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ABSTRACT. In this work, inspired by Ramanujan’s fifth order Mock Theta function f1(q), we define a
collection of functions and look at them as generating functions for partitions of some integer n containing
at least m parts equal to each one of the numbers from 1 to its greatest part s, with no gaps. We set a two-line
matrix representation for these partitions for any m ≥ 2 and collect the values of the sum of the entries in
the second line of those matrices. These sums contain information about some parts of the partitions, which
lead us to closed formulas for the number of partitions generated by our functions, and partition identities
involving other simpler and well known partition functions.

Keywords: integer partition, mock theta function, matrix representation, partition identity.

1 INTRODUCTION

Mock Theta functions were introduced by Ramanujan shortly before his early death in a letter
sent to Hardy, in 1920. At that time, what Ramanujan meant for a mock theta function was
not very clear [8]. However, nowadays these functions have been largely explored and many
applications, as for example in modular forms, have appeared [14, 18, 19, 20]. Great historical
backgrounds concerning Ramanujan’s life and work and its range along time can be found in
[2, 3, 4, 5, 6], to name a few classical references (a nice and easy reading is [16] by Ono).

Besides modular forms, mock theta functions have an interesting interpretation when seen as
generating functions for integer partitions, defined as follows.

Definition 1.1. Given n ∈ Z+, a partition of n is a list λ = (λ1,λ2, . . . ,λs), with λt ≥ λt+1 for all
1 ≤ t ≤ s−1, such that ∑

s
t=1 λt = n. Also, each λt is called a part of the partition.

Remark 1.2. A partition of n as described above may also be called an unrestricted partition of
n (or a regular partition of n) since there’s no restriction to the number or size of its parts λt .

Remark 1.3. Although the usual notation for a partition of an integer n is the one given in
Definition 1.1, in our demonstrations along this work the order of the parts will not be necessarily
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preserved for purposes of simplification. Also, we write λ = (λ1,λ2, . . . ,λs) and ∑
s
t=1 λt = n both

with the same meaning.

Definition 1.4. Let P(n) denote the set of partitions of an integer n. We write p(n) to denote the
number of elements of P(n), that is, the number of partitions of n. Then |P(n)|= p(n) and p(n)
is called the partition function. Whenever the parts of the partitions we are interested in have a
restriction, it is usual to write p(n,“restriction”).

The partition function p(n) has the well known generating function
∞

∑
n=0

p(n)qn =
∞

∏
n=1

1
1−qn .

However, the values of p(n) can also be seen as coefficients of Ramanujan’s third order mock
theta function

f (q) := 1+
∞

∑
n=1

qn2

(1+q)2(1+q2)2 · · ·(1+qn)2 .

The coefficients of f (q) are related to Dyson’s rank of a partition, defined in [15], which
motivated a conjecture by Andrews [1] on the values of these coefficients.

Proved in 2006 by Bringmann and Ono [12], Andrews’ conjecture turned out to be true. Not only
the coefficients of mock theta function f (q) were determined, but also a new formula for p(n)
became known. Latterly the formula for p(n) was greatly improved by Bruinier and Ono [13],
showing it can be written as a finite sum of algebraic numbers.

In a work of 2013 [11], Brietzke et al. presented a combinatorial interpretation as two-line ma-
trices for many mock theta functions, and consequently for many different types of integer par-
titions (see Table in [11], page 240). A few years before, Santos et al. in [17] gave three distinct
matrix representations for unrestricted partitions, one of them completely describing the conju-
gate partition. The bijective proofs between the set of partitions and the set of two-line matrices
can be found in [17] and [10].

Motivated by these ideas, the present work is inspired by a matrix representation for the mock

theta function f1(q) = ∑
∞
n=0

qn2+n

(−q;q)n
, described in [11], page 241. This function counts partitions

and considers weights −1 and +1 for each one of them. Here we consider what we have called
the unsigned version of f1(q), that is, function

f ∗1 (q) =
∞

∑
n=0

qn2+n

(q;q)n
,

which only eliminates the different weights from f1(q) by removing the negative sign from
(−q;q)n.1

1Expressions (q;q)n and (−q;q)n come from the usual notation given by

(a;q)n := (1−a)(1−aq)(1−aq2) · · ·(1−aqn−1) =
n−1

∏
k=0

(1−aqk)

Trends Comput. Appl. Math., 24, N. 4 (2023)
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We enunciate the matrix representation for f ∗1 (q) as the following theorem.

Theorem 1.5. The coefficient of qn in the expansion of f ∗1 (q) is equal to the number of elements
in the set of matrices of the form

A =

(
c1 c2 · · · cs

d1 d2 · · · ds

)
, (1.1)

with non-negative integer entries satisfying cs = 2, ct = 2+ ct+1 +dt+1, ∀t < s, and n = ∑ct +

∑dt .

When seen as generating function for integer partitions, f ∗1 (q) counts the partitions of n contain-
ing all parts from 1 to some s, with no gaps, and multiplicity at least two. This means that the
number of partitions of n counted by f ∗1 (q) equals the number of matrices of type (1.1) described
in Theorem 1.5.

Partition identities and closed formulas concerning f ∗1 (q) and some other functions can be found
in [9].

Now we define a collection of functions inspired by the definition of f ∗1 (q). We call these
functions f m

∗ (q), with fixed m ≥ 2, and write them as

f m
∗ (q) =

∞

∑
n=0

q
m(n2+n)

2

(q;q)n
. (1.2)

For a fixed m ≥ 2, the general term

qm(1+2+3+···+s)

(1−q)(1−q2) · · ·(1−qs)

generates the partitions for some integer containing at least m parts equal to each one of the
numbers 1,2,3, . . . ,s, with no gaps. By conjugation, this general term also generates the partitions
for some integer into exactly s parts, with smallest part λs ≥ m and with difference between
consecutive parts λt −λt+1 ≥ m, for any t < s.

Remark 1.6. Function f m
∗ (q) with m = 2 is the same as function f ∗1 (q). In the present work

we deal with general aspects of function f m
∗ (q), for any m ≥ 2. For more specific details about

f 2
∗ (q) = f ∗1 (q) see [9].

In the following pages we present the matrix representation for integer partitions counted
by f m

∗ (q) and a collection of results derived from this representation, concerning the integer
partitions given by the generating functions f m

∗ (q).

Trends Comput. Appl. Math., 24, N. 4 (2023)
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2 THE FAMILY (fm
∗ (q))m≥1

Let us consider a partition of n counted by the function f m
∗ (q) = ∑

∞
n=0

q
m(n2+n)

2

(q;q)n
, for some fixed

m ≥ 2. Recall that such a partition has each part from 1 to s with no gaps and multiplicity at least
m. So, n can be written as

n = (m+ds) · s+(m+ds−1) · (s−1)+ · · ·+(m+d2) ·2+(m+d1) ·1,

with dt a non negative integer for all 1 ≤ t ≤ s.

By rearranging these numbers, we may have n as the sum of the entries of the matrix

A =

(
s ·m+d2 +d3 + · · ·+ds (s−1) ·m+d3 + · · ·+ds · · · 2m+ds m

d1 d2 · · · ds−1 ds

)
, (2.1)

with dt a non negative integer for all 1 ≤ t ≤ s, which allows us to state the following theorem.

Theorem 2.1. The coefficient of qn in the expansion of f m
∗ (q) = ∑

∞
n=0

q
m(n2+n)

2

(q;q)n
equals the number

of elements in the set of matrices of the form

A =

(
c1 c2 · · · cs

d1 d2 · · · ds

)
, (2.2)

with non-negative integer entries, satisfying cs = m, ct = m+ct+1 +dt+1, ∀t < s, and n = ∑ct +

∑dt .

Given any partition generated by function f m
∗ (q), the second row of its associated matrix informs

us how many parts, besides the m copies of each part from 1 to s, the partition has. This then
motivates the following definition.

Definition 2.2. Let Pm[s]
[s] (n,k) be the set of partitions of n into parts ranging from 1 to s, with no

gaps and multiplicity m, and k other parts from 1 to s. Also, let pm[s]
[s] (n,k) denote the cardinality

of Pm[s]
[s] (n,k).

Remark 2.3. We use the notation [s] := {n ∈ N | 1 ≤ n ≤ s} = {1,2,3, . . . ,s− 1,s} referring to
the range of parts of a partition counted by f m

∗ (q). This notation appears again in Section 5.

Motivated by Definition 2.2, given a fixed m, for each n we classify its partitions according to the
sum of the entries in the second row of the associated matrix. For different values of m, we count
the appearance of each number in these sums and organize the data on tables.

In any of those tables the entry in line n and column n−k is the number of times k appears as sum
of the entries of the second row in type (2.2) matrices. That is, how many partitions of n have k
extra parts, besides the m copies of each integer from 1 to s. Excerpts of the tables obtained for
m = 4 and 5 are presented below as examples (Tables 1 and 2).

Trends Comput. Appl. Math., 24, N. 4 (2023)
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Tables 1 and 2 and other ones that can be obtained for other values of m, which we omit from
this text, have interesting values of pm[s]

[s] (n,k), for different k. In order to refer to these values in
a simpler way, we adopt the following definition.

Definition 2.4. Given m ≥ 2 and k ≥ 0 we call the sequence of pm[s]
[s] (n,k) for n ≥ 0 the kth

diagonal of the associated table, built according to the description above.

Trends Comput. Appl. Math., 24, N. 4 (2023)
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0

0
0

0
0

28
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
0

0
0

0
0

0
0

29
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

0
0

0
0

0
0

0
30

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
1

1
1

1
1

1
1

1
0

0
0

0
0

0
0

1
31

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
1

1
1

1
1

1
1

1
1

0
0

0
0

0
0

1
0

32
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

1
0

0
0

0
0

0
1

1
0

33
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

1
1

0
0

0
0

0
1

1
1

0
34

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
1

1
1

1
1

1
1

1
1

1
0

0
0

0
0

1
1

2
0

0
35

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
1

1
1

1
1

1
1

1
1

1
1

0
0

0
0

1
1

2
1

0
0

36
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
0

0
0

0
1

1
2

2
1

0
0

37
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
1

0
0

0
1

1
2

2
2

0
0

0
38

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
1

1
1

1
1

1
1

1
1

1
1

1
0

0
0

1
1

2
2

3
1

0
0

0
39

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
1

1
1

1
1

1
1

1
1

1
1

1
1

0
0

1
1

2
2

3
2

1
0

0
0

40
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
1

1
0

0
1

1
2

2
3

3
2

0
0

0
0

41
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0
1

1
2

2
3

3
3

1
0

0
0

0
42

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

1
1

2
2

3
3

4
2

1
0

0
0

0
43

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

2
2

3
3

4
3

2
0

0
0

0
0

44
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
2

2
3

3
4

4
3

1
0

0
0

0
0

45
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
2

1
2

2
3

3
4

4
4

2
1

0
0

0
0

0
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Remark 2.5.

(i) Note that the kth diagonal makes sense only for n ≥ k. So, from now on we omit pm[s]
[s] (0,k)

for any k ≥ 1 and assume pm[s]
[s] (n,k) = 0 for 1 ≤ n < k (pm[s]

[s] (0,0) = 1, by definition).

(ii) Moreover, the results for any kth diagonal are valid for functions f m
∗ (q) whenever m ≥ k.

Some facts about the zero and the first diagonals are easily observed and set below.

Definition 2.6. We define Tj :=
j( j+1)

2
, the jth triangular number for j a positive integer.

Proposition 2.7. Given m ≥ 2, we have

(i) pm[s]
[s] (n,0) =

{
1, if n = m ·Tj, for some j ≥ 0;

0, otherwise
and

(ii) pm[s]
[s] (n,1) =

{
1, if n = m ·Tj + i, for some j ≥ 1 and 1 ≤ i ≤ j;

0, otherwise.

Proof.

(i) Observe that any triangular number Tj =
j( j+1)

2
can also be written as Tj =

1 + 2 + 3 + · · · + j. Therefore, n = m · Tj = m(1 + 2 + 3 + · · · + j) and λ =

(1,1, . . . ,1︸ ︷︷ ︸
m

,2,2, . . . ,2︸ ︷︷ ︸
m

,3,3, . . . ,3︸ ︷︷ ︸
m

, . . . , j, j, . . . , j︸ ︷︷ ︸
m

) is precisely the only partition of n = m ·Tj

with parts ranging from 1 to some s, with no gaps and multiplicity exactly m. Therefore,
pm[s]
[s] (n,0) = 1 if n = m ·Tj for any j ≥ 0.

Any other n satisfying m ·Tj < n < m ·Tj+1 is such that n = m(1+2+3+ · · ·+ j)+k, with
k < m · ( j+1). Then, in order for a partition of n to have m parts ranging from 1 to some s
with no gaps, it has to have also some other part in [s]. Therefore, pm[s]

[s] (n,0) = 0 if n is not
m times a triangular number.

(ii) If n = m · Tj + i = m(1 + 2 + 3 + · · · + j) + i, note that λ =

(1,1, . . . ,1︸ ︷︷ ︸
m

,2,2, . . . ,2︸ ︷︷ ︸
m

,3,3, . . . ,3︸ ︷︷ ︸
m

, . . . , j, j, . . . , j︸ ︷︷ ︸
m

, i) is precisely the only partition of

n = m ·Tj + i with parts ranging from 1 to some s, with no gaps and multiplicity m and
only one extra part i of size 1 ≤ i ≤ j.

Although i could be itself partitioned into more than one part, that would not be a partition
counted by pm[s]

[s] (n,1). Neither would it be if j < i < m · ( j+ 1). Therefore, this leads to

pm[s]
[s] (n,1) = 0 if n ̸= m ·Tj + i for any triangular number Tj and 1 ≤ i ≤ j, and equality (ii)

holds.

□

Trends Comput. Appl. Math., 24, N. 4 (2023)
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In fact, Proposition 2.7 gives us a complete characterization of the zero and the first diagonals of

f m
∗ (q) = ∑

∞
n=0

q
m(n2+n)

2

(q;q)n
table, for any value of m.

Similar results were obtained in order to characterize other diagonals of the tables. In the next
sections we show the sequence of values of those diagonals for 1 ≤ n ≤ 200, clearly many more
than those shown in Tables 1 and 2, and present the results derived from the analysis of these
sequences.

3 THE 2nd DIAGONAL

The table below (Table 3) shows us the sequence of values contained in the 2nd diagonal, that is,
the values of pm[s]

[s] (n,2) for 1 ≤ n ≤ 200 counted by functions f 2
∗ (q), f 3

∗ (q), and f 4
∗ (q).

Table 3: Values contained in the 2nd diagonals of the tables of functions f 2
∗ (q), f 3

∗ (q), and f 4
∗ (q).

f m
∗ (q) pm[s]

[s] (n,2)

f 2
∗ (q)

(0,0,0,1,0,0,0,1,1,1,0,0,0,1,1,2,1,1,0,0,0,1,1,2,2,2,1,1,0,0,0,1,1,2,2,3,2,2,
1,1,0,0,0,1,1,2,2,3,3,3,2,2,1,1,0,0,0,1,1,2,2,3,3,4,3,3,2,2,1,1,0,0,0,1,1,2,
2,3,3,4,4,4,3,3,2,2,1,1,0,0,0,1,1,2,2,3,3,4,4,5,4,4,3,3,2,2,1,1,0,0,0,1,1,2,
2,3,3,4,4,5,5,5,4,4,3,3,2,2,1,1,0,0,0,1,1,2,2,3,3,4,4,5,5,6,5,5,4,4,3,3,2,2,
1,1,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,6,5,5,4,4,3,3,2,2,1,1,0,0,0,1,1,2,2,3,3,4,

4,5,5,6,6,7,6,6,5,5, . . .)

f 3
∗ (q)

(0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,1,2,1,1,0,0,0,0,0,0,0,1,1,2,2,2,1,1,
0,0,0,0,0,0,0,0,1,1,2,2,3,2,2,1,1,0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,3,2,2,1,1,0,
0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,4,3,3,2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3,
3,4,4,4,3,3,2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,4,4,5,4,4,3,3,2,2,1,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,4,4,5,5,5,4,4,3,3,2,2,1,1,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,1, . . .)

f 4
∗ (q)

(0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,1,2,1,1,0,0,0,0,0,0,0,0,
0,0,0,1,1,2,2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3,2,2,1,1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,3,2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
1,2,2,3,3,4,3,3,2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,4,
4,4,3,3,2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,4,4,5,

4,4,3,3,2,2,1,1,0,0, . . .)

Observe that each sequence of Table 3 has a lot of zeros in very regular positions. Also, between
two lists of zeros, greater integers appear in such a way that each list of integers is symmetrical,
always starting and ending at 1, and increasing and decreasing by at most 1 unit.

Moreover, note that each list of integers greater than zero has odd size. In some cases the central
term is different from the others, while in other cases the central term is the same as its adjacent
terms.

Trends Comput. Appl. Math., 24, N. 4 (2023)
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In the following results we formalize all of the previous observations, getting a complete
characterization of the 2nd diagonal, for any n and any m ≥ 2.

Proposition 3.1. Given m ≥ 2, for all n ≥ 1 and 1 ≤ i ≤ (m−2)n+3 we have

pm[s]
[s]

(
m(n2 +n)

2
+2− i,2

)
= 0.

Proof. Let us suppose we could partition
m(n2 +n)

2
+2− i into m copies of each part from 1 to

some j and two more parts less than or equal to j. So, we would write

m(n2 +n)
2

+2− i = j+ · · ·+ j︸ ︷︷ ︸
m

+ · · ·+2+ · · ·+2︸ ︷︷ ︸
m

+1+ . . .+1︸ ︷︷ ︸
m

+r+ s

=
m( j2 + j)

2
+ r+ s,

for some j ≥ 1 and 1 ≤ s ≤ r ≤ j. Note that j has to be less than n, and so we can make the
following estimates:

m(n2 +n)
2

+2− i =
m( j2 + j)

2
+ r+ s ≤ m((n−1)2 +(n−1))

2
+2(n−1),

which is equivalent to
mn+2− i ≤ 2n−2.

On the other hand,
mn+2− i ≥ mn+2− (m−2)n−3,

and so
mn+2− (m−2)n−3 ≤ 2n−2,

or
1 ≤ 0,

which is absurd.

As we cannot write
m(n2 +n)

2
+2− i = j+ · · ·+ j︸ ︷︷ ︸

m

+ · · ·+1+ . . .+1︸ ︷︷ ︸
m

+r+ s, this means

pm[s]
[s]

(
m(n2 +n)

2
+2− i,2

)
= 0.

□

The symmetry of the list of integers between the zeros is described in the next proposition. In
order to prove it we need the following lemma, which will also be useful in further sections.

Trends Comput. Appl. Math., 24, N. 4 (2023)
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Lemma 3.2. Given m ≥ k ≥ 2, for all n ≥ 2 and 1 ≤ t ≤ n−1 we have

m(2nt − t2 + t)
2

> k(n−1). (3.1)

Proof. First of all, as m ≥ k ≥ 2 let us write m = k+ j, with j ≥ 0. We prove inequality (3.1) by
induction on n ≥ 2. For n = 2 we have only t = 1, which implies

m(2nt − t2 + t)
2

= 2m = 2k+2 j > 2k− k = k ·n− k = k(n−1),

and so (3.1) is true.

By supposing (3.1) is true for some n = b ≥ 2 and all 1 ≤ t ≤ b−1 , let us prove it also holds for
b+1, with 1 ≤ t ≤ b,

m(2(b+1)t − t2 + t)
2

=
m(2bt − t2 + t)

2
+mt.

For 1 ≤ t ≤ b−1, by induction hypothesis we have

m(2bt − t2 + t)
2

+mt > k(b−1)+mt ≥ k(b−1)+ k = k((b+1)−1).

For t = b we have

m(2bt − t2 + t)
2

+mt ≥ m(b2 +b)
2

+ kb > kb = k((b+1)−1).

Therefore, by induction we have (3.1) valid for all n ≥ 2 and 1 ≤ t ≤ n−1. □

The particular case of Lemma 3.2 with k = 2 is used in the following proposition.

Proposition 3.3. Given m ≥ 2, for all n ≥ 1 and 0 ≤ i ≤ n−1 we have

pm[s]
[s]

(
m(n2 +n)

2
+2+ i,2

)
= pm[s]

[s]

(
m(n2 +n)

2
+2n− i,2

)
.

Proof. We begin by claiming that the greatest part of any partition counted by the number

pm[s]
[s]

(
m(n2 +n)

2
+2+ i,2

)
is exactly n. Indeed, if the greatest part were larger than n, let us

say n+ t with t ≥ 1, we would have

m · (n+ t)+m · (n+ t −1)+ · · ·+m ·1+ r+ s =
m(n2 +n)

2
+2+ i, (3.2)

with 1 ≤ s ≤ r ≤ n+ t. By doing some estimates and using Lemma 3.2 with k = 2 we get (3.2)
equivalent to

r+ s = 2+ i− m(2nt + t + t2)

2
≤ 0,

Trends Comput. Appl. Math., 24, N. 4 (2023)
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contradicting the fact that 1 ≤ s ≤ r.

Moreover, for n > 1 the greatest part cannot be smaller than n either. Indeed, if it were n− t with
t ≥ 1, we would have

m · (n− t)+m · (n− t −1)+ · · ·+m ·1+ r+ s =
m(n2 +n)

2
+2+ i, (3.3)

with 1 ≤ s ≤ r ≤ n− t. According to Lemma 3.2 with k = 2, equation (3.3) is equivalent to

r+ s =
m(2nt − t2 + t)

2
+2+ i > 2n−2. (3.4)

However, as s ≤ r ≤ n− t we have r+ s ≤ 2(n− t)≤ 2n−2, and so inequality (3.4) is an absurd.

Therefore, the greatest part of any partition counted by pm[s]
[s]

(
m(n2 +n)

2
+2+ i,2

)
has to be

n. Analogous arguments allow us to conclude that the greatest part of any partition counted by

pm[s]
[s]

(
m(n2 +n)

2
+2n− i,2

)
is also exactly n.

Then, given λ a partition counted by pm[s]
[s]

(
m(n2 +n)

2
+2+ i,2

)
, we have

λ = (n, . . . ,n︸ ︷︷ ︸
m

, . . . ,2, . . . ,2︸ ︷︷ ︸
m

,1, . . . ,1︸ ︷︷ ︸
m

,r,s),

with 1 ≤ s ≤ r ≤ n. So,

m ·n+m · (n−1)+ · · ·+m ·2+m ·1+ r+ s =
m(n2 +n)

2
+2+ i,

and therefore
r+ s = 2+ i.

By writing µ = (n, . . . ,n︸ ︷︷ ︸
m

, . . . ,2, . . . ,2︸ ︷︷ ︸
m

,1, . . . ,1︸ ︷︷ ︸
m

,n+ 1− r,n+ 1− s) we get a partition counted by

pm[s]
[s]

(
m(n2 +n)

2
+2n− i,2

)
as

m ·n+ · · ·+m ·2+m ·1+n+1− r+n+1− s =
m(n2 +n)

2
+2n+2− (r+ s)

=
m(n2 +n)

2
+2n+2− (2+ i)

=
m(n2 +n)

2
+2n− i.

Easily we can build the reverse map, getting

pm[s]
[s]

(
m(n2 +n)

2
+2+ i,2

)
= pm[s]

[s]

(
m(n2 +n)

2
+2n− i,2

)
.

□

Trends Comput. Appl. Math., 24, N. 4 (2023)
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We illustrate Proposition 3.3 by taking m = 4, n = 9, and i = 7 in the following example.

Example 3.4. The number of partitions counted by p4[s]
[s] (189,2) is the same as p4[s]

[s] (191,2), as
shown in Table 4.

Table 4: Table for Example 3.17.

P4[s]
[s] (189,2) P4[s]

[s] (191,2)

(9,9,9,9,8,8,8,8, . . . ,1,1,1,1,8,1) (9,9,9,9,8,8,8,8, . . . ,1,1,1,1,9,2)
(9,9,9,9,8,8,8,8, . . . ,1,1,1,1,7,2) (9,9,9,9,8,8,8,8, . . . ,1,1,1,1,8,3)
(9,9,9,9,8,8,8,8, . . . ,1,1,1,1,6,3) (9,9,9,9,8,8,8,8, . . . ,1,1,1,1,7,4)
(9,9,9,9,8,8,8,8, . . . ,1,1,1,1,5,4) (9,9,9,9,8,8,8,8, . . . ,1,1,1,1,6,5)

In order to have the 2nd diagonal completely described, what remains to be shown is the exact
value of each term in the 2nd diagonal of any function f m

∗ (q). This result is given next and has a
simple demonstration.

Proposition 3.5. Given m ≥ 2, for all n ≥ 1 and 0 ≤ i ≤ n−1 we have

pm[s]
[s]

(
m(n2 +n)

2
+n+1− i,2

)
=

⌊
n+1− i

2

⌋
.

Proof. By observing that
m(n2 +n)

2
+ 2+ i and

m(n2 +n)
2

+ n+ 1− i both range from 2 to
n+1 if 0 ≤ i ≤ n−1, Proposition 3.3 gives us that the greatest part of any partition counted by

pm[s]
[s]

(
m(n2 +n)

2
+n+1− i,2

)
is n. So we have

m(n2 +n)
2

+n+1− i = m ·n+ · · ·+m ·2+m ·1+ r+ s,

for 1 ≤ s ≤ r ≤ n, which can be rewritten as

r+ s = n+1− i. (3.5)

According to [7], the number of partitions of n+1− i into exactly two parts, that is, the number

of solutions of (3.5) satisfying 1 ≤ s ≤ r ≤ n is
⌊

n+1− i
2

⌋
. □

Now we may observe that, as it happens with
m(n2 +n)

2
+2+ i and

m(n2 +n)
2

+n+1− i, also

m(n2 +n)
2

+2n− i and
m(n2 +n)

2
+n+1+ i both range through the same values for 0≤ i≤ n−1.

Therefore, by joining Propositions 3.3 and 3.5 we get the following corollary.

Trends Comput. Appl. Math., 24, N. 4 (2023)
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Corollary 3.6. Given m ≥ 2, for all n ≥ 1 and 0 ≤ i ≤ n−1 we have

pm[s]
[s]

(
m(n2 +n)

2
+n+1± i,2

)
=

⌊
n+1− i

2

⌋
.

Example 3.7. For m = 4, n = 6 and 0 ≤ i ≤ 5 we have the partitions shown in Table 5.

Table 5: Table for Example 3.20.

91± i P4[s]
[s] (91± i,2) p4[s]

[s] (91± i,2)

86 (6,6,6,6,5,5,5,5, . . . ,1,1,1,1,1,1) 1

87 (6,6,6,6,5,5,5,5, . . . ,1,1,1,1,2,1) 1

88
(6,6,6,6,5,5,5,5, . . . ,1,1,1,1,3,1)
(6,6,6,6,5,5,5,5, . . . ,1,1,1,1,2,2)

2

89
(6,6,6,6,5,5,5,5, . . . ,1,1,1,1,4,1)
(6,6,6,6,5,5,5,5, . . . ,1,1,1,1,3,2)

2

90
(6,6,6,6,5,5,5,5, . . . ,1,1,1,1,5,1)
(6,6,6,6,5,5,5,5, . . . ,1,1,1,1,4,2)
(6,6,6,6,5,5,5,5, . . . ,1,1,1,1,3,3)

3

91
(6,6,6,6,5,5,5,5, . . . ,1,1,1,1,6,1)
(6,6,6,6,5,5,5,5, . . . ,1,1,1,1,5,2)
(6,6,6,6,5,5,5,5, . . . ,1,1,1,1,4,3)

3

92
(6,6,6,6,5,5,5,5, . . . ,1,1,1,1,6,2)
(6,6,6,6,5,5,5,5, . . . ,1,1,1,1,5,3)
(6,6,6,6,5,5,5,5, . . . ,1,1,1,1,4,4)

3

93
(6,6,6,6,5,5,5,5, . . . ,1,1,1,1,6,3)
(6,6,6,6,5,5,5,5, . . . ,1,1,1,1,5,4)

2

94
(6,6,6,6,5,5,5,5, . . . ,1,1,1,1,6,4)
(6,6,6,6,5,5,5,5, . . . ,1,1,1,1,5,5)

2

95 (6,6,6,6,5,5,5,5, . . . ,1,1,1,1,6,5) 1

96 (6,6,6,6,5,5,5,5, . . . ,1,1,1,1,6,6) 1

Now we have the 2nd diagonal of function f m
∗ (q) table, for any m ≥ 2, completely described.

4 THE 3rd DIAGONAL

The sequences of values of pm[s]
[s] (n,3) for 1 ≤ n ≤ 200, contained in the 3rd diagonal of the tables

of functions f 3
∗ (q), f 4

∗ (q), and f 5
∗ (q), are shown in Table 6 below.

The zeros in any of the sequences of Table 6 are described in the next result. Its proof is analogous
to the proof of Proposition 3.1 and, therefore, is omitted.

Trends Comput. Appl. Math., 24, N. 4 (2023)
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Table 6: Values contained in the 3rd diagonals of the tables of functions f 3
∗ (q), f 4

∗ (q), and f 5
∗ (q).

f m
∗ (q) pm[s]

[s] (n,3)

f 3
∗ (q)

(0,0,0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,0,0,0,1,1,2,2,2,1,1,0,0,0,0,0,1,1,2,3,3,3,
3,2,1,1,0,0,0,0,0,1,1,2,3,4,4,5,4,4,3,2,1,1,0,0,0,0,0,1,1,2,3,4,5,6,6,6,6,5,
4,3,2,1,1,0,0,0,0,0,1,1,2,3,4,5,7,7,8,8,8,7,7,5,4,3,2,1,1,0,0,0,0,0,1,1,2,3,
4,5,7,8,9,10,10,10,10,9,8,7,5,4,3,2,1,1,0,0,0,0,0,1,1,2,3,4,5,7,8,10,11,12,
12,13,12,12,11,10,8,7,5,4,3,2,1,1,0,0,0,0,0,1,1,2,3,4,5,7,8,10,12,13,14,15,

15,15,15,14,13,12,10,8,7,5,4,3,2,1,1,0,0,0,0,0, . . .)

f 4
∗ (q)

(0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,2,2,2,1,1,0,0,0,0,0,
0,0,0,0,1,1,2,3,3,3,3,2,1,1,0,0,0,0,0,0,0,0,0,0,1,1,2,3,4,4,5,4,4,3,2,1,1,0,
0,0,0,0,0,0,0,0,0,0,1,1,2,3,4,5,6,6,6,6,5,4,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,2,3,4,5,7,7,8,8,8,7,7,5,4,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,4,5,
7,8,9,10,10,10,10,9,8,7,5,4,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,4,5,

7,8,10,11,12,12,13,12,12,11,10,8, . . .)

f 5
∗ (q)

(0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,1,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,1,1,2,3,4,4,5,4,4,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,4,5,6,
6,6,6,5,4,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,4,5,7,7,8,8,
8,7,7,5,4,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,4,5,7,8,

9,10,10,10,10,9,8,7,5,4, . . .)

Proposition 4.1. Given m ≥ 3, for all n ≥ 1 and 1 ≤ i ≤ (m−3)n+5 we have

pm[s]
[s]

(
m(n2 +n)

2
+3− i,3

)
= 0.

Also, non-zero values are again finite symmetrical lists of integers, which get longer as n
increases. This leads us to the following result.

Proposition 4.2. Given m ≥ 3, for all n ≥ 1 and 0 ≤ i ≤
⌊

3n−1
2

⌋
−1 we have

pm[s]
[s]

(
m(n2 +n)

2
+3+ i,3

)
= pm[s]

[s]

(
m(n2 +n)

2
+3n− i,3

)
.

The proof of Proposition 4.2 follows the same direction as the proof of Proposition 3.3, by
building an analogous bijection and using the particular case of Lemma 3.2 with k = 3.

Example 4.3. For m = 3, n = 5 and i = 4 we have the same number of elements in P3[s]
[s] (52,3) as

in P3[s]
[s] (56,3), as shown in Table 7.
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Table 7: Table for Example 4.23.

P3[s]
[s] (52,3) P3[s]

[s] (56,3)

(5,5,5,4,4,4,3,3,3,2,2,2,1,1,1,5,1,1) (5,5,5,4,4,4,3,3,3,2,2,2,1,1,1,1,5,5)
(5,5,5,4,4,4,3,3,3,2,2,2,1,1,1,4,2,1) (5,5,5,4,4,4,3,3,3,2,2,2,1,1,1,2,4,5)
(5,5,5,4,4,4,3,3,3,2,2,2,1,1,1,3,3,1) (5,5,5,4,4,4,3,3,3,2,2,2,1,1,1,3,3,5)
(5,5,5,4,4,4,3,3,3,2,2,2,1,1,1,3,2,2) (5,5,5,4,4,4,3,3,3,2,2,2,1,1,1,3,4,4)

The values described in Proposition 4.2 compose a sequence which has a combinatorial inter-
pretation in terms of another type of partitions, easier to count. This follows in the theorem
below.

Theorem 4.4. Given m ≥ 3, for all n ≥ 1 and j ≥ 1 we have

pm[s]
[s]

(
m(n2 +n)

2
+n+2,3

)
= pm[s]

[s]

(
m((n+ j)2 +(n+ j))

2
+n+2,3

)
= p(n−1,at most 3 parts).

Proof. First of all, note that
m(n2 +n)

2
+ n + 2 =

m(n2 +n)
2

+ 3 + (n − 1). Since 0 ≤

n − 1 ≤
⌊

3n−1
2

⌋
− 1, we already know from Proposition 4.2 that a partition counted by

pm[s]
[s]

(
m(n2 +n)

2
+n+2,3

)
has n as its greatest part. So, by writing

m ·n+ · · ·+m ·2+m ·1+ r+ s+ t =
m(n2 +n)

2
+n+2,

with 1 ≤ t ≤ s ≤ r ≤ n, we get
r+ s+ t = n+2.

By decreasing r, s and t in one unit we get r′ = r − 1, s′ = s − 1 and t ′ = t − 1. Therefore
r′+ s′+ t ′ = r+ s+ t −3 = n−1, with 0 ≤ t ′ ≤ s′ ≤ r′ ≤ n−1. So, (r′,s′, t ′) is a triple of non-
negative integers that add up to n− 1. By eliminating possible zeros and considering only the
positive integers among r′, s′ ,and t ′ we have built a partition of n−1 into at most 3 parts.

In order to build the reverse map, be careful to add parts of size 1 to the partition of
m(n2 +n)

2
+

n+2 when the original partition of n−1 has less than 3 parts.

Finally, the first equality of the theorem is easy to see since, by Proposition 4.2 again,

any partition counted by the number pm[s]
[s]

(
m((n+ j)2 +(n+ j))

2
+n+2,3

)
, or also by

pm[s]
[s]

(
m((n+ j)2 +(n+ j))

2
+3+(n−1),3

)
, has n+ j as its greatest part. □
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Example 4.5. For m = 3, n = 5 and j = 4, we have the partitions shown in Table 8.

Table 8: Table for Example 4.25.

P3[s]
[s] (52,3) P3[s]

[s] (142,3) P(4,at most 3 parts)

(5,5,5, · · · ,2,2,2,1,1,1,5,1,1) (9,9,9, · · · ,1,1,1,5,1,1) (4)
(5,5,5, · · · ,2,2,2,1,1,1,4,2,1) (9,9,9, · · · ,1,1,1,4,2,1) (3,1)
(5,5,5, · · · ,2,2,2,1,1,1,3,3,1) (9,9,9, · · · ,1,1,1,3,3,1) (2,2)
(5,5,5, · · · ,2,2,2,1,1,1,3,2,2) (9,9,9, · · · ,1,1,1,3,2,2) (2,1,1)

In order to have the 3rd diagonal of any table of function f m
∗ (q) completely described, for any

m ≥ 2, we need some simple identities, which we enunciate as a lemma.

Lemma 4.6.

(i) For all j ≥ 1,

p(3 j+1,exactly 3 parts) =
j( j+1)

2
+

⌊
j2

4

⌋
; (4.1)

(ii) For all j ≥ 2,

j−1

∑
i=1

⌊
j+1− i

2

⌋
=

⌊
j2

4

⌋
; (4.2)

(iii) For all j ≥ 1,

p(3 j,exactly 3 parts) =
⌊

j2 +1
2

⌋
+

⌊
j2

4

⌋
. (4.3)

Proof.

(i) According to [7], the number of partitions of n into exactly 3 parts is
{
(n+3)2

12

}
−
⌊

n
2

⌋
−

1. By writing 3 j+1 in place of n we get statement (4.1) by proving the following one:

{
(3 j+4)2

12

}
−
⌊

3 j+1
2

⌋
−1 =

j( j+1)
2

+

⌊
j2

4

⌋
. (4.4)

In order to prove (4.4) we write j in four different ways, according to its congruence
modulus 4. First of all, note that{

(3 j+4)2

12

}
=

{
9 j2 +24 j+16

12

}
=

{
3 j2

4
+2 j+

4
3

}
= 2 j+

{
3 j2

4
+

4
3

}
,

Trends Comput. Appl. Math., 24, N. 4 (2023)
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and we may write (4.4) as

2 j+
{

3 j2

4
+

4
3

}
−
⌊

3 j+1
2

⌋
−1 =

j( j+1)
2

+

⌊
j2

4

⌋
. (4.5)

We analyse separately each side of equation (4.5), and for any value of j modulus 4 we
conclude that the equality is true.

(ii) We prove statement (4.2) by induction over j. Note that for j = 2 we have

2−1

∑
i=1

⌊
2+1− i

2

⌋
=

⌊
2+1−1

2

⌋
= 1 =

⌊
22

4

⌋
.

By supposing for certain j = b ≥ 2 that we have

b−1

∑
i=1

⌊
b+1− i

2

⌋
=

⌊
b2

4

⌋
,

let us prove that
(b+1)−1

∑
i=1

⌊
(b+1)+1− i

2

⌋
=

⌊
(b+1)2

4

⌋
or, which is the same, that

b

∑
i=1

⌊
b+2− i

2

⌋
=

⌊
b2 +2b+1

4

⌋
. (4.6)

First of all, note that if i and b have the same parity, then
⌊

b+2− i
2

⌋
=

⌊
b+1− i

2

⌋
+1.

And if i and b have different parities, then
⌊

b+2− i
2

⌋
=

⌊
b+1− i

2

⌋
.

If b is even, saying b = 2k, then half of the values of i in the sum on the left hand side of
(4.6) are even and the other half are odd. So we have

b

∑
i=1

⌊
b+2− i

2

⌋
=

b

∑
i=1

⌊
b+1− i

2

⌋
+ k =

b−1

∑
i=1

⌊
b+1− i

2

⌋
+ k,

which by induction hypothesis equals⌊
b2

4

⌋
+

b
2
=

(
2k
2

)2

+
2k
2

=
4k2 +4k

4
=

⌊
b2 +2b

4

⌋
=

⌊
b2 +2b+1

4

⌋
,

as we wanted.

If b is odd, saying b = 2k+1, then k+1 of the values of i in the sum on the left hand side
of (4.6) are odd and k of those values are even. So we have

b

∑
i=1

⌊
b+2− i

2

⌋
=

b

∑
i=1

⌊
b+1− i

2

⌋
+ k+1 =

b−1

∑
i=1

⌊
b+1− i

2

⌋
+ k+1,
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which by induction hypothesis equals⌊
b2

4

⌋
+ k+1 =

⌊
4k2 +4k+1

4

⌋
+ k+1 = k2 +2k+1

=

(
b−1

2

)2

+b =
b2 +2b+1

4
=

⌊
b2 +2b+1

4

⌋
,

as we needed.

So, by induction statement (4.2) is proved.

(iii) By using again the expression for the number of partitions of n into exactly 3 parts ( [7]),
with 3 j in place of n we get what we need by proving the following statement:

{
(3 j+3)2

12

}
−
⌊

3 j
2

⌋
−1 =

⌊
j2 +1

2

⌋
+

⌊
j2

4

⌋
. (4.7)

In order to prove (4.7) we write j in four different ways, according to its congruence
modulus 4. First of all, note that{

(3 j+3)2

12

}
=

{
9 j2 +18 j+9

12

}
=

{
3 j2 +3

4
+

3 j
2

}
and we rewrite (4.7) as{

3 j2 +3
4

+
3 j
2

}
−
⌊

3 j
2

⌋
−1 =

⌊
j2 +1

2

⌋
+

⌊
j2

4

⌋
. (4.8)

As done in the proof of item (i), we analyse separately each side of equation (4.8), and for any
value of j modulus 4 we conclude that the equality is true. □

From Lemma 4.6 we finalize the characterization of the sequence of values pm[s]
[s] (n,3) by setting

the three final theorems of this section.

By considering only the non-zero integers of the 3rd diagonal, the next theorem deals with the
central terms of the lists of non-zero integers in even positions, that is, the central terms of the
2 jth lists of non-zero integers, for any j ≥ 1.

Theorem 4.7. Given m ≥ 3, for all even n ≥ 2, let us say n = 2 j with j ≥ 1, we have

pm[s]
[s]

(
m((2 j)2 +2 j)

2
+3+

⌊
3 ·2 j−1

2

⌋
−1,3

)
= Tj

= pm[s]
[s]

(
m((2 j)2 +2 j)

2
+3+

⌊
3 ·2 j−1

2

⌋
−2,3

)
. (4.9)
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Before the proof, observe that, according to Proposition 4.2, for all j ≥ 1 we have

pm[s]
[s]

(
m((2 j)2 +2 j)

2
+3+

⌊
3 ·2 j−1

2

⌋
−1,3

)
= pm[s]

[s]

(
m((2 j)2 +2 j)

2
+3+

⌊
3 ·2 j−1

2

⌋
,3
)

and

pm[s]
[s]

(
m((2 j)2 +2 j)

2
+3+

⌊
3 ·2 j−1

2

⌋
−2,3

)
= pm[s]

[s]

(
m((2 j)2 +2 j)

2
+3+

⌊
3 ·2 j−1

2

⌋
+1,3

)
.

So, Theorem 4.7 says that these four numbers are actually all the same and equal to the jth
triangular number Tj. That is, the 3rd diagonal of the table of any function f m

∗ (q) has constant
subsequences of size four located in lines

n =
m((2 j)2 +2 j)

2
+3+

⌊
3 ·2 j−1

2

⌋
−2, n =

m((2 j)2 +2 j)
2

+3+
⌊

3 ·2 j−1
2

⌋
−1,

n =
m((2 j)2 +2 j)

2
+3+

⌊
3 ·2 j−1

2

⌋
, and n =

m((2 j)2 +2 j)
2

+3+
⌊

3 ·2 j−1
2

⌋
+1,

each of these four terms equal to Tj.

Proof of Theorem 4.7. Noting that
⌊

3 ·2 j−1
2

⌋
= 3 j−1, we can rewrite statement (4.9) as

pm[s]
[s]

(
m((2 j)2 +2 j)

2
+3 j+1,3

)
= Tj = pm[s]

[s]

(
m((2 j)2 +2 j)

2
+3 j,3

)
.

According to Proposition 4.2, with n = 2 j and respectively i = 3 j−2 and i = 3 j−3, the greatest
part of any partition counted by

pm[s]
[s]

(
m((2 j)2 +2 j)

2
+3 j+1,3

)
and pm[s]

[s]

(
m((2 j)2 +2 j)

2
+3 j,3

)

is 2 j. So, partitioning
m((2 j)2 +2 j)

2
+3 j+1 and

m((2 j)2 +2 j)
2

+3 j according to our rules is
the same as partitioning 3 j+1 and 3 j into three parts less than or equal to 2 j. That is,

r1 + s1 + t1 = 3 j+1 (4.10)

and

r2 + s2 + t2 = 3 j, (4.11)

with 1 ≤ t1 ≤ s1 ≤ r1 ≤ 2 j and 1 ≤ t2 ≤ s2 ≤ r2 ≤ 2 j.

Clearly, the number of solutions of equation (4.10) with no restriction on parts is precisely p(3 j+

1,exactly 3 parts), which by item (i) of Lemma 4.6 is
j( j+1)

2
+

⌊
j2

4

⌋
.

Now, we eliminate the solutions of r1 + s1 + t1 = 3 j+1 that do not satisfy 1 ≤ t1 ≤ s1 ≤ r1 ≤ 2 j,
which are those where r1 > 2 j, or r1 = 2 j+ i with 1 ≤ i ≤ j−1.
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For each value of i, we have to eliminate the solutions of s1 + t1 = j+ 1− i, which we already

know are in number of
⌊

j+1− i
2

⌋
. From item (ii) of Lemma 4.6, the total amount of solutions

we have to eliminate is ∑
j−1
i=1

⌊
j+1− i

2

⌋
=

⌊
j2

4

⌋
. Observe that item (ii) of Lemma 4.6 is valid

only for j ≥ 2. However, the case with j = 1 has no solution to be eliminated, because r1 > 2
never occurs in equation 4.10, since r1,s1, t1 ≥ 1.

Then, the number of solutions of r1 + s1 + t1 = 3 j+1 with the restriction 1 ≤ t1 ≤ s1 ≤ r1 ≤ 2 j
is

j( j+1)
2

+

⌊
j2

4

⌋
−
⌊

j2

4

⌋
=

j( j+1)
2

= Tj.

Left to the reader, equation (4.11) has an adaptable proof by using item (iii) of Lemma 4.6, and
rearranging the indexes of the sum in item (ii). Therefore, equality (4.9) is proved and Theorem
4.7 is valid.

□

In an analogous way as done in Theorem 4.7, the next two theorems characterize the central
terms of the lists of non-zero integers in odd positions. The proofs of both theorems use items (i)
and (ii) of Lemma 4.6 with some replacements of j, and the formula for unrestricted partitions
into 3 parts, available in [7], also necessary for proving items (i) and (iii) of Lemma 4.6.

Theorem 4.8. Given m ≥ 3, for all n ≡ 1 (mod 4), let us say n = 4 j+1 with j ≥ 0, we have

pm[s]
[s]

(
m((4 j+1)2 +(4 j+1))

2
+3+

⌊
3 · (4 j+1)−1

2

⌋
−1,3

)
= j2 +( j+1)2

= pm[s]
[s]

(
m((4 j+1)2 +(4 j+1))

2
+3+

⌊
3 · (4 j+1)−1

2

⌋
−2,3

)
+1.

Theorem 4.9. Given m ≥ 3, for all n ≡ 3 (mod 4), let us say n = 4 j+3 with j ≥ 0, we have

pm[s]
[s]

(
m((4 j+3)2 +(4 j+3))

2
+3+

⌊
3 · (4 j+3)−1

2

⌋
−1,3

)
= 2( j+1)2

= pm[s]
[s]

(
m((4 j+3)2 +(4 j+3))

2
+3+

⌊
3 · (4 j+3)−1

2

⌋
−2,3

)
.

5 THE 4th DIAGONAL

Most of the results from this section are similar to those presented in previous sections, as well
as their proofs. Therefore we choose to exhibit only the proofs that are essentially different.
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First of all, let us highlight in Table 9 some values of pm[s]
[s] (n,4) for 1 ≤ n ≤ 200, contained in

the 4th diagonal of the tables of functions f 4
∗ (q), f 5

∗ (q), and f 6
∗ (q).

Table 9: Values contained in the 4th diagonals of the tables of functions f 4
∗ (q), f 5

∗ (q), and f 6
∗ (q).

f m
∗ (q) pm[s]

[s] (n,4)

f 4
∗ (q)

(0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,1,1,2,2,3,2,2,1,1,0,0,
0,0,0,0,0,1,1,2,3,4,4,5,4,4,3,2,1,1,0,0,0,0,0,0,0,1,1,2,3,5,5,7,7,8,7,7,5,5,
3,2,1,1,0,0,0,0,0,0,0,1,1,2,3,5,6,8,9,11,11,12,11,11,9,8,6,5,3,2,1,1,0,0,0,
0,0,0,0,1,1,2,3,5,6,9,10,13,14,16,16,18,16,16,14,13,10,9,6,5,3,2,1,1,0,0,0,
0,0,0,0,1,1,2,3,5,6,9,11,14,16,19,20,23,23,24,23,23,20,19,16,14,11,9,6,5,3,

2,1,1,0,0,0,0,0,0,0,1,1,2,3,5,6,9,11,15,17,21,23,27,28,31,31,33,31,31,28,
27,23,21,17,15,11,9,6,5,3,2,1,1,0,0,0,0, . . .)

f 5
∗ (q)

(0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3,
2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,4,4,5,4,4,3,2,1,1,0,0,0,0,0,0,0,0,0,0,
0,0,1,1,2,3,5,5,7,7,8,7,7,5,5,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,5,6,
8,9,11,11,12,11,11,9,8,6,5,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,5,6,
9,10,13,14,16,16,18,16,16,14,13,10,9,6,5,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,1,1,2,3,5,6,9,11,14,16,19,20,23,23,24,23,23,20,19,16,14,11,9,6,5,3,2,1,

1,0,0,0,0,0,0,0,0, . . .)

f 6
∗ (q)

(0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,1,1,2,2,3,2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,4,4,5,4,4,3,2,1,1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,5,5,7,7,8,7,7,5,5,3,2,1,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,5,6,8,9,11,11,12,11,11,9,8,6,5,3,2,1,

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,5,6,9,10,13,14,16,16,18,
16,16,14,13,10,9,6,5,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,1, . . .)

The following results and examples characterize the position of zeros and non-zero integers con-
tained in the 4th diagonals, and also provide the exact values contained in those list of non-zero
integers, based on a set of integer partitions easier to be counted.

Proposition 5.1. Given m ≥ 4, for all n ≥ 1 and 1 ≤ i ≤ (m−4)n+7 we have

pm[s]
[s]

(
m(n2 +n)

2
+4− i,4

)
= 0.

Non-zero lists of values in the 4th diagonal also obey a symmetry.

Proposition 5.2. Given m ≥ 4, for all n ≥ 1 and 0 ≤ i ≤ 2n−2 we have

pm[s]
[s]

(
m(n2 +n)

2
+4+ i,4

)
= pm[s]

[s]

(
m(n2 +n)

2
+4n− i,4

)
.
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Example 5.3. For m = 5, n = 4 and i = 5, we have the same number of elements in P4[s]
[s] (59,4)

as in P4[s]
[s] (61,4), as shown in Table 10.

Table 10: Table for Example 5.32.

P4[s]
[s] (59,4) P4[s]

[s] (61,4)

(4,4,4,4,4,3, . . . ,1,1,1,1,1,4,2,2,1) (4,4,4,4,4,3, . . . ,1,1,1,1,1,4,3,3,1)
(4,4,4,4,4,3, . . . ,1,1,1,1,1,4,3,1,1) (4,4,4,4,4,3, . . . ,1,1,1,1,1,4,4,2,1)
(4,4,4,4,4,3, . . . ,1,1,1,1,1,3,3,2,1) (4,4,4,4,4,3, . . . ,1,1,1,1,1,4,3,2,2)
(4,4,4,4,4,3, . . . ,1,1,1,1,1,3,2,2,2) (4,4,4,4,4,3, . . . ,1,1,1,1,1,3,3,3,2)

The following theorem describes the identity in Proposition 5.2 in terms of a simpler type of
partitions whose exact value is easier to find. Again its demonstration follows the lines of those
analogous results from previous sections.

Theorem 5.4. Given m ≥ 4, for all n ≥ 1 and j ≥ 1 we have

pm[s]
[s]

(
m(n2 +n)

2
+n+3,4

)
= pm[s]

[s]

(
m((n+ j)2 +(n+ j))

2
+n+3,4

)
= p(n−1,at most 4 parts).

Example 5.5. For m = 5, n = 6 and j = 4, we have the partitions shown in Table 11.

Table 11: Table for Example 5.34.

P5[s]
[s] (114,4) P5[s]

[s] (284,4) P(5,at most 4 parts)

(6,6,6,6,6, · · · ,1,1,1,1,1,6,1,1,1) (10,10,10,10,10, · · · ,1,1,1,1,1,6,1,1,1) (5)
(6,6,6,6,6, · · · ,1,1,1,1,1,5,2,1,1) (10,10,10,10,10, · · · ,1,1,1,1,1,5,2,1,1) (4,1)
(6,6,6,6,6, · · · ,1,1,1,1,1,4,3,1,1) (10,10,10,10,10, · · · ,1,1,1,1,1,4,3,1,1) (3,2)
(6,6,6,6,6, · · · ,1,1,1,1,1,4,2,2,1) (10,10,10,10,10, · · · ,1,1,1,1,1,4,2,2,1) (3,1,1)
(6,6,6,6,6, · · · ,1,1,1,1,1,3,3,2,1) (10,10,10,10,10, · · · ,1,1,1,1,1,3,3,2,1) (2,2,1)
(6,6,6,6,6, · · · ,1,1,1,1,1,3,2,2,2) (10,10,10,10,10, · · · ,1,1,1,1,1,3,2,2,2) (2,1,1,1)

Recalling Remark 2.3, the notation [n] := {1,2,3, . . . ,n− 1,n} appears in the next theorem. It
deals with the particular case of Proposition 5.2, with i = 2n−2, characterizing the central term
of any list of non-zero integers in the sequence of values of pm[s]

[s] (n,4).

Theorem 5.6. Given m ≥ 4, for all n ≥ 1 we have

pm[s]
[s]

(
m(n2 +n)

2
+2n+2,4

)
= p(2n+8,exactly 4 distinct parts in [n+3]).

Trends Comput. Appl. Math., 24, N. 4 (2023)
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Proof. First observe that
m(n2 +n)

2
+2n+2 =

m(n2 +n)
2

+4n− (2n−2).

Now, according to Proposition 5.2, the greatest part of any partition counted by the number

pm[s]
[s]

(
m(n2 +n)

2
+4n− (2n−2),4

)
is n. So we may write

r+ s+ t +u = 2n+2,

with 1 ≤ u ≤ t ≤ s ≤ r ≤ n.

By making
r′ = r+3,

s′ = s+2,

t ′ = t +1,

and
u′ = u,

note that 1≤ u′ < t ′ < s′ < r′ ≤ n+3. Therefore, r′, s′, t ′ and u′ are distinct, they belong to [n+3],
and

r′+ s′+ t ′+u′ = r+3+ s+2+ t +1+u

= 2n+2+6

= 2n+8.

So we have µ = (r′,s′, t ′,u′) ∈ P(2n+ 8,exactly 4 distinct parts in [n+3]). The reverse map is
simple to build. □

Example 5.7. For m = 4 and n = 1,2,3, we have the partitions shown in Table 12.

Table 12: Table for Example 5.36.

n = 1 P4[s]
[s] (8,4) P(10,exactly 4 distinct parts in [4])

(1,1,1,1,1,1,1,1) (4,3,2,1)

n = 2 P4[s]
[s] (18,4) P(12,exactly 4 distinct parts in [5])

(2,2,2,2,1,1,1,1,2,2,1,1) (5,4,2,1)

n = 3 P4[s]
[s] (32,4) P(14,exactly 4 distinct parts in [6])

(3,3,3,3,2,2,2,2,1,1,1,1,3,3,1,1) (6,5,2,1)
(3,3,3,3,2,2,2,2,1,1,1,1,3,2,2,1) (6,4,3,1)
(3,3,3,3,2,2,2,2,1,1,1,1,2,2,2,2) (5,4,3,2)

Trends Comput. Appl. Math., 24, N. 4 (2023)
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6 SOME CONSIDERATIONS ABOUT THE Kth DIAGONALS FOR k ≥ 5

Some results of the previous sections involving partitions counted by pm[s]
[s] (n,k) were very similar

for k = 2,3, and 4. At this point of the text, we may already believe that those facts might be
extensible for other values of k, or maybe even for any value of k ≥ 2.

Indeed, a very simple fact that can be observed anywhere, in every table of functions f m
∗ (q), is

that every kth diagonal seems to be formed by non-constant symmetrical list of integers, besides
a few zeros between these lists. Both these results were presented in the previous sections of
this chapter and can be generalized for any value of k, as it is set below. The proofs are similar
to those from the previous sections and completely adaptable, thus some details are left to the
reader.

Theorem 6.1. Given k ≥ 2 and m ≥ k, for all n ≥ 1 and 1 ≤ i ≤ (m− k)n+2k−1 we have

pm[s]
[s]

(
m(n2 +n)

2
+ k− i,k

)
= 0.

Proof. Let us suppose, on the contrary, that pm[s]
[s]

(
m(n2+n)

2 + k− i,k
)
̸= 0 and so we could write

m(n2 +n)
2

+ k− i = j+ · · ·+ j︸ ︷︷ ︸
m

+ · · ·+2+ · · ·+2︸ ︷︷ ︸
m

+1+ . . .+1︸ ︷︷ ︸
m

+λ1 +λ2 + · · ·+λk

=
m( j2 + j)

2
+λ1 + · · ·+λk,

for some j ≥ 1 and 1 ≤ λk ≤ . . . ≤ λ1 ≤ j. Note that j < n, and so we can make the following
estimates:

m(n2 +n)
2

+ k− i =
m( j2 + j)

2
+λ1 +λ2 + · · ·+λk ≤

m((n−1)2 +(n−1))
2

+ k(n−1),

which is equivalent to
mn+ k− i ≤ k(n−1).

On the other hand, as i ≤ (m− k)n+2k−1, we have

mn+ k− i ≥ k(n−1)+1,

and so
k(n−1)+1 ≤ k(n−1),

which is absurd.

As we cannot write
m(n2 +n)

2
+ k− i = j+ · · ·+ j︸ ︷︷ ︸

m

+ · · ·+ 1+ . . .+1︸ ︷︷ ︸
m

+λ1 + λ2 + · · ·+ λk, this

means pm[s]
[s]

(
m(n2 +n)

2
+ k− i,k

)
= 0. □

Trends Comput. Appl. Math., 24, N. 4 (2023)



i
i

“A7-1712” — 2023/10/16 — 13:07 — page 742 — #26 i
i

i
i

i
i

742 SPECIAL INTEGER PARTITIONS GENERATED BY FUNCTIONS

Theorem 6.2. Given k ≥ 3 and m ≥ k, for all n ≥ 1 and 0 ≤ i ≤
⌊

k(n−1)
2

⌋
we have

pm[s]
[s]

(
m(n2 +n)

2
+ k+ i,k

)
= pm[s]

[s]

(
m(n2 +n)

2
+ kn− i,k

)
.

Proof. By doing some estimates and using Lemma 3.2 we get that the greatest part of any

partition counted by pm[s]
[s]

(
m(n2 +n)

2
+ k+ i,k

)
or by pm[s]

[s]

(
m(n2 +n)

2
+ kn− i,k

)
is exactly

n.

Then, given λ a partition counted by pm[s]
[s]

(
m(n2 +n)

2
+ k+ i,k

)
, we have

λ = (n, . . . ,n︸ ︷︷ ︸
m

, . . . ,2, . . . ,2︸ ︷︷ ︸
m

,1, . . . ,1︸ ︷︷ ︸
m

,λ1,λ2, . . . ,λk),

with 1 ≤ λk ≤ . . .≤ λ1 ≤ n. So,

m ·n+m · (n−1)+ · · ·+m ·2+m ·1+λ1 +λ2 + · · ·+λk =
m(n2 +n)

2
+ k+ i,

and therefore
λ1 +λ2 + · · ·+λk = k+ i.

By writing µ = (n, . . . ,n︸ ︷︷ ︸
m

, . . . ,2, . . . ,2︸ ︷︷ ︸
m

,1, . . . ,1︸ ︷︷ ︸
m

,n + 1 − λ1, . . . ,n + 1 − λk) we get a partition

counted by pm[s]
[s]

(
m(n2 +n)

2
+2k− i,k

)
as

m ·n+ · · ·+m ·2+m ·1+n+1−λ1 + · · ·+n+1−λk =
m(n2 +n)

2
+ kn+ k− (λ1 + · · ·+λk)

=
m(n2 +n)

2
+ kn+ k− (k+ i)

=
m(n2 +n)

2
+ kn− i.

Easily we can build the reverse map, getting

pm[s]
[s]

(
m(n2 +n)

2
+ k+ i,k

)
= pm[s]

[s]

(
m(n2 +n)

2
+ kn− i,k

)
.

□

7 CONCLUSIONS

According to the information contained in this work, in every table for any value of m ≥ 2,
the results we proved tell us exactly the number of partitions of n counted by pm[s]

[s] (n,k), for
k = 2,3,4.
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Moreover, the kth diagonal of any table generated by function f m
∗ (q) = ∑

∞
n=0

q
m(n2+n)

2

(q;q)n
, for any

k, alternates a sequence of zeros with a symmetrically increasing and decreasing sequence of
non-vanishing numbers, which, in some particular cases, we may count in an easier way when
seen as other type of partitions. The influence of m in such a sequence is restricted to the size
of the sequence of zeros, while given a fixed k the non-vanishing sequences are the same in all
tables.

Finally, we observe that every integer n is contemplated in some of the results of this paper. In
particular, we may say that in some sense we have provided a complete characterization of a
particular type of integer partition for every n ∈ N.
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