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ABSTRACT. Melanoma is considered one of the most aggressive types of cancer due to its high propensy
for metastasis, which significantly reduces survival chances when detected late. Moreover, melanoma ex-
hibits strong immunogenic characteristics, complicating its treatment, increasing the need to develop more
effective techniques of therapy. In the field of oncology, mathematical modeling enables the analysis and
distinction of the various mechanisms involved in tumor progression. This allows the analysis of numer-
ous scenarios, which would be impractical experimentally. The main objective of this study is to develop a
mathematical model that describes melanoma dynamics in the presence of Tumor-Associated Macrophages
(TAM) and Chimeric Antigen Receptor (CAR) T-cell immunotherapy. The goal is to assess why this therapy
often falls short in erradicating solid tumors like melanoma and to understand the role of TAM in this fail-
ure. This research encompasses stability analysis of the equilibrium points of the model, sensitivity analysis
of its parameters, and the examination of numerical solutions. Our results showed that immunosuppression
caused by TAM has a negative impact on the effectiveness of the dose and varying the cytotoxicity of CAR
T-cells together with dose. Adjusting CAR T-cell cytotoxicity and treatment dosage may enhance tumor
control, with the initial tumor burden playing a crucial role in treatment effectiveness.

Keywords: immunotherapy, sensitivity analysis, tumor-associated macrophages.

1 INTRODUCTION

One of the most aggressive types of cancer is the cutaneous melanoma. It is estimated for the
year 2023 that there will be about 8,980 new cases of cutaneous melanoma in Brazil [6]. Global
projections for new cases of this disease and number of deaths indicate that there will be more
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2 MELANOMA DYNAMICS VIA A MATHEMATICAL MODEL

than 500,000 new cases and approximately 100,000 deaths by 2040 [1]. Melanoma has high
resistance to chemotherapy, a fact that compromises the long-term success of treatment, even
if it is well targeted. If melanoma is discovered late, the chance of recovery and survival rate
decreases dramatically due to its potential to cause metastasis [5].

Adoptive immunotherapy with CAR T-cells has been used as a new strategy to improve cancer
treatment, especially for hematological malignancies, with promising results [25]. In addition,
several researches involving the use of this therapy against melanoma are ongoing [18,19]. In this
therapeutic approach, the patient’s T-lymphocytes undergo genetic reprogramming to specifically
target antigens expressed on the surface of tumor cells, and upon contact with the malignant
cells, the modified T-lymphocyte cells (CAR T-cells) are activated and lead an antitumor immune
response [21]. The application of CAR T-cell immunotherapy against melanoma faces several
challenges, with the immunosuppressive tumor microenvironment (TME) being a key obstacle
to overcome [19].

One of the mechanisms that induce the rapid progression of melanoma is the recruitment of
immune system cells. Among all the immune system cells that are mobilized and recruited
to tumor sites, macrophages comprise the predominant cellular component within the TME
and actively participate in the process of tumorigenesis through a diverse array of molecu-
lar pathways and mechanisms. Macrophages that infiltrate solid tumors are called as Tumor-
Associated Macrophages (TAM) and participate in tumor progression by secreting growth
factors, pro-angiogenic molecules and immunosuppressive factors such as interleukin-10 (IL-
10) [8, 10, 17, 20, 23]. Some studies indicate that TAM density in the tumor microenviron-
ment correlates with a poor prognosis of melanoma and acts to prevent the cytotoxic action
of T-lymphocytes against tumor cells [3, 20].

Recent publications have emerged in the academic literature, focusing on mathematical mod-
els related to CAR T-cells. Eftimie and Hamam [4] investigated the possible mechanisms that
could explain the elimination of B16 mouse melanoma cells by immune system cells, such as
T lymphocytes and M2 macrophages1 considering, among other hypotheses, the properties of
immune cells and their role in tumor progression. Sahoo et al. [15], developed a mathematical
model based on prey-predator dynamics to explore the kinetics of CAR T-cells in a solid tumor
(glioma). Their findings revealed that the death rate of CAR T-cells has a direct relationship with
the proliferation rate and exhaustion. This suggests that lower doses of immunotherapy treatment
are more effective, even though these cells become more exhausted compared to higher doses of
treatment. The interaction between tumor cells, effector, and memory CAR T-cells was explored
in a mathematical model, as documented in the studies by Barros et al. and Paixão et al. [2, 11].
One key goal of these studies was to assess the long-term role of memory CAR T-cells in fighting
haematological tumors.

Considering the challenges of using CAR T-cell immunotherapy against cutaneous melanoma,
the present work aims to develop a mathematical model based on Ordinary Differential Equations

1Tumor-Associated Macrophages are also called M2-type macrophages.

Trends Comput. Appl. Math., 25 (2024), e01734
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(ODE) to describe the tumor dynamics of advanced melanoma considering its immunosuppres-
sive TME in the presence of TAM, as well as answer the question: What are the underlying
factors contributing to the ineffectiveness of CAR T-cell therapy in combatting melanoma, and
what is the influence of TAM in this therapeutic failure?

This paper is structured as follows: In Section 2, we present the proposed mathematical model
based on ODE and describe its variables and parameters. Furthermore, we present the equilib-
rium points and the linear stability analysis. In Section 3 we present the sensitivity analysis and
simulations considering some scenarios. Finally, in Section 4, we end this paper with conclusions.

2 MATHEMATICAL MODEL

Based on previous works [2, 4, 15], we formulated an ODE model describing the interactions
between melanoma cells (T ), TAM (M) and CAR T-cells (C) as a function of time t, defined as
follows: 

dT
dt

= α1T
(

1− T
K1

)
(1+β1M)︸ ︷︷ ︸

A1

−µ1CT︸ ︷︷ ︸
A2

,

dM
dt

= α2MT
(

1− M
K2

)
︸ ︷︷ ︸

A3

−κ2M︸︷︷︸
A4

,

dC
dt

= α3CT︸ ︷︷ ︸
A5

− γ3CT︸ ︷︷ ︸
A6

−θ3MC︸ ︷︷ ︸
A7

− κ3C︸︷︷︸
A8

.

(2.1)

The model incorporates several key biological assumptions:

• In the first equation, the term A1 accounts for tumor growth according to a logistic growth
model, in addition to representing the influence of TAM on tumor progression. TAM are
known to promote tumor advancement through the secretion of various biological factors,
including growth factors, pro-angiogenic molecules, and immunosuppressive agents such
as IL-10, as supported by previous studies [20,22]. Furthermore, the A2 term assumes that
CAR T-cells are effective in the elimination of melanoma cells by recognizing specific
antigens such as CD126, MCSP, VEGFR2, GD2, and others, as indicated in the literature
[2, 13, 19].

• In the second equation, the term A3, captures the phenomenon of TAM infiltration into the
TME, responding to the presence of cytokines and chemokines produced by melanoma
cells. This term further encompasses the population dynamics of TAM, characterized by
logistic growth, and takes into account their competition with melanoma cells up to a
specified carrying capacity. Additionally, the term A4 represents the contribution of natural
death in the TAM population [4].

• In the third equation, the term A5, represents that the expansion of CAR T-cells is primarily
governed by their interaction with tumor antigens, while the term A6 posits that CAR-T

Trends Comput. Appl. Math., 25 (2024), e01734
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4 MELANOMA DYNAMICS VIA A MATHEMATICAL MODEL

cells are susceptible to inhibition and exhaustion due to the presence of immunosuppres-
sive mechanisms in the TME. These mechanisms arise from both melanoma cells and
TAM, ultimately resulting in CAR T-cell exhaustion. Our primary focus is to understand
the reasons underlying the ineffectiveness of CAR T-cell immunotherapy in melanoma
treatment and to elucidate the role played by TAM in this ineffectiveness. Consequently,
we have introduced the A7 term to simulate the in silico impact of TAM on the CAR
T-cell population. Additionally, the A8 term is integrated into the model to represent the
immunosuppressive nature of the TME in the context of melanoma.

Table 1 shows the parameters with their respective values and units, and the initial conditions.

Table 1: Descriptions, values and units of the parameters.

Parameter Description Value Unit Reference

α1 Natural rate of tumor cells proliferation 0.69 day−1 [4]

α2 Rate of macrophage proliferation promoted by the tumor 10−7 (cells·day)−1 [4]

α3 Proliferation rate of CAR T-cells due to contact with tumor antigen 5 ·10−8 (cells·day)−1 Assumed

β1 Tumor proliferation rate due to pro-tumor action of TAM 2.3 ·10−10 cells−1 [4]

K1 Tumor cell carrying capacity 109 cells [4]

K2 Macrophage carrying capacity 109 cells [4]

µ1 Tumor cell death rate due to cytotoxic action of CAR T-cells [10−7,10−6] (cells·day)−1 Assumed

κ2 Macrophage apoptosis rate 0.34 day−1 [4]

γ3 CAR T-cells immunosuppression rate caused by melanoma cells 4 ·10−8 (cells·day)−1 Assumed

θ3 CAR T-cells immunosuppression rate caused by TAM [0,5 ·10−10] (cells·day)−1 Assumed

κ3 CAR T-cells apoptosis rate [0.1,0.5] day−1 Assumed

T (0) Initial condition of the tumor cells [2.5 ·105,5 ·106] cells Assumed

M(0) Initial condition of the TAM 106 cells [20]

C(0) Initial condition of the CAR T-cells [2.5 ·105,5 ·106] cells Assumed

We set the initial condition T (0) to model advanced-stage melanoma, justifying the use of CAR-
T immunotherapy. M(0) represents the TAM percentage in the TME, which can reach 50% in
solid tumors like melanoma [20]. C(0) is based on Barros et al. and Leon-Triana et al., and rep-
resents the immunotherapeutic dose of CAR T-cells injected into the tumor [2, 7]. The rationale
for the parameters values presented in Table 1 are explained as follows:

• α3: describes the rate of stimulation of CAR-T cell proliferation due to the recognition
of the tumor antigen. This parameter is related to the CAR product and was taken from
Barros et al. [2] that estimated values are between 4.5 ·10−8 and 1.23 ·10−8 (cell·day)−1.

• µ1: represents the CAR T-cell cytotoxicity. Based on the work of Barros et al. (2021) [2],
the estimated the cytotoxic efficiency of CAR-T cells is in a range between 3.36 ·10−8 and
3.71 ·10−6 (cell·day)−1.

Trends Comput. Appl. Math., 25 (2024), e01734
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• γ3: denotes the CAR T-cells TAM-induced immunosuppression rate. This parameter was
selected under the assumption that the exhaustion rate of CAR-T cells is lower than the
expansion rate (α3).

• θ3: characterizes the interaction of CAR-T cells with immunosuppressive factors produced
by TAM in the TME, for instance, the programmed death protein PD-1 [18,19]. As exper-
imental measurements are not available for this kinetic parameter, the value was assumed
in the range [0,5 ·10−10] (cell·day)−1 in order to simulate such phenomena.

• κ3: describes the apoptosis rate of CAR T-cells. This parameter considered Barros et al. [2],
observations that the population of CAR-T cells decreases at a rate that includes natural
death, along with other factors, and the mortality parameter adjusted to data available in
the literature was 0.3 day−1. Building upon this work, the parameter value was selected
within an interval of [0.1,0.5] day−1, encompassing the estimated value in [2].

2.1 Equilibrium points

Without loss of generality, let us consider α3 − γ3 = β3. The equilibrium points can be found
from the solution of the following system of equations:

(
α1

(
1− T ∗

K1

)
(1+β1M∗)−µ1C∗

)
T ∗ = 0,(

α2T ∗
(

1− M∗

K2

)
−κ2

)
M∗ = 0,

(β3T ∗−θ3M∗−κ3)C∗ = 0.

(2.2)

Considering that cell populations cannot be negative, the equilibrium points and their respective
biological meanings are:

• E0 = (0,0,0). The trivial equilibrium point, which is not biologically relevant, since it
represents the extinction of all cell populations.

• E1 = (K1,0,0). This equilibrium point represents the failure of immunotherapy treatment
and describes the persistence of melanoma cells up to the carrying capacity K1. In addition,
disappearance of CAR T-cells and TAM population occurs.

• E2 =

(
K1,K2

(
1− κ2

α2K1

)
,0
)

which will have biological significance if α2 ≥ κ2/K1. As

the equilibrium point E2, this also represents the failure of immunotherapeutic treatment, in
which the disappearance of CAR T-cells and the persistence of the macrophage population
occurs. Furthermore, this equilibrium point intersects E1 when α2 = κ2/K1.

Trends Comput. Appl. Math., 25 (2024), e01734
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6 MELANOMA DYNAMICS VIA A MATHEMATICAL MODEL

• E3 =

(
κ3

β3
,0,

α1

µ1

(
1− κ3

β3K1

))
which will have biological significance if β3 ≥ κ3/K1.

This point represents the disappearance of the TAM population and the persistence of
melanoma cells and CAR T-cells, and equals E1 when β3 = κ3/K1.

• The state of coexistence satisfies:

α1

(
1− T ∗

K1

)
(1+β1M∗)−µ1C∗ = 0,

α2T ∗
(

1− M∗

K2

)
−κ2 = 0,

β3T ∗−θ3M∗−κ3 = 0.

(2.3)

From the third equation of (2.3), let M∗ be expressed in terms of T ∗, such that

M∗ =
β3T ∗−κ3

θ3
. (2.4)

Substituting (2.4) into the second equation of (2.3), we have

α2T ∗
(

1− T ∗β3 −κ3

θ3K2

)
−κ2 = 0, (2.5)

with the roots

T ∗
1 =

α2(K2θ3 +κ3)+
√

δ

2α2β3
and T ∗

2 =
α2(K2θ3 +κ3)−

√
δ

2α2β3
, (2.6)

where

δ = α2(K2
2 α2θ

2
3 +2K2α2κ3θ3 −4K2β3κ2θ3 +α2κ

2
3 ). (2.7)

Given that β3 = α3 − γ3, for T ∗
1,2 ∈ R, the following condition must be satisfied

δ ≥ 0 ⇒ α3 ≤
α2(K2

2 θ 2
3 +2K2κ3θ3 +κ2

3 )

4K2κ2θ3
+ γ3. (2.8)

In the analysis of the component T ∗
1 from equation (2.6), when considering a given set of

parameters, if δ ≥ 0, then the condition T ∗
1 ≥ 0 is satisfied if:

α2(K2θ3 +κ3)+
√

δ

2α2β3
≥ 0 ⇒−4K2β3κ2θ3 ≤ 0 ⇒ β3 ≥ 0. (2.9)

The condition β3 ≥ 0 implies that α3 ≥ γ3. From a biological perspective, this means that
for T ∗

1 ≥ 0, the proliferation rate of CAR-T cells due to interaction with the tumor antigen
must exceed the immunosuppression rate induced by the tumor cells.

Trends Comput. Appl. Math., 25 (2024), e01734
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Analyzing T ∗
2 ≥ 0 from equation (2.6) in terms of β3 =α3−γ3, the condition to be satisfied

is

α2(K2θ3 +κ3)−
√

δ

2α2β3
≥ 0 ⇒−4K2β3κ2θ3 ≥ 0 ⇒ β3 ≤ 0 ⇒ α3 ≤ γ3. (2.10)

If β3 ≤ 0, this implies that α3 ≤ γ3. Consequently, for T ∗
2 ≥ 0 to hold, the proliferation rate

of CAR-T cells must be lower than the rate of immunosuppression caused by the tumor
cells. In terms of treatment, the equilibrium point E∗

2 lacks significance, as CAR-T cell
proliferation will always outweigh immunosuppression. Therefore, these findings suggest
that the biological interpretation of components T ∗

1 and T ∗
2 may depend on the choices of

parameters α3 and γ3, with T ∗
1 assuming greater importance from a therapeutic perspective.

Then, substituting the coordinate T1 from equation (2.6) in equation (2.4) to find M∗
1 , we

have

M∗
1 =

α2(K2θ3 −κ3)+
√

δ

2α2θ3
. (2.11)

For M∗
1 to have biological significance, it is necessary that M∗

1 ≥ 0. Therefore, since the
β3 = α3 − γ3 and utilizing equation (2.7), we have that

α2(K2θ3 −κ3)+
√

δ

2α2θ3
≥ 0 ⇒ β3κ2 ≤ α2κ3 ⇒ α3 ≤

α2κ3

κ2
+ γ3. (2.12)

Let us now consider the coordinate M∗
2 . Substituting the coordinate T2 from (2.6) in

equation (2.4), we have that

M∗
2 =

α2(K2θ3 −κ3)−
√

δ

2α2θ3
. (2.13)

In order for M∗
2 to have biological significance, it is required that M∗

2 ≥ 0 that is,

α2(K2θ3 −κ3)−
√

δ

2α2θ3
≥ 0 ⇒ β3κ2 ≥ α2κ3 ⇒ α3 ≥

α2κ3

κ2
+ γ3. (2.14)

We can note that if α3 ≥ α2κ3
κ2

+γ3, then T ∗
2 ≤ 0, and hence, E∗

2 lacks biological significance.

From the first equation of (2.3), the C∗ coordinate can be expressed in terms of T ∗. Then

C∗ =
α1

µ1

(
1− T ∗

K1

)
(1+β1M∗) . (2.15)

The coexistence equilibrium point with biological significance is E∗
1 =E∗. Then, assuming

T ∗
1 = T ∗, M∗

1 = M∗, the coexistence equilibrium point is given by

E∗ =

(
T ∗,M∗,

α1

µ1

(
1− T ∗

K1

)
(1+β1M∗)

)
,γ3 ≤ α3 ≤

α2κ3

κ2
+ γ3. (2.16)

Trends Comput. Appl. Math., 25 (2024), e01734



i
i

“1734” — 2024/4/15 — 12:13 — page 8 — #8 i
i

i
i

i
i

8 MELANOMA DYNAMICS VIA A MATHEMATICAL MODEL

2.2 Stability analisys

To analyze the equilibrium points stability, we assume that Ē = (T̄ ,M̄,C̄) represents any equi-
librium point of the system (2.1). The Jacobian matrix associated with the system (2.1) is given
by:

J =


−2(M̄β1+1)(T̄−K1

2 )α1−µ1C̄K1
K1

α1T̄ (K1−T̄ )β1
K1

−µ1T̄
α2M̄(K2−M̄)

K2

(α2T̄−κ2)K2−2α2M̄T̄
K2

0
C̄β3 −C̄θ3 −M̄θ3 + T̄ β3 −κ3

 .

The Jacobian matrix J associated to the equilibrium point E0 = (0,0,0) is given by

J0 =

α1 0 0
0 −κ2 0
0 0 −κ3

 . (2.17)

The eigenvalues are λ1 = α1, λ2 = −κ2 and λ3 = −κ3 and then the equilibrium point E0 is
unstable (saddle point).

As previously performed, the eigenvalues associated with Jacobian matrix J, evaluated in the
equilibrium point E1 =(K1,0,0) are λ1 =−α1, λ2 =K1α2−κ2, and λ3 =K1β3−κ3. Since
that β3 = α3 −γ3, we can conclude that the equilibrium point E1 is linearly asymptotically stable
if, and only if, α2 < κ2/K1 and α3 < (κ3/K1)+ γ3.

Let us now consider the equilibrium point E2 =

(
K1,K2

(
1− κ2

α2K1

)
,0
)

, α2 > κ2/K1. The

determinant of the Jacobian matrix J evaluated at the point E2 yields the characteristic equation
expressed as (λ − a11)(λ − a22)(λ − a33) = 0, where a11, a22, and a33 are coefficients asso-
ciated with the linearization of the dynamical system. The eigenvalues are given by λ1 = a11,
λ2 = a22 and λ3 = a33. Then, since that β3 = α3 − γ3, the equilibrium point E2 will be linearly
asymptotically stable if

λ1 < 0 ⇒ α2 >
K2β1κ2

K1(K2β1 +1)
, λ2 < 0 ⇒ α2 >

κ2

K1
, and

λ3 < 0 ⇒ α3 <
K2θ3

K1

(
1− κ2

K1α2

)
+ γ3 +

κ3

K1
. (2.18)

Considering the equilibrium point E3 =

(
κ3

β3
,0,

α1

µ1

(
1− κ3

β3K1

))
, with β3 > κ3/K1, the

associated Jacobian matrix is given by

J3 =

b11 b12 b13

0 b22 0
b31 b32 0

 , (2.19)

Trends Comput. Appl. Math., 25 (2024), e01734
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where, b11 = −α1κ3
β3K1

, b12 = α1κ3β1(K1β3−κ3)

β 2
3 K1

, b13 = − µ1κ3
β3

, b22 = α2κ3
β3

− κ2, b31 = α1(K1β3−κ3)
µ1K1

and b32 =−α1θ3(K1β3−κ3)
µ1K1β3

. The characteristic equation associated to the Jacobian matrix (2.19) is
given by

(λ −b22)(λ
2 −λb11 −b13b31) = 0. (2.20)

Since that β3 = α3 − γ3, from the first term of (2.20), we have that λ1 = b22. It is negative if

α3 >
α2κ3

κ2
+ γ3. (2.21)

For the second term of (2.20), we use the Routh-Hurwitz criterion:

• p1 =−b11 > 0, then we have that

−
(
−α1κ3

β3K1

)
> 0 ⇒ α1κ3

(α3 − γ3)K1
> 0 ⇒ α3 > γ3. (2.22)

• p2 =−b13b31 > 0 ⇒ κ3α1

(
1− κ3

β3K1

)
> 0 and, it is satisfied if

β3 >
κ3

K1
⇒ α3 >

κ3

K1
+ γ3. (2.23)

Therefore, if the above conditions are satisfied, the equilibrium point E3 is stable.

Let us analyse the coexistence equilibrium point E∗ = (T ∗,M∗,C∗), with α3 ≥ γ3, α3 ≤ α2κ3
κ2

+γ3,
where T ∗, M∗ and C∗ given by equations (2.6), (2.4) and (2.15), respectively. The Jacobian matrix
is expressed by

J∗ =

c11 c12 c13

c21 c22 0
c31 c32 0

 , (2.24)

where

c11 =−α1T ∗

K1
(1+M∗), c12 = α1β1T ∗

(
1− T ∗

K1

)
, c13 =−µ1T ∗,

c21 = α2M∗
(

1− M∗

K2

)
, c22 = α2T ∗

(
1− 2M∗

K2

)
−κ2,

c31 =
α1β3

µ1

(
1− T ∗

K1

)
(1+β1M∗), c32 =−α1θ3

µ1

(
1− T ∗

K1

)
(1+β1M∗).

Then, the characteristic equation associated to the matrix (2.24) is given by λ 3 +q1λ 2 +q2λ +

q3 = 0, with q1 =−(c11+c22), q2 = c11c22−c12c21−c13c31 and q3 = c13c21c32+c13c22c31. We
can apply the Routh-Hurwitz criterion to assess the stability of the E∗ coexistence equilibrium
point. However, analyzing the stability of the coexistent state (T ∗,M∗,C∗) is more challenging
when considering all model parameters. Consequently, we utilize the parameters values presented
in Table 1 to determine the equilibrium points and their respective stability.

Trends Comput. Appl. Math., 25 (2024), e01734
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The conditions for the existence and stability of equilibrium points E∗
i , i = 1,2,3, as well as the

coexistence equilibrium point E∗, are dependent on the parameter α3. In particular, it is worth
noting that eventually, such conditions are expressed in terms of α2. Then, given the parameters
presented in Table 1, we conducted variations in the parameter α2 to analyze the stability and
existence of equilibrium points, as presented in Table 2.

Table 2: Stability analysis with variations in the parameter α2.

α2 = 10−8 α2 = 1.777 ·10−8 α2 = 2.555 ·10−8 α2 = 3.333 ·10−8

E1 Unstable Unstable Unstable Unstable

E2 Unstable Unstable Unstable Unstable

E3 Stable spiral Stable spiral Stable spiral Unstable spiral

E∗ Does not exist Does not exist Does not exist Stable spiral

α2 = 4.888 ·10−8 α2 = 5.666 ·10−8 α2 = 6.444 ·10−8 α2 = 8 ·10−8

E1 Unstable Unstable Unstable Unstable

E2 Unstable Unstable Unstable Unstable

E3 Unstable spiral Unstable spiral Unstable spiral Unstable spiral

E∗ Stable spiral Stable spiral Stable spiral Stable spiral

It is possible to observe that, for the first three chosen values of α2, the coexistence point E∗ does
not exist, meaning the existence condition imposed in equation (2.7) is not met (the point belongs
to the set of complex numbers), and thus the equilibrium point E3 is a stable spiral. When the
parameter α2 increases, the existence condition for the equilibrium point E∗ is satisfied, and it
stabilizes into a stable spiral.

To graphically analyze the results presented in Table 2, we conducted numerical simulations
using the parameters listed in Table 1 and selected four specific values for α2, defined as, α2 =

10−8, α2 = 3.333 ·10−8, α2 = 4.888 ·10−8, and α2 = 8 ·10−8 (cell·day)−1. The initial conditions
were set as T (0) = 2 · 106, M(0) = 106, and C(0) = 107 cells. The results are illustrated in
Figure 1.

Figure 1 shows that as α2 increases, equilibrium point E3 loses stability, giving rise to coexistence
point E∗, which stabilizes as a stable spiral. Furthermore, in Figure 1(d), when α2 = 4.888 ·10−8

(cells·day)−1, the solution orbits around equilibrium point E∗, indicating the presence of a limit
cycle.

From a biological perspective, when tumor-promoted TAM proliferation increases alongside a
relatively high CAR-T cell proliferation rate (α2 = 5 ·10−8 (cell·day)−1), it tends to support the

Trends Comput. Appl. Math., 25 (2024), e01734
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(c) α2 = 4.888 ·10−8 (cell·day).
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(d) α2 = 8 ·10−8 (cell·day).

Figure 1: Stability analysis with variations in the parameter α2, considering T (0) = 2 ·106 cells,
M(0) = 106 cells, and C(0) = 107 cells. The black, red, green, and blue stars represent equi-
librium points E1, E2, E3, and E∗, respectively. An increase in the proliferation rate of TAM
contributes to the stability of the coexistence equilibrium point E∗.

coexistence of these cells. Conversely, when macrophage proliferation is low, potentially due
to drugs shifting pro-tumor toward an anti-tumor macrophage phenotype, it enables coexistence
between tumor cells and CAR-T cells, which is advantageous for treatment.

Trends Comput. Appl. Math., 25 (2024), e01734
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3 RESULTS AND DISCUSSIONS

Several models, focusing on CAR T-cell kinetics, were developed to illustrate its distinct phases,
including distribution, expansion, contraction, and persistence. In the contraction and persistence
phase, effector CAR-T cells experience activation-induced cell death (AICD), resulting in a re-
duced population. While CAR-T cells might change their phenotype during this phase, such as
transitioning into memory CAR-T cells that persist longer and contribute to the immune response
against cancer, this study primarily focuses on effector CAR-T cells, which are not circulating
after the contraction phase [12].

To adapt the simulations for a realistic scenario, such as when effector CAR T-cells are exhausted
or the tumor loses antigen, we used a numerical procedure2 that the CAR T-cells population will
not re-expand even if the tumor escapes. The numerical procedure involves the implementation
of an adapted fourth-order Runge-Kutta method ensuring that, following the contraction phase,
effector CAR-T cells will not re-expand. In other words, once the population reaches its lowest
point after the expansion peak, it becomes fixed at that minimum level. Furthermore, we defined
tumor control as the duration during which the tumor population T stays below 102 cells [2].

The simulations were performed by implementing the adapted algorithm in Python. The param-
eter values used in the numerical simulations are listed in Table 1, and the time step employed in
the method was h = 0.01 with a simulation period of t = 80 days.

3.1 Sensitivity Analysis

The dynamics underlying CAR T-cell therapy are recognized to be the result of an interplay of
many phenomena that occur at different biological populations; however, some indirect effects,
such as cytokine production, the interaction of endogenous immune cells (macrophages, NK cells
and so on) are not well understood, and many mechanisms remain unanswered.

The ODE system presented in Equations (2.1) has 10 parameters that have been considered
from previous research. In models with several uncertain inputs, it is important to assess which
parameters have a significant impact on the outputs. To this end, we perform a sensitivity analysis
(SA) [16] using the elementary effects (EE) technique, by measuring the effect of small parameter
changes (a perturbation of ± 25% from the values established in Table 1) on different quantities
of interest (QoI) of the model using an eighty-day simulation of the system’s evolution, as well
as the adapted algorithm.

On the EE method, the selected output of interest can be represented by a function Y (X), where
X= (X1, ...,Xd) is a vector of d independent input variables (parameters) defined within the range
of a continuous interval. The elementary effect of the i-th input factor for a given value of X is
defined as:

EEi =
Y (X1, ...,Xi +∆, ...,Xd)−Y (X)

∆
=

Y (X+ ei∆)−Y (X)

∆
, (3.1)

2Algorithms used are available at https://github.com/g-rodrigues2/Algorithms_TCAM

Trends Comput. Appl. Math., 25 (2024), e01734
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where ∆ is a predetermined perturbation factor of Xi and Y (X+ ei∆) is the model output corre-
sponding to a ∆ change in Xi. The distribution of the elementary effects (ρi) for each input pa-
rameter is obtained by constructing r-trajectories in a grid of d-dimensions and p-levels, where
each input is randomly sampled using a one-at-a-time (OAT) sampling strategy.

In order to rank the parameters, we chose to estimate the mean µi of the distribution (ρi). This
measure evaluates the general impact of the i-th parameter on the output (QoI) and the average

of absolute elementary effects is µi
∗ =

1
r

r
∑
j=1

|EEi
j|.

The results of this parameter sensitivity analysis for the mathematical model are shown in Figure
2. In the case where the QoI is the tumor load, Figure 2(a) shows that the system is found to be
most sensitive to the balance between the CAR-T proliferation and inhibition rates (α3 − γ3), as
well as to the tumor growth parameter and its carrying capacity K1. This suggests that, in addition
to the tumor’s aggressiveness, as represented by growth parameter α1, even minor differences
in the absolute number of CAR-T cells in the system during the dynamics can affect clinical
outcome. It is possible to notice that, during tumor escape, all parameters associated with changes
in CAR-T cell concentration appear to be relevant, including θ3 and κ3. This would indicate
that any treatment which might enhance CAR T-cell expansion should be pursued. By contrast,
the size of the tumor after eighty days is not very sensitive to the TAM participation in tumor
progression expressed by β1. According to this model, then, the pro-tumor action of TAM alone
is not a determining factor in the eventual size of the tumor, and the cytolytic activity should be
considered as the conjunction of number of CAR T-cells binding with tumor cells as well as its
killing efficacy.

In the scenario where the output is the concentration of macrophages, Figure 2(b) shows that dur-
ing an initial expansion phase, this population is highly sensitive to the TAM’s intrinsic charac-
teristics (α2 and κ2) together with tumor proliferation (α1). Then, as the macrophage population
is being depleted and similar to what was described previously for the tumor, the system is also
sensitive to the balance between the CAR T-cell proliferation and inhibition rates (α3 − γ3). This
reveals that, while CAR T-cells do not directly interact with TAM, their action in reducing tumor
population will have an indirect effect on the interplay between tumor cells and macrophages.
Matter of fact, during tumor progression, TAM are again recruited to the tumor site, and CAR
T-cells attempt to control these populations at first, but then these populations escape.

At last, when QoI is the CAR T-cell density, during an initial phase, the model is most sen-
sitive to the CAR T expansion strength, given by antigen recognition (α3 − γ3) and its natural
apoptotic rate κ3. After the peak, during the contraction phase, the inhibition of CAR T-cells
by macrophages (θ3), and the absolute number of TAM in the microenvironment might affect
the residual number of CAR T in the system. This finding, indicates that investigating CAR T-
cell interactions with the host immune system could shed light on the mechanisms underlying
(non)durable responses. The sensitivity analysis shows that, during the final phase, antigen bind-
ing and CAR T proliferation alone are not determining factors in CAR T-cell persistence, and its
efficiency in killing tumor cells must also be considered.

Trends Comput. Appl. Math., 25 (2024), e01734
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Figure 2: Sensitivity analysis was performed using the EE method for different quantities of
interest (QoI) with r = 40 and p = 4. The average of absolute elementary effects is shown in (a)
tumor/Melanoma Cells, (b) TAM population and (c) CAR T-cells. The parameters from Table 1
and θ3 = 10−10 (cells·day)−1 were perturbed by ± 25% and the system’s evolution was simulated
for eighty days.
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3.2 Numerical Simulations

3.2.1 TAM inhibition affects tumor control

The immunosuppressive TME represents a major barrier to effective tumor-specific T-cell re-
sponses to cancer [14]. Since TAM are major constituents of the TME, and consist of a highly
heterogeneous population, we first studied the impact caused by an increasingly immunosup-
pressive TME in a patient undergoing CAR T-cell therapy. In order to achieve this objective, we
conducted a series of simulations in which where we varied the parameter θ3, as can be seen in
Figure 3.

θ3 = 0 (cells·day)−1 θ3 = 5·10−11 (cells·day)−1

θ3 = 10−10 (cells·day)−1 θ3 = 5·10−10 (cells·day)−1
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Figure 3: An immunosuppressive TME significantly impacts tumor control in-silico. Dynamics
of the number of tumor cells (blue curves), TAM cells (black curves) and CAR T-cells (red
curves) ruled by Equation (2.1) in different immunosuppression scenarios. Initial data used in
the simulations T (0) = 2 · 106 cells, M(0) = 106 cells and C(0) = 5 · 105 cells and parameter
values presented in Table 1. The grey shaded area represent the non-detection limit of 102 cells.

TAM-induced immunosuppression has a negative impact on treatment, as illustrated in Figure
3(a). It is possible to observe that in a highly immunosuppressive TME, the tumor is not con-
trolled at all; however, in an environment where the immunosuppression is gradually decreasing,
θ3 = 5 · 10−11, θ3 = 10−10, θ3 = 5 · 10−10 (cells·day)−1, the tumor is controlled during 6, 17,
and 25 days, respectively. The simulations agree with clinical observations that TAM’s action
correlates with poor survival in many types of solid cancer. These observations also suggests that
therapeutics strategies targeting TAM subsets should be explored, even if extends the window of
opportunity for the application of other therapies.

Figure 3(b) shows that TAM dynamics is similar to that of as in the melanoma cells. This scenario
is expected considering that TAM are recruited to the tumor site, promoting its progression. Con-
sequently, the depletion of tumor cells due to immunotherapy also affects the TAM population.
This implies that even if TAM do not express the target-antigen of CAR T-cells, the treatment
indirectly influences the dynamics of this population.

In Figure 3(c), we observe that macrophages play a pivotal role in the development of effec-
tive immunotherapy, the simulations show that increasing immunosuppression caused by TAM

Trends Comput. Appl. Math., 25 (2024), e01734
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enhances CAR T-cells contraction, thereby, affecting treatment efficacy. Moreover, from the pa-
rameter set used, the model was able to capture the phases of expansion, contraction and persis-
tence, indicating that the functional response of the model is adequate to describe the dynam-
ics of CAR T-cells [12]. Furthermore, our results corroborate data regarding the TAM-induced
immunosuppression in the context of CAR T-cell therapy [9, 14, 24].

3.2.2 Killing efficiency affects CAR-T dynamics

Next, we investigated the effect of the CAR T-cells dosage in the system’s dynamics, also con-
sidering its different cytotoxic rates when targeting the tumor antigen. To achieve this, we per-
formed simulations of equations (2.1) and we found a dependence of the dynamics on the number
of injected CAR T-cells. Results shown in Figure 4 present some examples for numbers of cells
initially injected, ranging from 2.5 ·105 to 5 ·106 cells.
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µ
1
=

10
−

6
(c

el
ls
·d

ay
)−

1

0 10 20 30 40 50 60 70 80
Time (days)

10 3

10 1

101

103

105

107

109

T(
t) 

(c
el

ls)

(a)

0 10 20 30 40 50 60 70 80
Time (days)

10 3

10 1

101

103

105

107

109

M
(t)

 (c
el

ls)

(b)

0 10 20 30 40 50 60 70 80
Time (days)

0

1

2

3

4

5

C(
t) 

(c
el

ls)

×106

(c)

µ
1
=

10
−

7
(c

el
ls
·d

ay
)−

1

0 10 20 30 40 50 60 70 80
Time (days)

102

104

106

108

T(
t) 

(c
el

ls)

(d)

0 10 20 30 40 50 60 70 80
Time (days)

10 3

10 1

101

103

105

107

109

M
(t)

 (c
el

ls)

(e)

0 10 20 30 40 50 60 70 80
Time (days)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C(
t) 

(c
el

ls)

×107

(f)

Figure 4: Killing efficiency and CAR T dose change the system dynamics. System evolution
of the total number of tumor cells (blue curves), TAM cells (black curves) and CAR T-cells
(red curves). The curves correspond to different values of CAR T-cells injected in a patient with
initial tumor burden of T (0) = 2 ·106 cells, M(0) = 106 cells. The parameter values used in the
simulations are in Table 1 and θ3 = 5 ·10−11 (cells·day)−1.
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The top panel of Figure 4 shows two distinct dynamics in all populations, considering the initial
dosage C(0). Specifically for CAR T-cells, see Figure 4(c), a high cytotoxic rate (µ1 = 10−6

(cell·day)−1) promoted qualitative changes in the dynamics around C(0) = 2.5 ·106 cells. Thus,
small doses of CAR T-cells led to an early tumor progression followed by a small reduction in
the tumor load (Figure 4(a)), while for larger doses, the therapy was able to control tumor growth
for a longer period, a behavior also demonstrated by TAM (Figure 4(b)). Nevertheless, there is an
apparent threshold related to the CAR-T dose and this particular set of parameters that promotes
different outcomes and would change under different conditions, which may provide a durable
response.

The bottom panel of Figure 4 shows a different dynamics when the cytotoxic activity against
tumor is low (µ1 = 10−7 (cell·day)−1). The change in the magnitude of the initial CAR T-cell
dose, had a significant effect on the maximum expansion achieved (Figure 4(c)). For our in
silico simulations, a reduction in the efficiency of stimulation in the CAR T-cells led to a slower
growth of this population. Since CAR T expansion relies on the contact with tumor cells, Figure
4(a) shows that a higher CAR T infusion, quickly decrease the tumor population which impairs
CAR T levels on the system.

3.2.3 Initial tumor burden and CAR T interaction with antigen changes the overall
dynamics

The initial tumor load on has a dual role: a high tumor load may favour the initial expansion
of CAR T-cells on one hand, but it may enhance tumor immune suppression capabilities on the
other. As a result, the question of how to use CAR T-cell treatments in combination with other
neoadjuvant therapies arises. To shed some light on the question, we computationally investi-
gated the idea of using CAR T-cells after a partial surgical resection or a primary regimen of
radiotherapy, which is a common scenario in the context of melanoma.

In Figure 5 we notice that during the first weeks of treatment, the reduction in initial tumor load
resulted in an initial tumor progression, which delays the expansion phase of CAR T-cells and
gradually recruits TAM to the tumor site. A higher tumor burden, on the other hand, shortens the
duration of the CAR T distribution phase, keeping more CAR T-cells in the system and slowing
the initial tumor proliferation. Since a lower number of tumor cells implies a lower density of
CAR T-cells, the CAR-peak levels in this case scenario are smaller. However, following the CAR
T contraction phase, the greater the tumor burden, the greater the concentration of CAR T-cells
during the persistence phase.

It is important to notice that this behaviour is most probably due to the tumor aggressiveness and
to the TAM support to tumor growth. These findings suggest that a new CAR structure, designed
to reprogram the TME, might indirectly limit tumor progression. However, when making broad
statements about specific responses to treatments, caution is necessary, and any quantitative data
must be interpreted as one possibility, with further investigation required for a different set of
parameters.
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Figure 5: In silico simulations under different initial tumor loads. System evolution of the total
number of tumor cells (blue curves), TAM cells (black curves) and CAR T-cells (red curves). The
curves correspond to different values of tumor burden in a patient with initial CAR T injection of
C(0) = 5 ·105 cells, M(0) = 106 cells. The parameter values used in the simulations are in Table
1 and θ3 = 5 ·10−11 (cells·day)−1.

4 CONCLUSIONS

From a proposed ODE model, it was possible to capture the expansion, contraction and per-
sistence phases of CAR T-cells and their cytotoxic effects against cutaneous melanoma. The
sensitivity analysis of the parameters showed that the pro-tumor action of TAM alone does not
represent a determining factor for tumor growth. Furthermore, sensitivity analysis revealed that
during the contraction phase of CAR T-cells the absolute number of TAM can affect the resid-
ual number of CAR T-cells in the system, revealing that interactions between CAR T-cells and
immune system cells could shed light on the mechanisms that lead treatment to fail.

Analytical results and numerical simulations revealed the challenges for the applicability of CAR
T-cell immunotherapy against melanoma. In the first scenario we investigated the inhibitory ef-
fects of TAM on CAR T-cells and the results showed that increased suppression inherent to TAM
has a negative impact on treatment and, furthermore, our results corroborate clinical observations
about poor survival of CAR T-cells in fighting several types of solid tumors, including melanoma.
In the second scenario, we investigated the cytotoxic efficiency of CAR T-cells against melanoma
and obtained as results that increasing the cytotoxicity of CAR T-cells in conjunction with ini-
tial immunotherapeutic dose adjustments may contribute to greater tumor control. Finally, in the
third scenario we varied the initial tumor burden and found that this variation affects CAR T-cell
dynamics in general, suggesting that the development of new CAR structures with the ability to
reprogram the TME may be a strategy to limit tumor progression and increase immunotherapeu-
tic efficacy. Indeed, the reasons why CAR T-cell therapy fails in fighting melanoma are many
and our in silico analyses evidenced that TAM has an important role for this failure, opening the
way for further investigations and improvements in therapeutic techniques.
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