretized using a uniform
mesh. The tables below display the average error, (e), calculated according to the following
formula:

e =

M1
∑

i1=0

M2
∑

i2=0
· · ·

Mn
∑

in=0
|G(i1, . . . , in)−u(r1 + i1dx1, . . . ,rn + indxn)|

(M1 +1) .(M2 +1) . . .(Mn +1)
, (5.1)

where G is the approximate solution by the method and u is the exact solution.

We also show the evolution of the error in the numerical solution, for each problem, as the reso-
lution of the considered mesh increases. The solution for the linear system AU = B was obtained
using spsolve package for sparse matrix in Python. The numerical solution for the examples 1
and 2, considered next, is obtained using the procedure in the section 4.

Example 1. Consider the following problem in R2
∆u =−sin(x)− sin(y), in Ω,

u = sin(x)+ sin(y), on ∂Ω,

where Ω = (−π,π) × (−π,π). The exact solution to this problem is given by
u(x,y) = sin(x)+ sin(y).

In Table 1 we present values of the average error, given by the formula (5.1), for some resolutions
M ×M of the mesh, with M = 4,8,16,32,64,128,256,512,1024. In this table one can observe
the convergence of the error. The curve fitting for this data indicates that the convergence is
approximately of order O(1.978), which is close to quadratic, as expected.
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Table 1: Error in the solution of the problem Example 1, for some resolutions.

Resolution Error (e)
4x4 9.1810e-02
8x8 2.6437e-02

16x16 6.8522e-03
32x32 1.7279e-03
64x64 4.3293e-04

128x128 1.0829e-04
256x256 2.7080e-05
512x512 6.7730e-06

1024x1024 1.6960e-06

Example 2. Consider the following problem in R3
∆u = 12x2 +12y2 +12z2, in Ω,

u = x4 + y4 + z4, on ∂Ω,

where Ω = (−1,1)× (−1,1)× (−1,1).

In this case, with the domain in R3, the resolution M×M×M leads to the sampling of M3 points
from the domain. Due to the limitation of memory allocation capacity, we only considered up
to resolution 50× 50× 50, but it is already possible to notice the convergence (Table 2). For
this data, the convergence order is approximately O(1.915), which is also close to quadratic, as
expected. Note that in this case the matrix A, from the system AU = B, has 493 = 117,649 rows
and columns.

Table 2: Error in the solution of the problem Example 2, for some resolutions.

Resolution Error (e)
5 x 5 x 5 6.1741e-02

10 x 10 x 10 1.8259e-02
15 x 15 x 15 8.3816e-03
20 x 20 x 20 4.7689e-03
30 x 30 x 30 2.1370e-03
40 x 40 x 40 1.2055e-03
50 x 50 x 50 7.7261e-04

Figure 1 illustrates the matrix A of the system AU = B for the mesh with resolution 5× 5× 5.
In this case A has 43 = 64 rows and columns. The diagonals corresponding to the coefficients
a,b1,b2,b3 are indicated in the figure, as automatically defined in Equation 4.6.
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Figure 1: Illustration of the coefficient matrix of the system AU = B with indication of the diag-
onals corresponding to the coefficients a,b1,b2,b3.

Numerical experiments confirm the consistency and stability of the method, ie, the convergence
of the numerical solution to the exact solution of the problem while the mesh is refined as demon-
strated in the section 3. The code in Python presented in the section 4 uses the index function to
solve the problem of Example 2, in the dimension n = 3, and can be modified to consider larger
dimensions, as detailed in the same Section.

6 CONCLUSIONS

This article presents the numerical solution for the n-dimensional Poisson problem, for all n ≥ 1.
We propose a new approach based on an index function that plays a central role in obtaining the
numerical solution, as it facilitates generalization and supports computational implementation
in any dimension. The index function simplifies the construction of both the coefficient matrix
and the right-hand side vector of the sparse linear system that arises in the modeling process.
Moreover, this function can be easily adapted, since the access path to array elements is not
unique and depends on the chosen enumeration, without affecting the final solution. This concept
can be extended to obtain numerical solutions for other elliptic problems.

As future work, we intend to investigate how the use of the index function can be adapted and
extended to more complex scenarios, including problems with irregular boundaries and nonlinear
Poisson-type equations.
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