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Abstract. The aim of this work is to compare some ARMA spectral separated
estimation methods based on the modified Yule-Walker equation and least squares
method with the Maximum-Likelihood estimator, using the convergence curve of
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1. Introduction

The autoregressive moving average (ARMA) spectral estimation is considered a
topic of interest in several areas of statistics, engineering, econometrics, etc [3], [9],
[13]. Different methods have been studied, among which, comprising two focuses, we
can point out: 1) the optimal methods, such as the maximum likelihood estimates,
which are computational difficult to treat, [3], [9], [13]; and 2) the sub-optimal me-
thods based on the Yule-Walker equations, which employ linear equations in the
parameters estimation [9], [10], [13], [5].

The methods of estimation for the autoregressive moving average (ARMA) pro-
cess have been widely studied, mainly concerning the separate estimation of pa-
rameters, where Yule-Walker equations are used to estimate the AR process pa-
rameters, and following this, the MA process parameters are estimated through the
Durbin method [9], [13].

In this article a new method is proposed of ARMA spectral estimation based on
the least squares method of the modified Yule-Walker equations [9], [13], [8]. The

1manoel@fct.unesp.br.
2yuzo@decom.fee.unicamp.br.
3tarumoto@fct.unesp.br.



176 Bezerra, Iano and Tarumoto

main idea of this method is to perform an AR filtering in the signal by using the
MA estimates obtained through the Durbin method. This filtering generates a new
estimate of the signal, which will be used to estimate the parameters.

Initially, in section 2, the ARMA model and its main features have been pre-
sented. Section 3 is devoted to the separate estimation methods using Yule-Walker
equations. Section 4 shows the development of the method proposed, having as a
basis the methods described in section 3. Section 5 shows applications using Monte
Carlo simulations for 2 numerical examples.

The precision of the method proposed was analyzed in relation to other sepa-
rate estimation methods which use the Yule-Walker equations and its convergence
through the parametric bootstrap method, is presented in [1]. In order to compare
the accuracy of the methods, the relative error in relation to the true values of
parameters, and the average variation coefficient of the estimates have been used.

2. The ARMA Spectral Model

Being xn an ARMA stationary random process of order (p, q), defined by the fol-
lowing equation of differences

p∑

i=0

aixn−i =

q∑

l=0

blεn−l, (2.1)

assuming a0 = 1, 1 ≦ n ≦ N

where ai, i = 0, 1, ..., p; bl, l = 0, 1, ..., q, are the parameters of the process and εn

is a presumed white noise with zero mean and variance σ2. Thus, the parameters
vector to be estimated are defined as:

θ =
[
a1, ..., ap, b0, b1, ..., bq, σ

2
]
. (2.2)

From the process xn of the equation (1) the autocorrelation function of xn is
defined as:

rk = E [xnxn−k] . (2.3)

From the autocorrelation function rk, the power spectral density can be defined

S (f) =
∞∑

k=−∞

rk exp (−j2πkf) . (2.4)

The function S(f) is the transformed of Fourier of rk, and presumably non-
negative and periodical in frequency with period 1 Hz, and assumed to be band
limited to ±0.5 Hz [3],[9]. By using the results described above we can also define
more specifically the power spectral density (PSD) of the ARMA process, as [10]
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S(f) =

σ2

∣∣∣∣
q∑

k=0

bk exp(−j2πfk)

∣∣∣∣
2

∣∣∣∣1 +
p∑

k=1

ak exp(−j2πfk)

∣∣∣∣
2 . (2.5)

The problem of ARMA spectral estimation consists initially of selecting the
suitable model so that we can estimate the parameters vector of the process and then
replace the estimates value in the spectral density function. This parametrization
of function S(f) is obtained by using the parameter vector θ.

3. Estimation Methods via Yule-Walker Equations

The maximum-likelihood function of the ARMA model is non-linear in the MA
parameters and requires a highly interactive computational effort, which hinders the
attainment of joint and efficient estimates of AR and MA parameters, and it is many
times unfeasible in practice. However, efficient estimates of these parameters can
be obtained separately by using linear operations in the AR part, and by applying
the Durbin method in the MA part [9], [13].

Methods which use this procedure are known as separate estimation methods.
Besides, the methods to be presented here have as their main characteristic the use
of Yule-Walker equations [9], [5], [8].

In separate spectral estimation for the ARMA model there are several methods
which use Yule-Walker equations, as previously mentioned in introduction. Among
these methods the best known are the ones using modified Yule-Walker equa-
tions (MYWE) and the method of least squares modified Yule-Walker equations
(LSMYW). The latter uses more than p linear equations in the parameters estima-
tion. In both methods errors can be weighted in order to stabilize the variance.
Moreover, these methods provide similar results for ARMA spectral estimation.

3.1. Modified Yule-Walker Equations Method

This method is considered to be the simplest for the separate estimation of the
ARMA model. Initially we know that the AR parameters of the ARMA process are
related to the autocorrelation function r(k), as a set of linear equations, that is,

rk +

p∑

i=1

airk−i = 0, k ≧ q + 1. (3.1)

The equations above are known as modified Yule-Walker equations (MYWE). The
autocorrelation matrix of (3.1) is Toeplitz, but it does not ensure its non-singularity.
Through these equations one can find the parameters of AR and MA models sepa-
rately. For the estimation of the parameters of the MA process the Durbin method
can be applied [9].

In many works on ARMA spectral estimation it has been seen that, in general,
the MYWE method does not produce good quality estimates for the parameters of
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the AR process of the ARMA model. In such cases the models have poles far from
and zeros near the unit circle (UC), however their angular positions are near each
other.

3.2. Least Squares Yule-Walker Method

This method is an attempt to reduce the variance of the MYWE estimator and
improve the quality of its estimates. It is known that the autocorrelation function
of the ARMA process is defined as in expression (3.1) [8].

From the MYWE we will describe the least squares method of the modified
Yule-Walker equations (LSYW) initially for the estimation of the parameters of
the AR process, given that the expanded equations of Yule-Walker for the ARMA
process can be represented as [9], [10], [13]

r = − Ra (3.2)

where R is the expanded autocorrelation matrix (M − q) × p, which is given by

R =





rq rq−1 · · · rq−p+1

rq+1 rq · · · rq−p+2

...
...

. . .
...

rM−1 rM−2 · · · rM−p





and r is the autocorrelations vector (M − q) × 1 given by

r = [rq+1, rq+2, . . . , rM ]T .

The consistent estimates of AR parameters vector a = [a1, ..., ap]
T can be ob-

tained by (3.2). As M − q > p, there are more equations than unknowns. In order
to estimate the autocorrelations an error e of size (M − q)×1 should be introduced
so that

r̂= −R̂a + e

where r̂ and R̂ correspond to r and R estimators, respectively.
It is convenient to use the unbiased autocorrelations rk to estimate r and R, so

that the bias of approximation error is null. Thus, the method of weighted least
squares can be applied to find the vector which minimizes the sum of squares of
weighted errors, that is, [8]

ρ = eHWe (3.3)

where w(k) is a decreasing weight positive sequence and W is a dimension matrix
(M − q) × (M − q).

Substituting the equation of the errors

e =r̂+R̂a (3.4)

in the equation (3.3) one has
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ρ =
(
r̂+R̂a

)H

W
(
r̂+R̂a

)
. (3.5)

Making the products above in the equation one has the following results

ρ = aHR̂HWR̂a+r̂HWRHa + aHR̂HWr̂ + r̂HWr̂. (3.6)

Taking the partial derivatives ∂ρ
∂a

= 0 in expression (3.6),

∂ρ

∂a
= 2R̂HWR̂a + 2R̂HWr̂ (3.7)

one can obtain the â estimator of the AR process, which is given by

â = −
(
R̂HWR̂

)
−1

R̂HWr̂. (3.8)

The matrix R̂HWR̂ is usually positive definite, Hermitian and the â estimator
may not be a minimum-phase estimator [9], [10]. The problem is to choose the
suitable kind of weights to correct the effect of variance of the autocorrelations
estimates. A suggestion could be using windows (N −k)3 and (N −k)4. It has been
observed that the weight reduces the compromise when choosing the number of
equations, once it automatically reduces the importance of participation of errors
ek as k increases. If matrix W is equal to the identity (unit weights), the AR
estimator will be in the form

â= −
(
R̂HR̂

)
−1

R̂H r̂. (3.9)

The estimation of AR parameters of the ARMA model through LSYW method
can be interpreted as an application of the covariance method considering the set
of values {r̂q−p+1, r̂q−p+2, ..., r̂M} [9], [10]. For the estimation of the parameters of
the MA process the Durbin method can be applied again.

The performance of the LSYW is usually better than the modified Yule-Walker
equations method (MYWE), where M = p + q (number of equations), using only p

equations, but the results will also depend on the kind of spectrum to be estimated
[10], [5].

4. Proposed Method using AR Filter in MA Esti-

mates

The novelty of the method proposed for separate estimation consists of making a
new AR filtering of the signal xn by using the estimates of the MA parameters
obtained with the Durbin method, thus determining a new signal x̂n as shown in
Figure 1 and according to the expression below:

x̂n = b̂0xn + b̂1xn−1 + ... + b̂qxn−q. (4.1)
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Figure 1: Filtering of the signal through an AR filter so as to obtain a new estimate

In Figure 1 the Y (z) = b̂0 + b̂1z
−1 + ... + b̂qz

−q is the system transfer function.
This procedure is like repeating the second step of the Durbin method. This is the
key idea of the separate estimation method [9], [8].

It is known that an AR(∞) process (large order) can be a good approach for
the MA process [3], [9], [10], [13]. In this method a new signal estimate x̂(n) will
be used to obtain a new AR estimate through the LSYW method in order to, then,
determine a new MA estimate through the Durbin method. The key idea of the
method proposed is, from the AR filtering, to obtain a new signal, which will provide
better estimates when the parameters of the ARMA process are reestimated. This
method has a computational cost a little grater than the other methods because it
uses an extra procedure for calculations.

5. Numerical Examples

In this section we will describe the Monte Carlo simulations [7], [11], [14], in order to
obtain the relative average error of the estimates, and observe of the convergence the
methods with relation each of the ARMA processes, with different characteristics.
The models are: 1) ARMA(4,2) [12] and the 2) ARMA(5,5) [6]. The simulation
and the programs were implemented in MATLAB. The methods used are:

1. Modified Yule-Walker Equations (MYWE);

2. Least Squares Modified Yule-Walker Equations (LSYW) (W is equal to the
identity);

3. Least Squares Modified Yule-Walker Equations with AR filtering (LSYWp -
Proposed Method) (W is equal to the identity);

4. Maximum-Likelihood Estimator (MLE).

In order to evaluate the performance of the methods the random data have been
generated from the same seed and that change it with the sequences, i = 1, ..., B,

[2] and B is the replications number in each simulations. We conduced this using
two size N = 256 and N = 1024. In the first, we use B = 1000, ..., 20000, and
in the second, this numbers was B = 1000, ..., 10000. The random numbers, was
generated from a Gaussian distribution, that is white noise, with mean equal zero
and variance equal one, then generated a signal of the process ARMA.

The modified covariance was criterion in the Durbin method [9], and the large
AR process order was choose using the criterion describes by [4]. For the number
of Yule-Walker equations, we considered two cases in each example. In the first
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example was used ARMA(4,2) model with M = 10, L = 13 (N = 256) and M =
10, L = 506 (N = 1024) and in the second example we used ARMA(5,5) model
M = 20, L = 90 (N = 256) and M = 20, L = 325 (N = 1024).

Comparisons among the methods have been made by using the relative error
(RE) of the estimates mean in relation to the true values of the parameters of the
ARMA theoretical models. The statistics relative error (RE) and relative mean
error (RME) are defined as follows:

REj =

√√√√√
m∑

i=1

(
θ̂
(j)
i − θi

)2

∑n
i=1 θ2

i

and RME =
1

B

B∑

j=1

REj . (5.1)

Where θi is the i-th value of the true parameter; θ̂
(j)
i is the i-th estimates of the

j-th estimate of the B bootstrap repetitions, adopting m = p for the AR estimates
and m = q for the MA estimates. The results of the Monte Carlo simulations are
presented in graphics which show the RME of the estimates of the parameters. The
simulations and programs have been implemented in MATLAB.

The ARMA(4,2) model presented in [12] is given by

xn−1.6402xn−1+2.2044xn−2−1.4808xn−3+0.8145xn−4 =

= εn+1.5857εn−1+0.9604εn−2.
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Figure 2: Relative Mean Error of the Model ARMA(4,2) - MYWE o-o; LSYW *-*;
LSYWp +-+; MLE –; a) and b) N=256; c) and d) N=1024.

The ARMA(5,5) model presented in [6] is given by

xn−0.8713xn−1−1.539xn−2+1.371xn−3+0.6451xn−4−0.5827xn−5 =

= εn−1.051εn−1+0.0718εn−2+0.05164εn−3+0.5322εn−4−0.5735εn−5.
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Figure 3: Relative Mean Error of the Model ARMA(5,5) - MYWE o-o; LSYW *-*;
LSYWp +-+; MLE –; a) and b) N=256; c) and d) N=1024.

Table 1: Medians and p-values (probability error) - ARMA(4,2)
N=256 N=1024

Method AR(4) MA(2) AR(4) MA(2)

p-value median p-value median p-value median p-value median

MYWE ≤0.001 0.0359 0.153 0.0014 0.006 0.1151 0.008 -0.0049

LSYW ≤0.001 0.0051 0.004 0.0002 0.006 0.0040 0.009 -7.5E-4

MLE ≤0.001 -0.0024 ≤0.001 0.0238 0.006 0.0009 0.008 -0.0079

The figure 2 present the RME of the example 1 with respect the AR and MA
parts. The figure 3 present the RME of the example 2 with respect the AR and
MA parts. In this figures we observe that RME estimates are different among some
methods, but we do not know if they are significant. Therefore the statistic tests
are necessary.

The RME estimates are analyzed through the Wilcoxon statistical test in order
to know if there is a significative difference among the RME curves. The comparison
were based in the hypotheses: H0:The RME of the method A is equal of the RME
of the proposed method, the null hypotheses (difference =0) versus Ha: The RME
of the method A is different of the proposed method (difference 6=0). This results
we can observed in Table 1 (ARMA(4,2)) and in Table 2 (ARMA(5,5)).

In the table 1, in order to model ARMA(4,2), it can be observed that: the
proposed method had curves of convergence better than the methods MYWE and
LSYW (p-value ≤ 0.001), in the estimates AR, while in the estimates MA, was
shown better than the methods LSYW (p-value = 0.004) and MLE (p-value ≤
0.001), and equal MYWE, when N = 256. To N = 1024, the proposed method
introduced curves of convergence better regarding the all of the three studied meth-
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Table 2: Medians and p-values (probability error) - ARMA(5,5)
N=256 N=1024

Method AR(5) MA(5) AR(5) MA(5)

p-value median p-value median p-value median p-value median

MYWE 0.004 0.1650 0.076 0.0758 0.006 0.6657 0.006 0.3224

LSYW 0.681 -0.0025 0.467 -0.0043 0.006 0.0772 0.009 0.0498

MLE 0.185 0,0684 ≤0.001 0.7800 0.006 -0.0531 0.006 1.024

ods (p-value = 0.006), for estimates AR. Already for the estimates MA, the other
methods were shown better.

In the table 2, regarding the model ARMA(5,5), it can be notice that the con-
vergence curve of the proposed method was better than MYWE (p-value = 0.004),
and equal to the other two methods, in the estimates AR. In the estimates MA,
it was better than MLE and equal to the methods MYWE and LSYW (p-value
= 0.006), when N = 256. To N = 1024, the proposed method, also showed through
the tests, that yours curves of convergence is better than the methods: MYWE and
LSYW, for the estimates AR; and also better than all of the three methods for the
estimates MA (p-value = 0.006, 0.009 and 0.006, respectively).

6. Conclusion

In this article it have been presented the convergence of some methods of sepa-
rate estimation and the method of Maximum-Likelihood, for the model spectral
it ARMA, among them a proposed method of separate estimation. Through the
Wilcoxon statistical test, it was possible to verify that the curves of convergence
of RME of the estimates of the parameters had some significant results, showing
that, in some cases the proposed method better than the other methods. Therefore,
depending on the model in study, the estimation methods for the model ARMA,
they can have similar results, or one of them can be shown more satisfactory than
the others, beside these methods of separate estimate used the equations of Yule-
Walker.

Resumo. Neste trabalho comparamos alguns métodos de estimação separada es-
pectral ARMA, baseados nas equações de Yule-Walker e no método de mı́nimos
quadrado, com o estimador de máxima verossimilhança, utilizando curvas de con-
vergência do erro médio relativo, via simulações de Monte Carlo.
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