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Abstract.This work presents studies of the small signal stability applied to an

electric power system with the consideration of the Power System Stabilizer in

operation. The Power Sensitivity Model is used to represent the electric power

system. Information about the stability of the electric power system when subjected

to small disturbances is obtained simulating a test system.
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1. Introduction

Small-Signal Stability is a fundamental condition for a safe and reliable operation of
Electric Power Systems, so this topic is fairly studied in the literature [2, 5, 8]. This
paper presents results of small-signal stability studies of a multi-machine power
system, considering the Power System Stabilizers (PSS) as additional source of
damping to low-frequency electromechanical oscillations,(local modes - character-
ized by frequencies in the range of 0,8 Hz to 2,0 Hz). Since PSS is a local controller,
a local signal, deviations of generator angular speed [9], is used as its input. The
Power Sensitivity Model (PSM) is used to represent the electric power system [4].
Participation factors and residues will show which generators should be equipped
with PSS [1, 6, 7, 12]. The phase compensation method will be used to adjust the
PSS parameters. Simulations of the South-Brazilian Reduced [10] system will give
assessments and conclusions about stability of power systems.

2. Power Sensitivity Model

Power Sensitivity Model is a linear analysis tool for the electric power systems.
The fundamental concept is the application of active and reactive power balance
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for all the buses (nodes) of the system as shown by equations (2.1), where Ωk is the
neighbour buses set of a generic bus k [4].

∆PGk − ∆PLk −
∑

m∈Ωk

∆Pkm = 0

∆QGk − ∆QLk −
∑

m∈Ωk

∆Qkm = 0
(2.1)

In equations (2.1) subindices G, L and km represent respectively power gener-
ated, load power and power flow through a transmission line.

The PSM multi-machine modeling adopted in this paper uses as dynamical
variables for each generator the angular velocity (ω), the rotor angle (δ), the internal
voltage of quadrature axis (E

′

q) and the electrical field voltage (Efd). The input
variables of this system are defined as the input mechanical power (Pm) and the
reference voltage (Vref ) for the automatic voltage regulator of each generator. The
buses are represented by the module (V ) and angle (θ) of terminal voltage.

The variables described above and the equations defining them must be lin-
earized around an equilibrium point in a way on which they could be grouped in
state variable vectors (∆x), algebraic variables (∆z) and input variables (∆u), as
shown in the equations (2.2).

[

∆x
]

=
[

∆ω ∆δ ∆E
′

q ∆Efd

]

[

∆z
]

=
[

∆V ∆θ
]

[

∆u
]

=
[

∆Pm ∆Vref

]

(2.2)

The dynamical behavior of the system is represented on the time domain ac-
cording to the equation (2.3).

[

∆
·
x

0

]

=

[

J1 J2

J3 J4

] [

∆x
∆z

]

+

[

B1

B2

]

∆u (2.3)

The electric power system representation on the frequency domain, shown on
Figure 1, is obtained from Laplace Transform of linearized system equations for a
generic generator k.

3. Modal Analysis

3.1. Eigenvalues

The Small-Signal Stability of electric power systems is given by the eigenvalues of
the state matrix A. Eigenvalues may be real or complex. A real eigenvalue represents
a non-oscillatory mode, so if it is positive it corresponds to an aperiodic instability.
However, a complex pair of eigenvalues corresponds to a particular oscillation mode.
The real part of complex eigenvalues provides the damping coefficient, while the
imaginary part gives the oscillation frequency. Thus, if the real part is negative,
these oscillations decrease. In the case of some real and positive value, oscillations
increase due to the lack of damping. The eigenvalues (λ) of the state matrix are
given by the non-trivial solutions of the equation (3.1).
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Figure 1: Power Sensitivity Model - Block Diagram.

Aϕ = λϕ (3.1)

Equation (3.2) can be written from equation (3.1), whose solutions are the eigen-
values of state matrix. Equation (3.2) is well recognized as the characteristic equa-
tion of the system.

det (A− λI) = 0 (3.2)

3.2. Eigenvectors

For each eigenvalue λ of the state matrix, there are right (ϕ) and left (ψ) eigenvectors
which satisfy the equations (3.3) and (3.4), respectively.

Aϕi = λiϕi (3.3)

ψiA = λiψi (3.4)

In the stability analysis from eigenvectors some variables are defined, which can
be observed (n state variables) and its contribution for each unstable oscillatory
mode through participation factors fpni can be obtained as follows according to
the equation (3.5).

fpni = ϕinψni (3.5)

The participation factor shows the relative participation of the state variable n in
the mode i. These indices are dimensionless quantities that aid to identify possible
sources of problems related to the poorly damped and/or unstable modes. From
the participation factors the best generators to be equipped with PSS to provide
effective degree of damping can be determined [1, 3, 11].
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3.3. Residues

Another way to obtain the best place to install PSS controllers is to use the residues
of the open-loop transfer function of this device. The residues (Rijk) provide in-
formation about the observability and controllability of the PSS input-output set
(Cj − Bk) in a predefined eigenvalue (λi) according to the right (ϕi) and left (ψi)
eigenvectors as described in equation (3.6).

Rijk = CjϕiψiBk (3.6)

Therefore, the bigger the residues obtained the bigger the damping insert on the
system. It is emphasized that the residues obtained from each possible installation
of the PSS provide the best localization of these devices on the system [6].

4. Power System Stabilizer

The PSS is designed to introduce an electrical torque in phase with the rotor speed
variations (damping torque). This is achieved by a supplementary stabilizing sig-
nal ∆Vs applied to the automatic voltage regulator (AVR) of the generator as
shown in Figure 2. This Figure also exemplifies the PSS basic structure to promote
phase compensation to the phase lag introduced by generator, excitation system
and transmission system [1, 9].
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Figure 2: PSS Basic Structure and Supplementary Signal to AVR.

Basically, this controller is composed of a static gain Kpss which is adjusted to
obtain the desired damping for unstable or poorly damped modes; a washout block
is defined by the time constant Tw (in the range of 1 to 20 seconds), it works as a
filter for low-frequencies (0,8 to 2,0 Hz); the time constants T1, T2, T3 and T4 define
two blocks lead-lag of the input signal [8].
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4.1. Inclusion of Power System Stabilizers in the PSM

The inclusion of PSS in the PSM is formulated by the equations (4.1) to (4.4),
which are obtained from Figure 2.

∆
·
V 1= KPSS∆

·
ω −

1

Tw

∆V1 (4.1)

∆
·
V 2=

T1

T2
∆

·
V 1 +

1

T2
∆V1 −

1

T2
∆V2 (4.2)

∆
·
V s=

T3

T4
∆

·
V 2 +

1

T4
∆V2 −

1

T4
∆Vs (4.3)

∆
·
Efd= −

1

Tr

∆Efd +
Kr

Tr

∆Vref −
Kr

Tr

∆Vk +
Kr

Tr

∆Vs (4.4)

Analyzing the equations (4.1) to (4.4), it is observed that the action of PSS
whose input signal are the variations of the angular speed, introduce three new
state variables, namely ∆V1, ∆V2 and ∆Vs.

4.2. Design of PSS Parameters

Once the residues are obtained, this index gives the procedure to design and obtain
the PSS parameters.

To design the controller, it is necessary to calculate the time constants T1 = T3,
T2 = T4 and the gainKpss in order to introduce the necessary phase compensation to
the displacement of the eigenvalue of interests. An eigenvalue (λi) can be displaced
to the left semi-plane including PSS, in such way that the real part becomes more
negative, increasing the damping of the oscillatory mode. Equation (4.5) shows the
relation between the displacement of the eigenvalue and the correspondent residue
[6].

∆λi = RijkPSS (λi) = Rijk (KpssH (λi)) (4.5)

Thus, consider that the angle to be compensated by the controller is β, and ωi

is the frequency in rad/s of the electromechanical mode of interests, and λides the
desired position of the eigenvalue, then the equation (4.6) provides the procedure
to obtain the parameters of the controller.

β = 180◦ − arg (Rijk) ; α =
1−sin( β

2
)

1+sin(β
2
)
;

T2 = 1
ωi

√
α
; T1 = αT2;

Kpss =
∣

∣

∣

λides−λi

RijkH(λi)

∣

∣

∣
. (4.6)

5. Simulation and Results

The South-Brazilian Reduced system, whose diagram is shown in Figure 3, has 10
generators, 45 buses and 73 transmission lines and will be used in the simulations.
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Table 1: Dominant Eigenvalues

Mode Eigenvalues ζ ωn

1 -0,2623±9,6782i 0,0271 1,5409
2 -0,1120±9.6155i 0,0116 1,5305
3 -0,0269±8.6784i 0,0031 1,3812
4 0,1715±8.0573i -0,0213 1,2826
5 0,0838±6.1661i -0,0136 0,9815
6 -0,0125±7.6730i 0,0016 1,2212
7 0,1194±7.2562i -0,0164 1,1550
8 0,0847±6.7135i -0,0126 1,0686
9 0,0322±6.9301i -0,0046 1,1030

By using PSM we calculate the eigenvalues of state matrix, whose dominant
values, the damping coefficient and the natural frequency of oscillation associated
with them are shown in Table 1.

Analyzing the eigenvalues listed in Table 1 it is noted that this system, for the
considered operation condition, has nine oscillating modes, where five among them
are unstable (modes 4, 5, 7, 8 and 9). From the values of the natural frequencies
it is observed that these modes are unstable local modes of oscillation. To lead the
system to stability it is proposed the inclusion of PSSs, whose parameters will be
adjusted in accordance with the procedure described previously.

The participation factors related to unstable modes were calculated and shown
in Figure 4 in a way to define the best generators to be equipped with PSS.

The participation factors show that the variables ∆δ1, ∆ω1, ∆δ3, ∆ω3, ∆δ4,

Figure 3: South-Brazilian Reduced System.
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Figure 4: Participation Factors for Unstable Modes.

∆ω4, ∆δ8 and ∆ω8 have bigger participation in unstable modes, which indicates
that generators 1, 3, 4 and 8 are the best locations for the introduction of stabilizing
signals.

Another way to determine the best location for the PSS is obtained by the
analysis of residue from open-loop transfer function of each controller to be inserted
in each generator. So consider Table 2, which shows the magnitude of the residues
associated with the unstable modes and all possible locations of the PSS in the
system.

According to Table 2 it can be conclude that the residues magnitude gives the
same results as the ones presented by participation factors. From these locations,
parameters of four stabilizers were calculated by the method described in section
4.2 for two desired values of damping coefficients: 0, 05 and 0, 01. The results are
shown in Table 3.

Note in Table 3 that the time constants are the same for both settings, because
the compensation is the same for both cases. In contrast to the gain values, which
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Table 2: Residues associated to the unstable modes.

Generator Mode 4 Mode 5 Mode 7 Mode 8 Mode 9

1 0,0030332 0,0045943 0,1120800 0,0003783 0,0024259
2 0,0000080 0,0145220 0,0000734 0,0053895 0,0001067
3 0,0000818 0,0344450 0,0010043 0,0356440 0,0027326
4 0,0816110 0,0054661 0,0060700 0,0018071 0,0019654
5 0,0698140 0,0038643 0,0151350 0,0015881 0,0044152
6 0,0001159 0,0002736 0,0001891 0,0007784 0,0125260
7 0,0001647 0,0004012 0,0003044 0,0011009 0,0180030
8 0,0004242 0,0009245 0,0006669 0,0026664 0,0420800

9 0,0001471 0,0100940 0,0023453 0,0340320 0,0048138
10 0,0002569 0,0032999 0,0063526 0,0011332 0,0022884

Table 3: PSS Parameters

Generator Kpss − ζ = 0, 05 Kpss − ζ = 0, 01 Tw T1 T2

1 8,241 3,279 1,0000 0,1895 0,1001
3 14,784 5,484 1,0000 0,1834 0,1434
4 15,852 6,955 1,0000 0,1853 0,0831
8 13,810 3,700 1,0000 0,1777 0,1171

increase when it is required a bigger damping.
Eigenvalues, damping coefficients and natural frequencies are shown in Table 4

due to installation of four PSS with the parameters shown in Table 3 (ζ = 0, 01).
Note that the adjustments are very satisfactory, because the system has become
stable with positive damping coefficients for all eigenvalues.

Table 4: Dominant Eigenvalues with PSSs - ζ = 0, 01

Mode Eigenvalues ζ ωn

4 -0,4555±7,2581i 0,0626 1,1574
5 -0,2908±6,2150i 0,0467 0,9902
7 -0,4555±7,2581i 0,0626 1,1574
8 -0,1865±6,6330i 0,0281 1,0561
9 -0,2838±6,9983i 0,0405 1,1147

Figure 5 shows the variations of the angular speed of the generator 3 due to a
disturbance of 0,05 pu in the input mechanical torque of generator 1 (generator 1
was considered the reference for the system test).
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Figure 5: Variations of Angular Speed - Generator 3.

Analyzing Figure 5 it is observed that the increase of damping coefficient creates
more damping for oscillations, and the system achieve a new stable operation point
more quickly.

6. Conclusions

This paper presented studies on the performance of the PSS controllers for the
damping of low-frequency oscillations in a electric power system. The PSM was
used to represent the multi-machine system. Following, the PSS controllers were
introduced, using as input signal the variations of angular speed (∆ω) in order to
introduce damping.

The location of stabilizers was determined by participation factors and the ad-
justment of its parameters was carried out in accordance with the phase compen-
sation method. Through simulations on the South-Brazilian Reduced System it is
concluded the efficiency of PSS to promote stabilization of electric power systems.

Resumo. Este trabalho apresenta estudos sobre a Estabilidade Dinâmica de um

Sistema Elétrico de Potência com a consideração do Estabilizador do Sistema de

Potência. O Modelo de Sensibilidade de Potência foi utilizado para representação

do sistema. Através de simulações de um sistema teste serão obtidas informações

a respeito da estabilidade do sistema quanto submetido a pequenas pertubações.
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[7] C.H.C. Guimarães, G.N. Taranto, S. Gomes Jr., N. Martins, Projeto de esta-
bilizadores de sistemas de potência por posicionamento parcial de pólos com-
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