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ABSTRACT. A flexible parametric mixture cure model, called bi-lognormal cure rate model or simply
BLN model, is defined and studied. The BLN model can be effectively used to analyze survival dataset in
the presence of long-term survivors, especially when the dataset presents the underlying phenomenon of
latent competing risks or when there is evidence that a bimodal hazard function is appropriated to described
it, which are advantages over other cure rate models found in the literature. We discuss the maximum
likelihood estimation for the model parameters considering interval-censored data through the differential
evolution algorithm that is a nature-inspired computing metaheuristic used for global optimization of func-
tions defined in multidimensional spaces. This approach is also used because the likelihood function of the
model is multimodal and the direct application of gradient methods in this case is not ideal, since such
methods are local search methods with a high chance of getting stuck at a local maximum when the starting
point is chosen outside the basin of attraction of a global maximum. In addition, a simulation study was
implemented to compare the performance of differential evolution algorithm with the performance of the
Newton-Raphson algorithm in terms of bias, root mean square error, and the coverage probability of the
asymptotic confidence intervals for the parameters. Finally, an application of the BLN model to real data is
presented to illustrate that it can provide a better fit than other mixture cure rate models.

Keywords: polyhazard model, lognormal distribution, differential evolution algorithm, Newton-Raphson
algorithm, generalized Turnbull’s nonparametric estimator.

1 INTRODUCTION

Survival models that take into account a cure fraction, known as cure rate models or long-term
survival models, are frequent topics considered in many theoretical and applied statistics articles.
The relevance of these models has increased in the last decade, mainly due to medical advances,
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536 BI-LOGNORMAL MIXTURE CURE RATE MODEL

in which a considerable fraction of patients has been cured of certain pathologies, for example, in
some types of cancer. The most common approach to the cure rate model is the standard mixture
model approached by Boag [7], advanced by Berkson and Gage [6], and later extensively studied
by Farewell [23, 24], Maller and Zhou [33], Roman et al. [42], and Mazucheli et al. [35], among
others. The standard mixture model assumes that the survival function for the entire population,
Sp(t), is a mixture of the immunes and susceptibles individuals (or components) to the cause
of failure under study, i.e., Sp(t) = p0 + (1 − p0)S(t) is an improper survival function (with
limt→∞ Sp(t) = Sp(∞) = p0), where p0 ∈ [0,1] is the cure fraction and S(t) is the proper survival
function (with S(∞) = 0) of susceptibles patients, in which the frequent choices for S(t) have
been the exponential, gamma, log-logistic, lognormal, Weibull and Gompertz distributions. We
emphasize that, although the mixture cure rate model is the most widely used in the literature,
other forms of population modeling containing cured individuals have been studied, such as:
(i) models based on the latent competing risks structure [16], see for example [48], [13], [9,
10, 14, 41], and [8], among others; and (ii) models based on defective distributions, referred
to as distributions that are not normalized to one for some values of its parameters, a concept
introduced by Balka et al. [3].

As noted and studied by Mazucheli et al. [35], we can find in practice datasets a fraction (1− p0)

of units which are subject to failures of various competing causes. In addition, the exact cause
of failure may be unknown, leading to the latent competing risks problem [31]. Thus, in or-
der to accommodate such a situation, the survival function, S(t), of the lifetime of suscepti-
ble individuals is modeled by using polysurvival models. The main advantage of such models
compared to single hazard models, such as the Weibull and log-logistic models, is the flexibil-
ity to represent hazard rate functions with unusual shapes, as bathtub and multimodal curves.
There are many applied examples of these models in the literature, for example: Kalbeisch and
Prentice [26] proposed the poly-log-logistic model for log-logistic competing risks; Berger and
Sun [5] proposed the poly-Weibull model for Weibull’s competing risks; Louzada-Neto [31]
proposed a generalized polyhazard model encompassing the poly-Weibull, poly-log-logistic and
generalized-poly-gamma models; Basu et al. [4] and Kuo and Yang [28] used the poly-Weibull
model to model masked systems in which the cause of the failure may be unknown or partially
known; Mazucheli et al. [34] presented a Bayesian inference procedure for polyhazard models
with covariates; Louzada-Neto et al. [32] analyzed the non-identifiability problem arrising on
the poly-Weibull model; Fachini et al. [22] presented several diagnostic methods for the poly-
survival model; Tsai and Hotta [46,47] generalized the traditional polyhazard model by allowing
the latent causes of failure to be dependent by using copula functions; and Demiris et al. [20]
presented methods for survival extrapolation using the poly-Weibull model.

In some situations, however, the population of interest having a component of cure and the form
of the data to be interval-censored, rather than the more common form of censoring found in
many practical problems, i.e. right-censored. Interval censoring occurs when the subjects under
study are not continuously monitored over time, but are inspected at some specific time points
only. Hence, if the event is observed, the time-to-event is known to occur between two consec-
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P. BORGES and M. CAMPOS 537

utive inspection times. Therefore, the exact lifetimes are not recorded, but it is known that the
lifetimes belong to an interval [L,R], where L is the latest inspection time before the occurrence
of the event and R is the first inspection after the occurrence of event [45]. [L,∞] represents the
case where the event of interest is not observed by the end of the last inspection time in which
case the lifetime is considered to be right-censored. Although interval-censored data have been
extensively studied in the literature, there are not many references dealing with interval-censored
data in a cure rate setup. The following references [11,25,37,43] and the references therein could
be mentioned as few examples.

As an illustration of the aforementioned problems, that is, the scenario of competing risks, long-
term survivors, and interval-censored, we consider data from a field trial of 4,992 circuit boards
extracted from [12]. The data consists on the lifetimes of the circuit boards observed during a pe-
riod of 10,000 hours of operation or until failure. A total of 95 circuit board failures are observed.
For the circuit boards that fail before the end of the experiment, engineering judgment indicates
that failure can occur due to infant failure or wearout, but the exact cause of failure is unknown.
Besides, the lifetimes of these failed units are interval-censored between two inspections, and
the remaining lifetimes are right-censored. There is a great deal of censorship (there were 4,897
censored lifetimes) in the data, evidencing a possible adequacy of the cure rate model approach.
Furthermore, the cumulative hazard plot for these dataset was shown in [35] and it was observed
that two possible causes of failure are competing. Given this, at least in principle, these behaviors
indicate that models that ignore the possibility of cure and competing risks will not be adequate
for these dataset.

Therefore, in this paper, we consider the situation where the objective is to analyse a survival
dataset in the presence of long-term survivors, in particular, when this dataset presents the un-
derlying phenomenon of latent competing risks or when there is evidence that a bimodal hazard
function is appropriated to described it. For this situation, we propose a mixture cure rate model
based on the structure proposed by Mazucheli et al. [35] with two causes of failure latent, as-
suming in our approach the hypothesis that the lifetime associated with a particular cause of
failure follows a lognormal distribution in presence of interval-censoring. For proposed model,
the explicit expression of the maximum likelihood estimators of the parameters by consider-
ing interval-censored data cannot be obtained explicitly by analytical methods, since equating
the first-order log-likelihood derivatives to zero leads us to a complicated system of non-linear
equations. In this case, we need of a iterative computer method to solve this problem. Gradi-
ent methods (such as Newton-Raphson and Fisher scoring) require finding the scoring vector
and the inverse of the Hessian matrix (or a good approximation of this matrix) associated with
the log-likelihood function, but these operations are hard to be realized analytically. In addition,
gradient methods are local search procedures that usually are trapped by a local optima when
applied to optimize multimodal functions, even when strategies of multiple runs are used. For
such reasons, we have proposed to use a well-known evolutionary algorithm, called differential
evolution (DE) to find a good approximation of a global maximum of the log-likelihood function.
DE is a nature-inspired metaheuristic developed by Storn and Prince [44] for global optimization

Trends Comput. Appl. Math., 24, N. 3 (2023)
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538 BI-LOGNORMAL MIXTURE CURE RATE MODEL

of multimodal functions defined in multidimensional spaces. It uses the principles of biological
evolution and natural selection to simulate the evolution of living organisms subject to biological
mechanisms, which lead to fittest descendants to their environment. DE does not use derivatives
of the objective function in its search procedure. Instead, it uses an ensemble of feasible solu-
tions of the optimization problem as a population of organisms that evolve by application of
operators simulating biological mechanisms such as mutation, crossover, and selection. In other
words, DE is a derivative-free algorithm that can be considered as an efficient method for the
general problem of global optimization, with many successful applications in various scientific
field [17, 21, 27, 30, 36, 38]. In our Monte Carlo simulation study, it was observed that DE con-
verges to a good approximation of a global maximum of the log-likelihood function in almost all
runs. That is, given a priori approximation error, DE converges with high success rate. Besides,
DE is robust and does not require any other method to choose good starting points to achieve
results near of a global maximum.

The remainder of this paper is structured as follows: Section 2 presents the bi-lognormal cure rate
model and describes the maximum likelihood estimation based on DE algorithm to estimate the
model parameters for interval-censored data. Section 3 presents a simulation study to compare
the performance of DE algorithm with the performance of the Newton-Raphson algorithm in
terms of bias, root mean square error, and coverage probability of the asymptotic confidence
intervals for the model parameters. An application of our model to a real dataset is presented in
Section 4. Some final comments in Section 5 conclude the paper.

2 METHODS

2.1 Bi-lognormal mixture cure rate model

The lognormal distribution assumes that lifetime T has density function given by

f (t; µ,σ) =
1√

2πtσ
exp

{
−1

2

(
log(t)−µ

σ

)2
}
, t > 0, (2.1)

where µ ∈ R is the mean lifetime logarithm (µ = E[log(T )]), just as σ > 0 is the standard de-
viation of log(T ). The corresponding survival and hazard functions are represented respectively
by

S(t; µ,σ) = Φ

(
− log(t)+µ

σ

)
and h(t; µ,σ) =

f (t; µ,σ)

S(t; µ,σ)
, (2.2)

where Φ(·) is the cumulative distribution function of the standard normal distribution. The shape
of the hazard function is unimodal, but it does not have a closed analytical form. A similar com-
ment holds for the survival function. It is important to highlight that the normal and lognormal
distributions have certain equivalences, because if a random variable has a lognormal distribution,
its logarithm has a normal distribution. For this reason, there are many mathematical properties
between the two distributions, as discussed in [2].

Trends Comput. Appl. Math., 24, N. 3 (2023)
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Now, in building our model, let T be the lifetime of an individual (or component). The mixture
cure rate model performs a T lifetime dissection as

T = η∞+(1−η)T ∗, (2.3)

where T ∗ denotes the lifetime of a susceptible (who is not a long-term survivor or immune the
cause of failure under study) and η indicates, by the values 1 or 0, whether the sampled subject
is a susceptible or long-term survivor, independently of T ∗. Let p0 = Pr(η = 1) ∈ [0,1] be the
proportion of immunes, i.e., the cure fraction. Then, the survival function of T , Sp(t), is given by

Sp(t) = p0 +(1− p0)S(t), (2.4)

where S(t) = Pr(T ∗ > t) is a proper survival function (with S(∞) = 0).

Following Mazucheli et al. [35], we suppose that an individual (or component) is subject to two
independent sources of failure cause indexed by j = 1,2. Assume further that the distribution
of lifetime related to the jth cause, X j, may be sufficiently described by a lognormal form with
density defined in Eq.(2.1). Then, the observed event time, T ∗ = min{X1,X2}, is said to follow a
bi-lognormal distribution if its survival and hazard functions are respectively

S(t; µ1,µ2,σ1,σ2) =
2

∏
j=1

S j(t; µ j,σ j) (2.5)

and

h(t; µ1,µ2,σ1,σ2) =
2

∑
j=1

h j(t; µ j,σ j), (2.6)

where S j(·) and h j(·) are the lognormal survival and hazard functions defined in Eq.(2.2). The
shape of hazard function (2.6) is unimodal or bimodal.

Remark 1. Although there are probability distributions that accommodate unimodal hazard
functions, such as inverse Weibull, log-logistic, and exponentiated Weibull distributions, the lit-
erature in this area is lacking distributions that support bimodal hazard functions. In this sense,
the bi-lognormal distribution is flexible enough to accommodate this type of hazard, which is
another motivation for its formulation.

Under these ponderations, based on bi-lognormal survival function (2.5), the survival function
(2.4) is given by

Sp(t;ϑϑϑ) = p0 +(1− p0)
2

∏
j=1

S j(t; µ j,σ j) (2.7)

where ϑϑϑ = (p0,µ1,µ2,σ1,σ2)
T ∈ ΘΘΘ = [0,1]×R2 ×R2

+. From here on, we refer to the model in
Eq. (2.7) as the bi-lognormal mixture cure rate model, or simply, the BLN model.

2.2 Maximum likelihood estimation for the BLN model

Let us consider the situation when the lifetime T in Eq. (2.3) is not completely observed and is
subject to interval-censoring, i.e., T belongs to an interval [L,R], where L is the latest inspection

Trends Comput. Appl. Math., 24, N. 3 (2023)



i
i

“A10-1714” — 2023/6/22 — 18:53 — page 540 — #6 i
i

i
i

i
i
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time before the occurrence of the event of interest and R is the first inspection after the occurrence
of event of interest. Note that [L,∞] refers to the situation where the event of interest is not
observed before the last inspection time in which case T is considered to be right censored. The
censoring indicator is thus defined as δ = I(R < ∞), which takes the value 0 if [L,∞], meaning
that the event is not observed for a subject before the last inspection time, and takes the value 1
if R < ∞, meaning that the event took place but its exact time is not known and is only known to
belong to the interval [L,R].

Based on n observations of times and censoring indicators (L1 = l1,R1 = r1,δ1), . . . ,(Ln =

ln,Rn = rn,δn), Hashimoto et al. [25] shown that the likelihood function under uninformative
censoring can be expressed as

L(ϑϑϑ ;D) ∝

n

∏
i=1

[Sp(li;ϑϑϑ)−Sp(ri;ϑϑϑ)]δi [Sp(li;ϑϑϑ)]1−δi (2.8)

where D = (l,r,δδδ ), l = (l1, . . . , ln)T , r = (r1, . . . ,rn)
T and δδδ = (δ1, . . . ,δn)

T . Using the survival
function of the BLN model, given in Eq. (2.7), the likelihood function in Eq. (2.8) can also be
expressed as

L(ϑϑϑ ;D) ∝

n

∏
i=1

(
qδi

0 [∆S(li,ri)]
δi [p0 +q0S(li)]

1−δi
)

(2.9)

where q0 = 1− p0, ∆S(li,ri) = S(li)− S(ri), and S(·) = S(·; µ1,µ2,σ1,σ2) is the bi-lognormal
survival function defined in Eq.(2.5). From the likelihood function in Eq. (2.9), the maximum
likelihood estimator (MLE) ϑ̂ϑϑ of the parameter ϑϑϑ can be carried out. Since the MLE ϑ̂ϑϑ is not
available in closed form, we need of a iterative computer method to maximize the log-likelihood
function l(ϑϑϑ ;D) = logL(ϑϑϑ ;D).

Remark 2. The likelihood function (2.9) is exchangeable, i.e., considering the BNL model, the
value of (2.9) will be the same if the MLEs of µ1 and σ1 are exchanged for the MLEs of µ2 and
σ2 and vice versa. Therefore, to avoid this identifiability problem, we consider the constraint
µ1 < µ2.

Remark 3. We consider the R programming language [39] through the DEoptim function, which
is fully documented in the DEoptim package in R [1], to compute the MLE ϑ̂ϑϑ of the parameter
ϑϑϑ . The DEoptim function implements the DE algorithm that is discussed in detail in Subsection
2.3.

Asymptotic properties of MLE ϑ̂ϑϑ are required to make inferences about the unknown parameter
ϑϑϑ of the BLN model. Following [15, 29], under certain conditions of regularity, the MLE ϑ̂ϑϑ is
asymptotically unbiased and efficient. Moreover, its distribution converges to normal with the
variance-covariance matrix given by the inverse of the Fisher information matrix. Given this,
we present an approximate method for constructing confidence intervals (CIs) for ϑϑϑ using the
asymptotic properties of ϑ̂ϑϑ . Thus, let us first denote the Fisher information matrix of ϑϑϑ by

IE(ϑϑϑ) = E
[
−∂ 2ℓ(ϑϑϑ ;D)

∂ϑϑϑ∂ϑϑϑ
T

]
. (2.10)

Trends Comput. Appl. Math., 24, N. 3 (2023)
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Since the Fisher information matrix is very complicated to be obtained due to the censored obser-
vations (censoring is random and noninformative), we resort to the observed Fisher information
matrix of ϑϑϑ obtained in the form

IO(ϑϑϑ) =−∂ 2ℓ(ϑϑϑ ;D)

∂ϑϑϑ∂ϑϑϑ
T , (2.11)

evaluated at the maximum likelihood estimator ϑϑϑ = ϑ̂ϑϑ , which is a consistent estimator of IE. The
required second derivatives are computed numerically.

The multivariate normal N 5(ϑϑϑ , I−1
O (ϑ̂ϑϑ)) distribution can be used to construct asymptotic CIs

for the parameters. In fact, an 100(1− γ)% asymptotic CI for each parameter κ is given by

CI(κ,100(1− γ)%) =

(
κ̂ − zγ/2

√
V̂ar(κ̂); κ̂ + zγ/2

√
V̂ar(κ̂)

)
, (2.12)

where V̂ar(·) is the diagonal element of I−1
O (ϑ̂ϑϑ) corresponding to each parameter (κ =

µ1,µ2,σ1,σ2, p0) and zγ/2 is the (1− γ/2) quantile of the standard normal distribution.

Remark 4. As mentioned above the asymptotic properties of MLE ϑ̂ϑϑ are valid only under certain
regularity conditions, which are not easy to verify analytically in our BLN model. Therefore, in
the next section, we investigate the asymptotic properties of the MLEs by means of a simulation
study. It is worth noting that many authors have performed simulations to assess the asymptotic
behavior of MLEs, especially when the analytical investigation is not trivial [11, 40].

2.3 MLE based on differential evolution algorithm

In general, differential evolution (DE) is a nature-inspired algorithm used for global optimization
of multimodal functions defined in multidimensional spaces [17, 38, 44]. In the context of the
maximum likelihood estimation, DE is described as follows. Let l(ϑϑϑ ;D) be a log-likelihood
function to be maximized over a given parametric space ΘΘΘ ⊆RD. For this optimization problem,
consider a population Pg of K feasible solutions in ΘΘΘ. A feasible solution is a D-dimensional
vector ϑϑϑ

g
k = (ϑ g

k1, . . . ,ϑ
g
kD) in ΘΘΘ. The index k, where k = 1, . . . ,K, labels the kth solution in Pg

and the index g represents the generation counter of the algorithm, which in turn acts to evolve
the population Pg in order to find a good approximation for an optimal solution of the problem.

DE consists of three main steps: mutation, crossover, and selection. Mutation produces a donor
vector vvvg+1

k according to the following scheme: for each solution ϑϑϑ
g
k ∈ Pg, three distinct

solutions
ϑϑϑ

g
k1
,ϑϑϑ g

k2
,ϑϑϑ g

k3
∈ Pg (2.13)

are randomly chosen to generate vvvg+1
k as follows

vvvg+1
k = ϑϑϑ

g
k1
+F · (ϑϑϑ g

k2
−ϑϑϑ

g
k3
) (2.14)

where k ̸= k1 ̸= k2 ̸= k3 and F ∈ [0,1] is a parameter controlling the amplitude of the differential
variation. Crossover implements a discrete recombination between the donor vector vvvg+1

k and

Trends Comput. Appl. Math., 24, N. 3 (2023)
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542 BI-LOGNORMAL MIXTURE CURE RATE MODEL

the current solution ϑϑϑ
g
k to produce the offspring uuug+1

k . Crossover is controlled by a crossover
probability CR ∈ [0,1] and it is implemented as

ug+1
kd =

{
vg+1

kd with probability CR
ϑ

g
kd otherwise

(2.15)

for all d = 1, . . . ,D. After the mutation step, if an element of vvvg+1
k is found to violate the bounds

of the parametric space ΘΘΘ, it is reset in such a way that the bounds are respected. An analogous
procedure is done for uuug+1

k after the crossover step. Finally, the selection step is used to select the
best solution between uuug+1

k and ϑϑϑ
g
k to go to the next generation. Therefore, we have

ϑϑϑ
g+1
k =

{
uuug+1

k if l(uuug+1
k )≥ l(ϑϑϑ g

k)

ϑϑϑ
g
k otherwise.

(2.16)

The population Pg+1 in generation g+1 consists of the set of solutions {ϑϑϑ
g+1
k : k = 1, . . . ,K}.

The process is repeated until some stopping criterion is met. At the end of the evolution process,
DE returns the best solution ϑϑϑ ∗ found in the last population (corresponding to last generation
of the algorithm) and its objective value l∗ = l(ϑϑϑ ∗;D), which is the value of the log-likelihood
function on ϑϑϑ ∗.

The essential steps of DE algorithm are summarized as the pseudo code shown in Algorithm
1. The parameter F is commonly chosen in the range [0.4,1], CR is a probability in the range
[0,1], and K is commonly chosen between 5D and 10D, where D is the dimensionality of the
parametric space ΘΘΘ ⊆ RD. Variants of DE algorithm are discussed in the DE literature. These
different DE strategies basically differ in the way that the donor vector is created and the way
that the offspring is generated. In order to characterize these strategies, a general notation was
adopted in the literature, namely: DE/x/y/z, where x refers to the mutation scheme to create the
donor vector, y indicates the number of difference vectors used in the mutation scheme, and z
indicates the crossover scheme.

The DE strategy discussed in this subsection is referred to as DE/rand/1/bin (see Algorithm 1),
indicating that the donor vector was created from three solutions randomly chosen and with only
one difference vector, and that the offspring was generated using the binomial crossover scheme.
Readers may be referred to [38] and [17] for more details.

Finally, it is important to note that the DEoptim package in R [1] implements several DE
strategies, including the strategy DE/rand/1/bin. The structure of the DEoptim function in the
DEoptim package is familiar to readers who are accustomed to the R syntax.

Trends Comput. Appl. Math., 24, N. 3 (2023)
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Algorithm 1 Differential Evolution - DE/rand/1/bin

Require: D,K,F ∈ [0,1] and CR ∈ [0,1]
1: g = 0
2: Initialize the population P0 with K solutions
3: repeat
4: for each solution ϑϑϑ

g
k in Pg do

5: Select k1,k2, and k3 such that k ̸= k1 ̸= k2 ̸= k3

6: Generate vvvg+1
k = ϑϑϑ

g
k1
+F · (ϑϑϑ g

k2
−ϑϑϑ

g
k3
)

7: for d = 1 to D do
8: r ∼U(0,1)
9: if r <CR then

10: ug+1
kd = vg+1

kd
11: else
12: ug+1

kd = ϑ
g
kd

13: end if
14: end for
15: if l(uuug+1

k )≥ l(ϑϑϑ g
k) then

16: ϑϑϑ
g+1
k = uuug+1

k
17: else
18: ϑϑϑ

g+1
k = ϑϑϑ

g
k

19: end if
20: end for
21: Pg+1 = {ϑϑϑ

g+1
k : k = 1, . . . ,K}

22: ϑϑϑ ∗ = Best solution in Pg+1 and l∗ = l(ϑϑϑ ∗)

23: g = g+1
24: until some termination condition is met
25: return ϑϑϑ ∗ and l∗

3 SIMULATION RESULTS

As noted by Mazucheli et al. [35], in lifetime studies, it is common to find datasets with a small
or moderate amount of observed lifetimes. In addition, in the dataset in Section 4, we can observe
the presence of a large amount of censoring. Therefore, a Monte Carlo simulation study was con-
ducted to assess the performance of the MLEs via DE algorithm and Newton-Raphson method
in small and moderate samples when censoring is observed. To this end, we examine three mea-
sures, namely: the bias, root mean square error, and probability of coverage of the asymptotic CIs
for the parameters of BLN model. The results were obtained from 1,000 Monte Carlo repetitions
and the simulations were carried out in the R programming language. In each replication, we
consider the BLN model in Eq. (2.7) with parameters µ1 = 4.0, µ2 = 12.0, σ1 = 6.5, σ2 = 0.2,
and the cured fraction fixed in p0 = 0.3, 0.6 and 0.9 when sample size n = 50, 100, 200, 300,
400 and 500. To introduce random censoring, the distribution of censoring times is assumed to
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be exponential with rate α , which is set to control the proportion of right-censored observations.
Interval-censored data (Li,Ri,δi) are generated by using the following steps, according to the
same strategy described in [37]:

Algorithm 2 Interval-censored data generated according to the BLN model

Require: µ1,µ2,σ1,σ2, p0, α , and n
1: Define values for µ1,µ2,σ1,σ2, p0, and α .
2: For the ith observation, draw ui ∼ Uniform(0,1) and Ci ∼ Exponential(α), where α is set to

control the proportion of right-censored observations.
3: If ui < p0, set Li =Ci, Ri = ∞ and δi = 0; otherwise, generate X j lognormal random variable

with parameters µ j and σ j, j = 1,2 and set T ∗
i = min{X1,X2}.

4: If min{T ∗
i ,Ci}=Ci, set Li =Ci, Ri = ∞ and δi = 0.

5: If min{T ∗
i ,Ci} = T ∗

i , δi = 1 and generate leni from Uniform(0.2,0.7) and li from Uni-
form(0,1). Then, create intervals (0, li],(li, li + leni], . . . ,(li + k× leni,∞), k = 1,2, . . . , and
choose (Li,Ri) that satisfies Li < T ∗

i ≤ Ri.
6: Repeat steps 2 to 5 for all i = 1, . . . ,n. The data set for the ith observation is (Li,Ri,δi),

i = 1, . . . ,n.
7: return {(Li,Ri,δi) : i = 1, . . . ,n}

The generated data have approximately 100(p0 +0.05) of censoring data, which fits in the con-
text of models with a cure fraction p0. Figures 1-3 list the bias of the five parameters of the
BLN model and the corresponding root mean squared errors (RMSEs) and the empirical cover-
age probabilities (CPs) of 95% of the asymptotic CIs. The results indicate that: (i) with respect
to the performance of bias, RMSEs for parameters, the DE algorithm is slightly better than the
Newton-Raphson method in most simulation combinations; (ii) as expected and independent of
the estimation algorithm, bias and RMSEs decrease as sample size increases, while the amount
of censorship induces increases, especially for small samples; (iii) the empirical CPs of the pa-
rameters µ1, µ2 and p0 are closer to nominal levels when n increases, while σ1 and σ2 are always
less than nominal level, worsening as the proportion of censorship increases. Although the CPs
for the σ1 and σ2 parameters improves for a large sample size, we still find it unsatisfactory even
for n as large as 500, especially when the censorship proportion is very large. Therefore, the con-
fidence interval based on the asymptotic normality of maximum likelihood estimators should not
be used unless n is considerably large, which is the situation studied in our application of Sec-
tion 4. Other parameter adjustments were also used, however, the performance of the parameter
estimation procedure did not present significant differences for the results of Figures 1-3.
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Figure 1: Bias, RMSEs of the MLEs of BLN model parameters with censoring percentages
100(p0 = 0.3+0.05).
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Figure 2: Bias, RMSEs of the MLEs of BLN model parameters with censoring percentages
100(p0 = 0.6+0.05).
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Figure 3: Bias, RMSEs of the MLEs of BLN model parameters with censoring percentages
100(p0 = 0.9+0.05).

Further, we give the plots of the empirical distributions of µ̂1, µ̂2, σ̂1, σ̂2 and p̂0 when n = 500
and 100(p0 = 0.9+0.05) . The plots displayed in Figure 4 indicate that the normal distributions
provides reasonable approximations to the distributions of these estimators.
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Figure 4: Histogram for the MLEs of µ1, µ2, σ1, σ2 and p0 when n = 500 and 100(p0 = 0.9+
0.05).

Trends Comput. Appl. Math., 24, N. 3 (2023)



i
i

“A10-1714” — 2023/6/22 — 18:53 — page 549 — #15 i
i

i
i

i
i

P. BORGES and M. CAMPOS 549

4 APPLICATION TO THE CIRCUIT BOARD DATA

To verify the performance of the BLN model on real-world problems, we conducted an analysis
of the circuit board dataset (initially described in Section 1), using the BLN model as a parametric
model appropriated to describe this dataset. In this application, the performance of the BLN
model was compared with the performances obtained by other models proposed in the literature
to deal with interval-censored data in a cure rate setup, namely: (1) the negative binomial Weibull
(NBW) model [25], (2) the COM-Poisson (CP) model [37], and (3) the extended generalized
gamma accelerated failure time (EGG-AFT) model [43], whose the respective survival functions
are given by follows:

Sp(t;α,θ ,τ,λ ) =

{
1+αθ

[
1− exp{−

( t
τ

)λ

}
]}− 1

α

, t,θ ,τ,λ > 0,α >− 1
θ
, (4.1)

Sp(t;η ,φ ,γ1,γ2) =
∑

∞
j=0

(
η exp{−(γ2t)

1
γ1 }

) j

( j!)φ

∑
∞
j=0

η j

( j!)φ

, t,η ,φ ,γ1,γ2 > 0, (4.2)

Sp(t; µ,σ ,q, p0) = p0 +(1− p0)SEGG(t; µ,σ ,q), t > 0,µ,q ∈ R,σ > 0, (4.3)

where p0 ∈ [0,1],

SEGG(t; µ,σ ,q) =


1− 1

Γ(q−2)

∫ q−2 exp(qv)
0 xq−2−1 exp(−x)dx if q > 0

1
Γ(q−2)

∫ q−2 exp(qv)
0 xq−2−1 exp(−x)dx if q < 0∫

∞

v
1√
2π

exp
(
− x2

2

)
dx if q = 0

(4.4)

and v = log(t)−µ

σ
.

To compare these models, we consider the maxlogL(·) value, the Akaike Information Criterion
(AIC), and the Bayesian Information Criterion (BIC). AIC and BIC are respectively defined
by −2logL(ϑ̂ϑϑ g)+ 2κ and −2logL(ϑ̂ϑϑ g)+κ log(n), where ϑ̂ϑϑ g is the MLE of the g-model, κ is
the number of estimated parameters in the g-model, and n is the sample size. The best model
corresponds to the lowest values of maxlogL(·), AIC, and BIC.

Given the above considerations, we have adjusted the BLN, NBW, COM-Poisson and EGG-AFT
models using the DE algorithm for parameter estimation. Table 1 presents the maxlogL(·), AIC,
and BIC values for all models considered. Based on these results, we can conclude that the BLN
model outperforms all the other models in comparison.

Table 1: The maxlogL(·) values and AIC/BIC criteria for all fitted models.

Criterion BLN NBW COM-Poisson EGG-AFT
maxlogL(·) -727.952 -759.473 -760.005 -759.315
AIC 1465.903 1526.946 1528.010 1526.631
BIC 1498.482 1553.009 1554.073 1552.694
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Table 2: MLE and 95% CIs for the parameters of the BLN model.

Parameter Estimate 95% CI
µ1 8.679 [6.737 , 10.621]
µ2 9.018 [8.912 , 9.124]
σ1 6.399 [4.653 , 8.145]
σ2 0.181 [0.089 , 0.273
p0 0.979 [0.975 , 0.983]

Furthermore, in order to assess if the BLN model is appropriate, Figure 5 shows plots of the
empirical survival function estimates using the generalized Turnbull’s nonparametric estimator
proposed by Dehghan and Duchesne [18] against the respective predicted values obtained from
the BLN, NBW, COM-Poisson and EGG-AFT models. Clearly, we observe from Figure 5, that
the predicted values obtained from the BLN model are the closest to the values of the non-
parametric estimator, suggesting that this model give a satisfactory fit to the data, thus going
against the results from the Table 1. In a way, this result corroborates our research hypothesis,
since the BLN model was proposed to have properties that can adequately describe specific
characteristics of the dataset considered in our analysis, namely: interval censoring, presence
of long-term survivors and latent competitive risks. We consider the R programming language
through the gte function of the gte package in R [19] to compute the survival function estimates
using the generalized Turnbull.
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Figure 5: Turnbull estimate against the survival functions estimated by the BLN, NBW, COM-
Poisson and EGG-AFT models.
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5 CONCLUSIONS

In this paper, based on interval-censored data, we consider maximum likelihood estimation via
DE algorithm to estimate the parameters of a parametric mixture cure model, referred to as the bi-
lognormal mixture rate model, or simply, the BLN model. The BLN model can be used when the
dataset particularly presents the underlying phenomenon of latent competing risks or when there
is evidence that a bimodal hazard function is appropriated to described it. This feature makes
the BLN model quite flexible in terms of its use to describe real datasets and represents its main
advantage over other cure rate models found in the literature. A Monte Carlo simulation study
was developed, indicating that the MLE via DE algorithm outperforms the Newton-Raphson
method in most cases in terms of bias, root mean square error, and the coverage probability of
confidence intervals. Besides, DE algorithm is robust and does not require any other method
to choose starting points to obtain good approximations of MLE. The practical importance of
the proposed methodology was demonstrated in a real-world interval-censored dataset, where it
provided a good fit.
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APPENDIX: R CODE

The following R code can be used to obtain the ML estimates for parameters of the BLN model.

library(DEoptim)

##-----------------------------------------------------------------

# Circuit board data

# V. Chan and W.Q. Meeker, A failure-time model for infant mortality

# and wearout failure models,IEEE Trans. Reliab. 35 (2000),

# pp. 550-555

##-----------------------------------------------------------------

y.left <- c(rep(0,10),rep(1,1),rep(2,3),rep(5,1),rep(10,2),rep(20,6),

rep(50,3),rep(100,2),rep(200,8),rep(500,4),rep(1000,5),

rep(2000,6),rep(5000,3),rep(6000,9),rep(7000,10),

rep(8000,16),rep(9000,7),rep(10000,4897))

y.right <- c(rep(1,10),rep(2,1),rep(5,3),rep(10,1),rep(20,2),rep(50,6),

rep(100,3),rep(200,2),rep(500,8),rep(1000,4),rep(2000,5),

rep(5000,6),rep(6000,3),rep(7000,9),rep(8000,10),

rep(9000,16),rep(10000,7),rep(Inf,4897))

status <- c(rep(1,96),rep(0,4897))

##-----------------------------------------------------------------

# Log-likelihood function

##-----------------------------------------------------------------

log.vero <- function(theta1){

mu2 <- theta1[1]

mu1 <- theta1[2]

sigma2 <- theta1[3]

sigma1 <- theta1[4]

p <- theta1[5]

lvero <- sum(ifelse(status==1,log((1-p)*pnorm((-log(y.left)+mu1)/sigma1)

*pnorm((-log(y.left)+mu2)/sigma2)-(1-p)*pnorm((-log(y.right)+mu1)/

sigma1)*pnorm((-log(y.right)+mu2)/sigma2)),log(p+(1-p)*pnorm((

-log(y.left)+mu1)/sigma1)*pnorm((-log(y.left)+mu2)/sigma2))))

return(-lvero)

}

##-----------------------------------------------------------------

# Obtaining the ML estimates

l <- c(0,0,0,0,0)

u <- c(20,20,20,20,1)

mle <- DEoptim(log.vero, lower=l, upper=u, DEoptim.control(NP = 50,

itermax = 500,trace=FALSE))

summary(mle)

##-----------------------------------------------------------------
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