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ABSTRACT. Punishment is probably the most frequently used mechanism to increase cooperation in
Public Goods Games (PGG); however, it is expensive. To address this problem, this paper introduces an
optimal control problem that uses fractional punishment to promote cooperation. We present a series of
computational experiments illustrating the effects of single and combined terms of the optimization cost
function. In the findings, the optimal controller outperforms the use of constant fractional punishment and
gives an insight into the period and size of the penalization to be implemented with respect to the defection
in the game.
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1 INTRODUCTION

Cooperation is fundamental for success in any human endeavor, but sustaining it is challenging.
Over the years, cooperation has been a puzzle studied in various research areas, including natural
and social sciences [1,11,20]. A key issue in studying the evolution of cooperation is identifying
the requirements and mechanisms that can sustain cooperation over time [12, 19, 23, 26]. Two
mechanisms have been extensively studied in the literature: a) the application of incentives (such
as punishments or rewards) to increase the level of cooperation in the group [18, 21, 23, 30]; and
b) the possibility of abstaining from participating, which allows the continuity of cooperation
over time [14].

This paper focuses on enhancing cooperation in public goods games (PGG). In this context,
punishment serves as a valuable mechanism for improving cooperation, but can be costly. A
punishment system requires resources and thus becomes a public good itself [30]. Traditionally,
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2 OPTIMAL CONTROL OF FRACTIONAL PUNISHMENT IN OPGG

punishment is implemented in PGG in two ways: as peer punishment or as pool punishment.
These approaches differ based on when they are carried out (before or after the game) and the
source of funds for sanctions (cooperators’ game benefits or a separate pool set aside to penalize
defectors) [5, 24].

Several methods for enforcing sanctions other than peer or pool punishment have been proposed
in recent literature. Some include randomly selecting a group of cooperators to share the cost of
sanctioning [7], implementing a fixed amount sanction [8], or capping the maximum payment for
a defector [32]. In this context, a mechanism called fractional punishment, as presented in [4],
reduces the cost of implementing the sanctioning system by punishing only a fraction of defectors
in the population while still achieving overall cooperation within the group. This method allows
for increased cooperation at a lower cost. However, it does have a drawback in that the proportion
of punished free riders remains constant over time without accounting for expected variations
based on the results of the applied sanctions.

To minimize the costs of the incentive systems in PGG, some works define an optimal control
problem [27, 28, 29]. However, they do not consider free-riders’ frequency with respect to the
punishment. Consequently, the novelty in this work relies mainly on two points: a) we define an
optimal control problem in the fractional punishment sanctioning system to consider the potential
variation of the fractional punishment, and b) we introduce an additional term in the optimization
objective function to consider the costs associated with sanctioning a single individual.

The results highlight the adaptability of introducing optimal control. Initially, when free-riders
are abundant and the cost of punishment is high, a moderate percentage of free-riders are penal-
ized. As the number of free-riders decreases, a more aggressive sanction is used, reducing the
cost of punishment. Eventually, the control effort is reduced to a maintenance level, effectively
discouraging new sporadic free-riding. This flexible approach significantly reduces the cost of
implementing fractional punishment from multiple perspectives making it a versatile option for
the final decision-maker.

Finally, this work builds on the idea that the cost of a punishment system is not only a function
of how many free-riders are being punished (as discussed when fractional punishment was first
introduced) but also of when and how effectively this punishment is being used. In this context,
the optimization problem presented are the first attempt to answer such ideas.

The contents of this paper are organized as follows: In §2.1 the OPGG and the fractional punish-
ment model are introduced. The optimal control formulation is defined in §3. In §4, the simula-
tion results for the functional terms relative importance are exhibited. These results are discussed
in §5, as well as a comparison between relevant punishment strategies and the optimal solutions
found. Finally, the conclusions of the work are presented in §6.

2 CONTROL AND FRACTIONAL PUNISHMENT

In this section, we define the optional public goods game with fractional punishment in which
the optimal control will be applied.

Trends Comput. Appl. Math., 25 (2024), e01737
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2.1 Optional public goods game

The public goods game is an economic experiment that can be used to study the evolution of
cooperation in a group. The optional version of the game introduces the possibility of rejecting
participation and being independent; therefore, the individual must first decide if he will par-
ticipate and then whether he will contribute (to be a cooperator) or not (to be a free-rider) to
the game. The OPGG system is defined as follows. Let I = [t0, t f ] denote a time interval for the
analyzed period, given the state variable w(t), that is comprised of the frequency of cooperators
across time x(t), the frequency of free-riders across time y(t) and the frequency of independents
(loners) across time z(t), and for each t ∈ I, the state space is S3 ⊂ R3 defined as

S3 :=
{
[x,y,z]T ∈ R3 : x,y,z ≥ 0 and x+ y+ z = 1

}
,

hence the state variable space is Y = {w(t) ∈C(I,S3) : ẇ ∈C(I,R3)}.

Given an initial condition w(t0) = w0 ∈ S3 the state equation has the form [4]:

ẋ = x(px(w)−p̄(w,v)),
ẏ = y(py(w,v)−p̄(w,v)),
ż = z(pz−p̄(w,v)),

(2.1)

where pi is the expected payoff of the ith strategy, and p̄ is its average given by p̄ =

xpx+ypy+zpz; v is the distributed control, that belongs to an admissible space U = L2(I) and
represents the fractional punishment (see §2.2). It can be shown that the problem (2.1) is well
posed (see [4]).

Remark 1. The simplex S3 remains invariant under the flow of Equation (2.1) (see [16, 31]);
hence, if the state w(t) ∈ S3 at t = t0, then w(t) ∈ S3 ∀t, and it is endowed with the standard
norm ∥ · ∥2.

Remark 2. In Expression (2.1), the dynamics rely on the expected payoff pi of the ith strategy
with respect to the average population payoff p̄ in the sense that, if pi > p̄, then the proportion
of the i strategy increases, otherwise it decreases or stays the same.

To define the payoff in an OPPG, consider that a group of n individuals are invited to participate
in the game. The group is therefore composed by nc cooperators, nd defectors, and nl loners
(n = nc +nd +nl). Assuming that each contribution is equal and normalized (c = 1), the payoff
of each corresponding strategy is [13, 15]:

pc = r
nc

s
−1, pd = r

nc

s
, pl = σ , (2.2)

where s is the number of players in the game (s = nc + nd), r is the multiplication factor by
which the group contribution is multiplied and σ is the non-participating individual payoff. The
parameters r, σ , and n are considered under the following assumptions:

Trends Comput. Appl. Math., 25 (2024), e01737



i
i

“1737” — 2024/11/8 — 10:17 — page 4 — #4 i
i

i
i

i
i

4 OPTIMAL CONTROL OF FRACTIONAL PUNISHMENT IN OPGG

Assumption 1. The interest rate on the common pool r satisfies 1 < r < n.

Condition 1 < r means that if all individuals cooperate, they are better off than if all defect.
Condition r < n means that each individual is better off defecting by itself than cooperating [13].

Assumption 2. The payoff σ of the loner strategy satisfies 0 < σ < r−1.

This means that a cooperator in a group of cooperators (profiting (r−1) each) is better off than
loners that receive σ , but loners are better off than a defector in a group of defectors, where the
payoff is equal to 0 [13].

2.2 Fractional punishment model

The fractional punishment is a mechanism to reduce the cost of the sanctioning system by pun-
ishing only a subset of the free-riders. Following [4], in this work we consider that only a fraction
v (0 ≤ v ≤ 1) of the defectors will be punished, modifying the payoff presented in (2.2). In partic-
ular, we assume that this set of randomly selected defectors will have their corresponding payoff
reduced to 0, while the remaining free-riders will obtain the normal payoff, having an average
payoff:

pd = (1− v)
(

r j
s

)
+v0. (2.3)

Expected payoffs are used in equations (2.1), since a player does not know in advance the com-
position of the group he is playing with. To this end, observe that the group composition depends
on the frequencies of all strategies in the population.

The corresponding expected payoffs considering the fractional punishment for system (2.1) take
the form [4]:

px(x,z) = E[pc] = σzn−1+ra+rxb+(1−r)zn−1−1, (2.4)

py(x,z,v) = E[pd ] = σzn−1+(1−v)rxb, (2.5)

pz(x,z,v) = E[pl ] = σ . (2.6)

where a := 1−zn

n(1−z) =
1
n Σ

n−1
k=0zk and b := 1−a

1−z =
1
n Σ

n−2
k=0(n−1−k)zk. Then it follows that payoffs in

expression (2.1) are polynomials.

3 OPTIMAL CONTROL FORMULATION

In this section, we define a problem of minimization with constraints to find the controller v for
the OPGG system (2.1). The cost function for minimization comprises the weighting of four
objectives, each with its significance [10, 22].

Our control effort v corresponds with the fraction of defectors that are punished. This control
belongs to an admissible space U = L2(t0, t f ), where in our application v ∈ [0,1]. We indicate
the dependence of w on v using the notation w(v). Given a target function w∗ in L2(t0, t f ) and

Trends Comput. Appl. Math., 25 (2024), e01737
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parameters αi ≥ 0, we shall employ the following cost function, which we associate with the
state equation (2.1) [9, 17, 22]:

J(w(v)),v) =
α1

2
∥w(t f ,v)−w∗∥2

2 +
α2

2

∫ t f

t0
∥w(τ,v)−w∗∥2

2dτ

+
α3

2

∫ t f

t0
v2(τ)dτ +

α4

2

∫ t f

t0
(v(τ)y(τ))2dτ. (3.1)

The weights establish the importance of each of the functional terms, i.e., α1 weights the cost of
not being in the desired state w∗ at t f , α2 weights the accumulated squared error of trajectory w,
α3 weights the value of the controller at all times, and finally α4 weights the frequency of sanc-
tion individuals at all times. In other words, the term associated with α4 measures the the costs
of implementing the control effort given the current frequency of defectors in the population,
assuming this two values are proportional (as they usually are).

The optimal control problem for system (2.1) consists of finding a controller u ∈ U which
minimizes the cost function (3.1) as

J(w,u) := min
v∈U

J(w(v),v) s.t. (2.1). (3.2)

Remark 1. The integrands of the cost-function (3.1) belong to C2. Additionally, its associated
Hamiltonian function is given by

H(t,w,v,λ ) =
α2

2
∥w(t,v)−w∗∥2

2 +
α3

2
v2(t)+

α4

2
v2(t)y2(t)+λ

T f (t,w,v),

is strictly convex with respect to v for w0 being interior to S3 and α3 > 0 or α4 > 0; then

Hvv = α3 +α4y2 > 0,∀t ≥ t0.

This determines necessary and sufficient conditions to obtain a unique optimal solution that
minimizes (3.1) (see [2, 25]).

Next, we discuss the implemented algorithm and the Python’s library used for the
implementation.

3.1 The GEKKO library and the algorithm

We use a Python package called GEKKO for numerical implementation, specifically designed
for optimization and control problems [3]. This package offers three free solvers in its public
distribution: APOPT, BPOPT, and IPOPT. This work will use the default solver APOPT unless
otherwise indicated.

A pseudo-code of the algorithm implemented in the GEKKO is presented in Algorithm 1.

Trends Comput. Appl. Math., 25 (2024), e01737
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6 OPTIMAL CONTROL OF FRACTIONAL PUNISHMENT IN OPGG

Algorithm 1 Solving the minimization of the cost function.

1: Declare initial parameters such as number of points, initial and final time, maximum value
for v, initial state w0, weights [α1,α2,α3,α4], and the values of n, r and σ mentioned in
section 2;

2: Initialize the model;
3: Declare all variables and equations;
4: Define the cost function as a minimization objective;
5: Choose a solver and execute it;
6: Display results;

4 RESULTS

To appropriately choose the weights in the cost function (3.1), we start by analyzing each element
on its own, for example, [α1,α2,α3,α4] = [1,0,0,0], to understand the single importance of α1

and so forth. Then, we proceed to examine the most important pairs of combinations between
the elements of the cost function (such as α2 and α3 or α2 and α4). Lastly, we merge the previ-
ous findings to obtain a combination that yields better results, which we compare with relevant
constant fractional punishment strategies.

In all cases, the parameters mentioned in §2 necessary for defining the problem are as follows:
n = 5, r = 3, and σ = 1. To simplify the notation, from now on, we will refer to the importance of
α1
2 ∥w(t f ,v)−w∗∥2

2 as “the importance of α1”. Similar acronyms will be used for the other terms
of the functional (3.1).

4.1 Importance of α1

The value of α1 is important for minimizing the final state error at time t f . This situation is ob-
served in Figure 1, which illustrates a simulation where the final state is close to full cooperation.
However, when the only requirement is for the final state to be close to full cooperation (ver-
tex x = 1), the trajectory can oscillate in the state space and closely approach the vertex z = 1.
This situation means that in the context of a public good, simply minimizing this error does not
guarantee sustainability for the whole period since approaching z = 1 could lead to bankruptcy
caused by the abandonment of most of the game participants.

Trends Comput. Appl. Math., 25 (2024), e01737
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(0, 0, 1)

(1, 0, 0)

(0, 1, 0)

(a)
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t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

v

(b)

Figure 1: Importance of α1. Part 1. Results obtained by simulating from 0 to 70 time units with
250 steps, from initial state w0 = [0.2,0.7,0.1]T (marked with a dot), using the controller curve
shown in b. a) State space and trajectory of the system. b) Control effort v over time.

(0.998,0.001,0.001)
0 1

2

3

4
(0.995,0.0049,0.0)

Figure 2: Importance of α1. Part 2. Result obtained by simulating from 0 to 4 time units with
600 steps, with no controller (v= 0), starting at w0 = [0.998,0.001,0.001]T . A zoomed in simplex
border can be seen in black, along with red time stamps in the trajectory traveled. The initial state
error amounts to around 0.002449 while the final state error amounts to 0.007008, showing how
unnoticeable small time deviations could be at the end of the simulation for this system.

Note that because the system is continuous, it cannot quickly deviate from the state of full co-
operation (vertex x = 1). Hence, if the goal is to minimize the state error at all times (see §4.2)
rather than just minimizing the final state error at time t f , a boundary layer will emerge. This
situation is shown in Figure 2. However, depending on the desired accuracy, this solution can
be acceptable. With this consideration, α1 is excluded from the subsequent analysis by setting
α1 = 0.

Trends Comput. Appl. Math., 25 (2024), e01737
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8 OPTIMAL CONTROL OF FRACTIONAL PUNISHMENT IN OPGG

4.2 Importance of α2

Considering only the accumulated state error across the entire time period, we aim to reduce the
error as quickly as possible without considering the magnitude of the punishment costs. This
is observed in Figure 3. The control effort reaches its maximum value, indicating that we are
penalizing all free-riders, leading to the fastest reduction in error possible. This trend continues
throughout the entire period, ensuring that no further error accumulates once we are close to, or
have reached, the desired state w∗.

(0, 0, 1)

(1, 0, 0)

(0, 1, 0)

optimal w with 2=1

(a)

0 10 20 30 40 50 60 70
t

0.0

0.2

0.4

0.6

0.8

1.0

v

optimal v with 2=1

(b)

0 10 20 30 40 50 60 70
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

vy

 Integral of vy with 2=1: 1.414

(c)

Figure 3: Importance of α2. Result obtained by simulating from 0 to 70 time units with 250
steps, only considering α2 and with starting state w0 = [0.2,0.7,0.1]T . a) State space and trajec-
tory of the system. b) Control effort v over time. c) Proportion of punished individuals yv over
time. The red shade represents the area under the curve and the legend shows its value.

In practice, for most real-world systems, it is impossible to sanction all free riders at all times.
This impossibility may be due to the high cost of punishing or the difficulty of identifying and
addressing all (or most) free riders. However, the obtained numerical result is the minimum
estimation for all scenarios of the accumulated errors.

Trends Comput. Appl. Math., 25 (2024), e01737
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4.3 Importance of α3 and α4

When analyzing the importance of α3, the optimal controller minimizes v to its minimum value
(i.e., keeping it at zero the entire period). If this occurs, full cooperation is not achieved, defeating
the purpose of the whole controller.

A similar result is obtained when analyzing the importance of α4. This is because minimizing
the frequency of sanctioned individuals implies avoiding sanctioning any of them (i.e., keeping
v at zero for the entire period, as with the case of α3). Figure 4 shows these results1. Although
the single choice of the terms α3 or α4 leads to the no punishment system behavior, they be-
come necessary for combining with a term containing the state error, such as α2, to achieve a
trade-off between minimizing the state error and applying punishment. This will be analyzed in
forthcoming sections.

(0, 0, 1)

(1, 0, 0)

(0, 1, 0)

optimal w with 3=1 or 4=1

(a)

0 10 20 30 40 50 60 70
t

0.00

0.02

0.04

0.06

0.08

0.10

v

optimal v with 3=1 or 4=1

(b)

0 10 20 30 40 50 60 70
t

0.00

0.02

0.04

0.06

0.08

0.10

vy

 Integral of vy with 3=1 or 4=1: 0.0

(c)

Figure 4: Importance of α3 or α4. Result obtained by simulating from 0 to 70 time units with
600 steps, minimizing the control effort or the amount of sanctioned individuals, with starting
state w0 = [0.2,0.7,0.1]T . a) State space and trajectory of the system. b) Control effort v over
time. c) Proportion of punished individuals yv over time. The red shade represents the area under
the curve which in this case is zero.

1The numerical system trajectory in Figure 4 presents a discrepancy with respect to the closed system trajectory of the
free punishment system (see [4]: Figure 1a). This is due to the numerical integrator implemented [3].

Trends Comput. Appl. Math., 25 (2024), e01737
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10 OPTIMAL CONTROL OF FRACTIONAL PUNISHMENT IN OPGG

4.4 Relative importance of α3 with respect to α2

When aiming to reduce costs while enhancing collaboration, it is attractive to explore using
a combination of α2 and α3 in the cost function (3.1). This approach enables us to balance
minimizing the state error trajectory with penalizing only a necessary fraction of free-riders.

To explore the relationship between α2 and α3, we initially assume that α2 is much greater than
α3. Afterwards, we decrease the value of α2, while ensuring that α2 +α3 = 1 for all cases. In the
corresponding figures, we use the following color sequence: red, blue, green, cyan, and magenta,
which aligns with the mentioned procedure. This process is repeated in the subsequent sections.

When α2 is much more important than α3 (observe in Figure 5a and b) full cooperation is
achieved. This is obtained by applying an important amount of punishment at the beginning
and maintaining a small amount of punishment at the end.

As α2 becomes smaller with respect to α3 (as seen in Figure 6a and b) a boundary layer emerges
in the state trajectory and the controller. Consequently, depending on the pre-specified final error
accuracy, the state trajectory can be undesirable for obtaining full cooperation.

(0, 0, 1)

(1, 0, 0)

(0, 1, 0)(0, 0, 1)

(1, 0, 0)

(0, 1, 0)(0, 0, 1)

(1, 0, 0)

(0, 1, 0)(0, 0, 1)

(1, 0, 0)

(0, 1, 0)

optimal w with 2=0.999
optimal w with 2=0.97
optimal w with 2=0.94
optimal w with 2=0.91

(a)

0 10 20 30 40 50 60 70
t

0.0

0.2

0.4

0.6

0.8

1.0

v

optimal v with 2=0.999
optimal v with 2=0.97
optimal v with 2=0.94
optimal v with 2=0.91

(b)

0 10 20 30 40 50 60 70
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

vy

 Integral of vy with 2=0.999: 1.4758
 Integral of vy with 2=0.97: 1.5066
 Integral of vy with 2=0.94: 1.5237
 Integral of vy with 2=0.91: 1.5376

(c)

Figure 5: Relative importance of α3 with respect to α2. Part 1. Result obtained by simulating
from 0 to 70 time units with 400 steps, such that α2 is 0.999, 0.97, 0.94 and 0.91 and with starting
state w0 = [0.2,0.7,0.1]T . a) State space and trajectory of the system. b) Control effort v over
time. c) Proportion of punished individuals yv over time. The corresponding shade represents the
area under the curve and the legend shows its value.

Trends Comput. Appl. Math., 25 (2024), e01737
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0.4
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1.0

v

optimal v with 2=0.9
optimal v with 2=0.4
optimal v with 2=0.2
optimal v with 2=0.1

(b)

0 10 20 30 40 50 60 70
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

vy

 Integral of vy with 2=0.9: 1.5418
 Integral of vy with 2=0.4: 1.7243
 Integral of vy with 2=0.2: 1.7575
 Integral of vy with 2=0.1: 1.3779

(c)

Figure 6: Relative importance of α3 with respect to α2. Part 2. Result obtained by simulating
from 0 to 70 time units with 400 steps, such that α2 is 0.9, 0.4, 0.2 and 0.1 with starting state w0 =

[0.2,0.7,0.1]T . a) State space and trajectory of the system with timestamps in each corresponding
color. b) Control effort v over time. c) Proportion of punished individuals yv over time. The
corresponding shade represents the area under the curve and the legend shows its value.

4.5 Relative importance of α4 with respect to α2

In the real world, another important cost-related factor is the number of punished individuals. To
minimize this, we consider the terms associated with the values of α2 and α4 in the cost function
(3.1). We use a similar methodology to the previous section, maintaining the same color ordering
and ensuring that α2 +α4 = 1 while reducing the value of α2.

Figure 7 shows that when the value of α4 is progressively increased, it reduces both the initial
impulse of the controller (Figure 7) and the number of punished individuals (Figure 7). This
provides a counter-intuitive punishment strategy, since in a phase of high defection, the controller
punishes fewer individuals. On the contrary, when the value of α4 is decreased, it generates higher
values for both the control effort and the number of punished individuals (see Figures 8 and c)).
Still, after a certain minimum threshold value of α4, the state trajectory becomes more oscillatory
in the simplex (see Figures 7 and 8).

Trends Comput. Appl. Math., 25 (2024), e01737
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Figure 7: Relative importance of α4 with respect to α2. Part 1. Result obtained by simulating
from 0 to 70 time units with 400 steps, such that α2 is 0.2, 0.05, 0.03, 0.02 and 0.01 (with
timestamps for this last case) and with starting state w0 = [0.2,0.7,0.1]T . a) State space and
trajectory of the system. b) Control effort v over time. c) Proportion of punished individuals yv
over time. The corresponding shade represents the area under the curve and the legend shows its
value.

The results show that to achieve full cooperation, we can allow for an oscillatory state trajectory
by sanctioning a very small number of individuals (represented by the integral of yv). How-
ever, in practice, this can lead to a high level of desertion and make the institution susceptible
to bankruptcy. In general, even if we do not consider oscillatory trajectories, the results reveal
an unexpected effect: we can actually improve cooperation by reducing the number of sanc-
tioned individuals during periods of high free-riding and increasing it during periods of more
cooperation.

4.6 Combining the effects of α2, α3 and α4

By leveraging the obtained relations between α2 and α3, and α2 and α4, we design a controller
that ensures full cooperation while also considering the costs of imposing sanctions during peri-
ods of high defection. This approach minimizes the control effort to the optimal level required to
sustain cooperation.
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Figure 8: Relative importance of α4 with respect to α2. Part 2. Result obtained by simulating
from 0 to 70 time units with 400 steps, such that α2 is 0.009, 0.005, 0.003 and 0.001 and with
starting state w0 = [0.2,0.7,0.1]T . a) State space and trajectory of the system. b) Control effort
v over time. c) Proportion of punished individuals yv over time. The corresponding shade repre-
sents the area under the curve and the legend shows its value.

Similarly to previous cases, we begin with a low value of α2 while maintaining α3 = 0.0001 and
α2 +α3 +α4 = 1. Afterward, we increase the relative importance of the term associated with α2

while decreasing the importance of the amount of sanctioned individuals (α4).

Perhaps the most remarkable result is shown in Figure 9. Observe the controller’s effort is smaller
during high defection periods while being more aggressive when defection has gone down. Fi-
nally, it maintains a constant value at the end to discourage defection. The regulation of weights
α2 and α4 manifest almost as a time shift of the plateaus in this graph.

Something notable to mention is that when time increases, the value of v for the test scenarios
tends toward the value for which the vertex x = 1 becomes an attractor. In this case, it is around
v= 1/6 [6]. Yet, it is not confirmed if this result is just a coincidence given the chosen parameters
or if it unveils a special relation of the model.
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Figure 9: Combining results. Part 1. Result obtained by simulating from 0 to 90 time units
with 400 steps, such that α2 is 0.02, 0.03, 0.04, 0.05 and 0.06 and with starting state w0 =

[0.2,0.7,0.1]T . a) State space and trajectory of the system. b) Control effort v over time. c)
Proportion of punished individuals yv over time. The corresponding shade represents the area
under the curve and the legend shows its value.

4.7 A comparison between punishment strategies

In this section, we use a particular scenario (and its associated cost function) to compare finding
an optimal solution with using a simple constant value of fractional punishment (or eventually
punishing all free-riders at all times). To this end, consider the following cost function:

J1 =
∫ 20

0

[
0.04

2
∥w(τ,v)−w∗∥2

2 +
0.001

2
v2(τ)+

0.959
2

y2(τ)v2(τ)

]
dτ. (4.1)

For initial conditions w0 = [0.2,0.7,0.1]T , each pair of constant fractional punishment and tra-
jectory (v,w(v)), has an associated cost given by J1(t0 := 0, t f := 20,v,w). Figure 10 shows a
curve of values of the cost function (4.1) for several values of v.

Figure 11 shows two relevant cases tested against the optimal trajectory obtained using Algorithm
1. It is observed that the optimal solution has a lower value for the cost function and a lower
amount of punished individuals (given by the integral of yv). Table 1 shows the computational
time and the cost function value for some representative values of v and the optimal controller
v(t). Notice that obtaining the optimal solution requires less time than obtaining a solution by
simulating the 101 cases seen in the tests for Figure 10, even when using smaller time steps to
find the optimal solution.
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Figure 10: A comparison between punishment strategies. The cost function when a con-
stant punishment is applied. Values of cost function (4.1) obtained by taking 101 constant
and equally spaced values of v ranging from 0 to 1. Each scenario was tested from initial state
w0 = [0.2,0.7,0.1]T using 20 time units and 400 time steps. From the tests, there is a clear im-
plication that there is a minimum value of J1 at v ≈ 0.57, and small deviations from this value do
not result in big changes of J1.
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Figure 11: A comparison between punishment strategies. Constant fractional punishments
against the optimal one. Result obtained by simulating from 0 to 20 time units with 1200 steps,
starting state w0 = [0.2,0.7,0.1]T and using v = 1 (in red), v = 0.57 (in blue) and an optimal v
(in green) as punishment strategies. a) State space and trajectory of the system with some color
coded time stamps. b) Control effort v over time. c) Proportion of punished individuals yv over
time. The corresponding shade represents the area under the curve and the legend shows its value.
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Table 1: Cost comparison between control strategies.

Strategy Computation time
(using the IPOPT solver)

Computed value of J1

Constant v = 1 ≤ 15s 0.4400079
Constant v = 0.57 ≤ 1500s 0.3638641
Optimal v ≤ 30s 0.3503187

Notes. This table presents some key features of the comparison shown in Figure 11. For this case in particular, the
IPOPT solver was used, since even though the APOPT solver has been reliable for most of this work. The IPOPT solver
is much faster, even when using many more time steps. For the computation time, for row v = 1, it just reflects the
approximated simulation time; for row v = 0.57, it mainly reflects the process of finding the minimum for J1 among the
101 values of v mentioned in Figure 10 and simulating it again with more time steps.

5 DISCUSSION

Trying to account for the most common costs associated with running a public good, three of
them naturally arise: the difference between the desired state of cooperation and the actual state
of the system (state error), the fraction of free-riders that will be sanctioned and the total amount
of people that will be sanctioned. To solve this problem, a weighted cost function that takes into
account all this factors is designed, using weights α2, α3 and α4 for the relevant costs mentioned
before.

When analyzing each part of the cost function individually, it is observed from the experiments
that if any long-term improvement of cooperation is desired, α2 must be considered. Neverthe-
less, at least one of α3 or α4 should be used to decrease the sanctioning efforts by reducing the
fraction of sanctioned individuals (see §4.1 to §4.5).

As shown in §4.6 a combination of α2, α3, and α4 can be used, such that cooperation improves
(because of α2), fractional punishment is low when there are too many free-riders to sanction
(because of α4). It is also low when the maintenance of cooperation does not deem it necessary to
sanction so many people (because of α3). This is considered a good illustration of the capabilities
of the optimal solution obtained for this minimization problem.

Finally in §4.7 an optimal solution for a specific problem generated from cost function (4.1) is
compared with two representative alternative sanctioning strategies: a) sanctioning all free-riders
and b) sanctioning a constant fraction of free-riders close to the minimizing value of the cost
function.

In summary, this research demonstrates that the optimal solution is better than the best constant
fractional punishment in terms of the cost function value and the frequency of punished indi-
viduals. It is also found in a considerably shorter time, and the sanctions are applied when they
are most effective. These findings clearly show the advantage of the optimal solution over the
alternative of finding the best constant fractional punishment.
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6 CONCLUSION

The central focus of this paper has been the optimal control of the free-rider problem in an
optional public good game using fractional punishment as the controller. Several objective min-
imization functions were tested based on the error concerning a specific equilibrium point (full
cooperation (x,y,z) = (1,0,0)), the controller’s effort, and the frequency of punished free-riders.

An important term introduced to minimize the cost of punishing is associated with the effort
to implement the control given the current frequency of free riders in the population. This term
relates to the real per-unit costs of punishing in a public good or service, where the costs depend
on the number of punished free-riders.

Numerical experiments evidence that the optimal solutions found result in a lower value of the
cost function compared to punishing all or a constant fraction of free-riders at all times.
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