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ABSTRACT. Ridge and Lasso regressions are types of linear regression, a machine learning tool for deal-
ing with data. Based on multiobjective optimization theory, we transform Ridge and Lasso regression into
bi-objective optimization problems. The Pareto fronts of the resulting problems provide a range of regres-
sion models from which the best one can be selected. We employ the NFDA-Nonsmooth Feasible Direc-
tions Algorithm devised for solving convex optimization problems to construct the Pareto fronts of Ridge
and Lasso when regarded as bi-objective problems.

Keywords: Ridge regression, Lasso regression, multiobjective optimization, Pareto front.

1 INTRODUCTION

Today, massive amounts of data are collected and stored every minute. In general, these data are
used for predicting future results based on previous information. Doctors, for example, would
be delighted to be able to tell their patients their likelihood to develop certain diseases based
on the patients’ features or habits. If doctors had at their disposal reliable tools to make such
predictions, patients could start treatment or even prevention before too late.

Cientists develop mathematical models that use data collected from previous experiences to pro-
duce accurate answers to important questions. One of the models used for prediction is Linear
Regression [16], [22] where n outcome variables b1, ...,bn and n associated predictors or features
ai = (ai1, ...,aip), i = 1, ...,n, are observed. The goal is to build a model capable of predict-
ing new outcomes from new features with certain reliability and also sort out the most relevant
components of the features. A linear regression model is written as

bi = x0 +
p

∑
j=1

ai jx j + ei , i = 1,2, ...,n
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2 PARETO FRONT OF RIDGE AND LASSO BY NFDA

where x0,x1, ...,xp are the coefficients of the model and ei is the error. Using matrices, the model
can be rewritten as b = Ax+ e where b = (b1, ...,bn), A = (ai j) is a n× p matrix, x = (x1, ...,xp)

and e = (e1, ...,en).

The well known Least Squares method [13], [4] provides estimates for the coefficients by mini-
mizing the sum of the squares of the errors or, in other words, by minimizing ∥e∥2

2 = ∥Ax−b∥2
2.

If AT A is invertible, the solution of the least squares problem, called here ls, can be expressed
through the formula ls = (AT A)−1AT b. The Least Squares method produces low bias and, if n is
much larger than p, low variance too [22]. However, if p > n, the solution of the least squares is
no longer unique. Moreover, the interpretability of the model is hampered when p is large.

Shrinkage methods [16], [8], [17], [1], [11], [33] such as Ridge and Lasso reduce such drawback
by restricting the size of the coefficients. Ridge imposes ∥x∥2

2 ≤ t as a constraint added to the
least squares problem whereas the Lasso demands ∥x∥1 ≤ t, where t > 0. The upside of using
1-norm is that it increases the chances of finding null coefficients because of the shape of the
feasible region [16], [17]. However, the model becomes nondifferentiable. Regardless the case, a
minimization problem has to be solved and the parameter t must be set previously. It is not easy
to tell in advance the value of t that provides the best model. For each t fixed, the coefficients are
obtained after the minimization of the sum of the squares of the errors subject to some restriction
on the size of the coefficients. In practice, many values of t are set leading to as many model as
values of t. The practitioner, having the models at hand, has to verify the accuracy of the models
and choose the best one by performing some procedure like, for example, cross-validation [2],
[25], [7], [35]. In general, the analysis of the models is a massive task and takes long time due to
the large number of values of t necessary to get a good model [14]. One alternative is transforming
the regression problem into a bi-objective optimization problem, constructing its Pareto front and
choosing the best model from those solutions which produce the front. Each point on the front
corresponds to a solution which, in its turn, corresponds to a model.

The connection between Linear Regression and Optimization is clear and, going further, Machine
Learning and Optimization are strongly intertwined [3]. For example, Suttorp and Igel [36] apply
multiobjective evolutionary optimization to support vector machines. Jin and Sendhoff [23] pro-
vide an overview of the research envolving Multiobjective Optimization and Machine Learning.
In his Ph.D thesis [32], the author studies how some machine learning problems can be addressed
by means of multiobjective optimization techniques and propose algorithms to solve such prob-
lems. In [6], the authors propose a bi-objective mixed integer linear programming to select the
best model for a linear regression problem. The authors also suggest a heuristic for choosing the
best point.

In this work, based on multiobjective optimization theory, we show that Ridge and Lasso regres-
sions can be regarded as bi-objective optimization problems. However, the main contribution of
the paper is the algorithm called NFDA-Nonsmooth Feasible Directions Algorithm, devised for
solving convex (nonsmooth) optimization problems. We employ it to generate the Pareto fronts
of the resulting optimization problems and show that NFDA can be a good tool for such task.

Trends Comput. Appl. Math., 25 (2024), e01767
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W. P. FREIRE 3

The paper is organized in 6 sections of which this introduction is the first. In Section 2, we state
Ridge and Lasso regression problems. Section 3 is about Multiobjective Optimization. There, we
present the main concepts and explain how we develop our approach. In Section 4, we present
the NFDA – Nonsmooth Feasible Directions Algorithm. In Section 5, we present numerical
experiments and, finally, the conclusions are presented in Section 6.

2 RIDGE AND LASSO REGRESSIONS

In this section, we state Ridge regression, the Lasso and their Lagrangian forms. The reader
can find comprehensive discussion and applications in [16], [22], [17], [1], [35], [15], [24] and
references therein.

Given a n× p matrix A and a n-dimensional vector b, the objective of Ridge and Lasso regression
is to find a p-dimensional vector x that minimizes the squared 2-norm ∥Ax− b∥2

2 and satisfies

∥x∥q
q ≤ t, where ∥x∥q =

(
∑

p
i=1 |xi|q

) 1
q and t ≥ 0 is given. We have Ridge regression if q = 2 and

Lasso regression if q = 1. The associated optimization problem is then posed as

(P2.1) minimize ∥Ax−b∥2
2 subject to ∥x∥q

q ≤ t.

Problem (P2.1) is a convex constrained problem that is also smooth in Ridge case and nonsmooth
in Lasso case. For 0 < t < ∥ls∥q

q , the solution of problem (P2.1) lies on the border of the ball
{x ∈Rn : ||x||qq = t}. If t ≥∥ls∥q

q the solution is exactly ls. On the other hand, if t = 0, the solution
is obviously the null vector. As t is varied between 0 and ∥ls∥q

q , the solutions of (P2.1) show a
trade-off between the bias and the variance of the models [35], [6]. Associated with problem
(P2.1) is its Lagrangian form

(P2.2) minimize ∥Ax−b∥2
2 +λ∥x∥q

q , λ ≥ 0.

Lagrangian Duality [30], [20] assures a one-to-one correspondence between the original problem
(P2.1) and its Lagrangian form (P2.2), i.e. for each t there is a λ that leads to the same solution
and vice-versa. Therefore, it is often better solving (P2.2) instead of (P2.1). However, λ , as well
as t, must be set before minimizing the Lagrangian, which is not a simple task. This previous
choice can be avoided by using Multiobjective Optimization.

3 MULTIOBJECTIVE OPTIMIZATION

In this section, we explain how the scalar constrained optimization problem (P2.1) is trans-
formed into a bi-objective optimization problem. We present the concepts, theoretical results
and methods that allow us to do so. For further discussion, the reader can find excellent material
in [10], [28], [21].

Given a vector function f : X ⊂ Rn −→ Rk, f (x) = ( f1(x), f2(x), ..., fk(x)), a multiobjective
optimization problem is defined as

(MOP) minimize { f1(x), f2(x), ..., fk(x)} , x ∈ X

Trends Comput. Appl. Math., 25 (2024), e01767
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4 PARETO FRONT OF RIDGE AND LASSO BY NFDA

where f1, f2, ..., fk : Rn −→ R are the objective functions and X ⊂ Rn is the feasible region. In
general, X = {x ∈Rn|gi(x)≤ 0 , h j(x) = 0 , i = 1, ...,m , j = 1, ..., p} with gi , h j : Rn −→R con-
tinuous.
Solving (MOP) means minimizing all the objective functions simultaneously. The spirit of mul-
tiobjective optimization is based on the assumption that there is conflict among the functions fi.
There being no conflict, the solution can be found by minimizing each fi separately, in which
case no method for multiobjective optimization is required. For the reader’s convenience, we
recall some standart definitions [28] largely used in Multiobjective Optimization.

Definition 3.1. The feasible objective region, denoted by Z = f (X) ⊂ Rk, is the image of the
feasible region X. Its elements z = (z1,z2, ...,zk) ∈ Rk are called objective vectors and each
zi = fi(x) is called objective value.

Definition 3.2. A decision vector x∗ ∈ X is Pareto optimal if there does not exist another decision
vector x ∈ X such that fi(x)≤ fi(x∗), i = 1,2, ...,k and f j(x)< f j(x∗) for at least one index j. An
objective vector z∗ ∈ Z is Pareto optimal if the corresponding decision vector is Pareto optimal.

Definition 3.3. A decision vector x∗ ∈ X is weak Pareto optimal if there does not exist another
decision vector x ∈ X such that fi(x) < fi(x∗) for all i = 1, ...,k. An objective vector z∗ ∈ Z is
weak Pareto optimal if the corresponding decision vector is weak Pareto optimal.

A Pareto point is a vector that is either Pareto optimal or weak Pareto optimal. The subset of the
feasible objective region consisting of Pareto points is the Pareto front. The goal of Multiobjective
Optimization is to find Pareto fronts. The practitioner can then sort out the best solution among
those on the front. Our goal is to build effectively Pareto fronts of Ridge and Lasso by using the
NFDA. The analysis of the front is not object of the paper. As mentioned before, the points on
the front are obtained from the solutions of the multiobjective optimization problem equivalent
to problem (P2.1).

Scalarization [9], [5], [31] is a technique widely employed for solving multiobjective optimiza-
tion problems. It consists of transforming the vector function associated to the multiobjective
problem (MOP) into a scalar function to be minimized.

In this paper, we focus on two scalarization methods, namely the Weighting Method and the ε-
Constraint Method. We have based our approach on the relation between those methods and the
equivalence between the problem (P2.1) and its Lagrangian form (P2.2). Since Ridge and Lasso
can be regarded as bi-objective optimization problems, in what follows, for simplicity, we fix
k = 2. For generalizations, the reader can see [10], [28], [21].

Trends Comput. Appl. Math., 25 (2024), e01767
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3.1 The Weighting Method

This method consists of associating a positive weighting coefficient to each objective function
and minimizing the weighted sum of objectives. The original multiobjective problem (MOP) is
then transformed into the following (scalar) problem

(WM) minimize {w1 f1(x)+w2 f2(x)} , x ∈ X , w1,w2 ≥ 0 , w1 +w2 = 1.

The solutions of (WM) are Pareto points. If w1,w2 > 0, they are Pareto optimals.

3.2 The ε-Constraint Method

In this method one of the objective functions is selected to be minimized and the remaining func-
tions are set as constraints by imposing upper bounds to each of them. The original multiobjective
optimization problem thus becomes

(CM) minimize f1(x) subject to f2(x)≤ ε , x ∈ X .

The solutions of (CM) are Pareto points.

3.3 Connections between the Weighting Method and the ε-Constraint Method

In this subsection, we lay the bases upon which our approach develops.

Theorem 3.1. ( [28] , Theorem 3.2.5 )
Let x∗ ∈ X be a solution of (WM) and w1,w2 ≥ 0.
(1) If w1 > 0 then x∗ is a solution of (CM) for f1 as objective function and ε = f2(x∗) or
(2) If x∗ is the unique solution of (WM) then x∗ is a solution of (CM) with ε = f2(x∗) and f1 as
objective function.

Theorem 3.2. ( [28] , Theorem 3.2.6 ) Let the multiobjective optimization problem be convex.
If x∗ ∈ X is a solution of (CM) for f1 as objective function and ε = f2(x∗) then there exists
w1,w2 ≥ 0 with w1 +w2 = 1 such that x∗ is also a solution of (WM).

Theorems 3.1 and 3.2 assert the equivalence between the Weighting Method and the ε-Constraint
Method, for convex problems. We have developed our approach based on this equivalence. Let us
look at Ridge and Lasso from multiobjective optimization perspective. Setting f1(x) = ∥Ax−b∥2

2
and f2(x) = ∥x∥q

q, we get the following bi-objective convex optimization problem

(P3.3.1) minimize {∥Ax−b∥2
2 , ∥x∥q

q} , x ∈ Rn.

If we apply the ε-Constraint Method, the problem becomes

(P3.3.2) minimize ∥Ax−b∥2
2 subject to ∥x∥q

q < ε

which is exactly the original problem (P2.1) if we replace t with ε .

Trends Comput. Appl. Math., 25 (2024), e01767
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6 PARETO FRONT OF RIDGE AND LASSO BY NFDA

According to theorems 3.1 and 3.2, for solving (P3.3.2), we can use the Weighting Method and
solve the problem

(P3.3.3) minimize w1∥Ax−b∥2
2 +w2∥x∥q

q , x ∈ Rn

where w1 and w2 are previously fixed and must satisfy w1,w2 ≥ 0, w1 +w2 = 1.
One should notice that the scalar function w1∥Ax−b∥2

2 +w2∥x∥q
q is equivalent to the Lagrangian

function ∥Ax−b∥2
2 +λ∥x∥q

q if we take λ =
w2

w1
.

(P3.3.3) is a convex, maybe nonsmooth, and unconstrained problem which can be solved by
some methods available in the literature [20], [26], [27].

4 THE NFDA-NONSMOOTH FEASIBLE DIRECTIONS ALGORITHM FOR CON-
VEX OPTIMIZATION

In this section, we explain the NFDA-Nonsmooth Feasible Directions Algorithm, specially de-
vised for convex unconstrained optimization problems. NFDA was firstly presented by Freire
in [12] and later studied in [19].

The main aspect of NFDA is its search direction. It uses the direction employed by the FDIPA-
Feasible Directions Interior Point Algorithm [18] for nonlinear but differentiable problems.
Another important feature of NFDA is its clear stopping criterion.

Let us start by considering the problem

(P4.1) minimize F(x) , x ∈ Rn

where F : Rn −→ R is a convex, not necessarily differentiable function.

One can easily see that if we set F(x) = w1∥Ax−b∥2
2 +w2∥x∥q

q we get problem (P.3.3.3).

Problem (P4.1) is equivalent to the following constrained problem

(P4.2) minimize f (x,z) = z subject to F(x)≤ z , (x,z) ∈ Rn ×R.

We recall the definition of the epigraph of a function F : D ⊂ Rn −→ R

epi(F) = {(x,z) ∈ D×R | F(x)≤ z}

its interior
(epi(F))0 = {(x,z) ∈ D×R | F(x)< z}

and the subdifferential of F at a point a ∈ D

∂F(a) = {s ∈ Rn|F(x)≥ F(a)+ ⟨s,x−a⟩}.

NFDA starts at a point (x1,z1) ∈ (epi(F))0. At iteration k, having the point (xk,zk) ∈ (epi(F))0,
NFDA computes a supporting hyperplane hk to the epigraph of F at (xk,F(xk)). This hyperplane

Trends Comput. Appl. Math., 25 (2024), e01767
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is given by hk(x) = F(xk) + ⟨sk,(x− xk)⟩, where a subgradient sk ∈ ∂F(xk) is assumed to be
available. An auxiliary linear constrained problem

(P4.3) minimize f (x,z) = z subject to gk(x,z)≤ 0 , (x,z) ∈ Rn ×R

is defined by employing the supporting hyperplanes computed so far.

The function
gk = (g1, ...,gk) : Rn+1 −→ Rk

is a vector function with

gi : Rn+1 −→ R given by gi(x,z) = hi(x)− z.

Let us for a moment suppose that p∗ = (x∗,z∗) is a regular point of (P4.3). The Karush-Kuhn-
Tucker (KKT) first order necessary conditions are expressed as follows: If p∗ is a local minimum
of (P4.3) then there exists λ ∗ ∈ Rk such that

∇ f (p∗)+∇gk(p∗)λ ∗ = 0 (4.1)

Gk(p∗)λ ∗ = 0 (4.2)

λ
∗ ≥ 0 (4.3)

gk(p∗)≤ 0 (4.4)

where G(p) is a diagonal matrix with Gii(p)≡ gi(p).

A Newton-like iteration to solve the nonlinear system of equations (4.1)-(4.2) leads to(
Bk ∇gk(pk)

Λk∇gk(pk)t Gk(pk)

)(
p− pk

λ −λ k

)
=−

(
∇ f (pk)+∇gk(pk)λ k

Gk(pk)λ k

)
(4.5)

where (pk,λ k) is the current point at the iteration k, Λ is a diagonal matrix with Λii ≡ λi and Bk ≡

∇2 f (pk)+
k
∑

i=1
λ k

i ∇2gi(pk) is the hessian of the Lagrangian function L(p,λ ) = f (p)+λ T g(p) or

some quasi-Newton approximation which must be symmetric and positive definite in order to
ensure convergence.

Setting d = p− pk, the following system can be written from (4.5)

Bkd +∇gk(pk)λ =−∇ f (pk) (4.6)

Λ
k
∇gk(pk)T d +Gk(pk)λ = 0. (4.7)

The solution (dk
1,λ

k
1 ) of the system (4.6)-(4.7) provides a descent direction dk

1 for f , as proved
in [12] and [19]. However, dk

1 might not be a feasible direction. Indeed, if the point pk = (xk,zk)∈
(epi(F))0 is too close to the graph of the function F , i.e. if zk = F(xk) then gk(xk,zk) = 0 and,
therefore, from (4.7), we have ∇gk(xk,zk)T dk

1 = 0.

Trends Comput. Appl. Math., 25 (2024), e01767
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8 PARETO FRONT OF RIDGE AND LASSO BY NFDA

Such trouble can be avoided by perturbing equation (4.7) by adding the matrix −ρkΛk, with
ρk > 0, to its right side. A new system

Bkd +∇gk(pk)λ̄ =−∇ f (pk) (4.8)

Λ
k
∇gk(pk)T d +Gk(pk)λ̄ =−ρkΛ

k (4.9)

with unknows d and λ̄ is obtained. Now, equation (4.9) is equivalent to λ k
i ∇gi(pk)T dk +

gi(pk)λ̄ k =−ρkλ k
i , i = 1,2, ...,k. Consequently, if gk(pk) = 0 then ∇gk(pk)dk =−ρk < 0 which

means that dk is a feasible direction. The addition of the negative term −ρkΛk produces a de-
flexion of dk into the interior of the epigraph of F . The trouble now is that dk might no longer
be a descent direction for the function f . However, this property can be assured if ρk is properly
adjusted. The system (4.8)-(4.9) can be decoupled in two systems with the same matrix

Bkd1 +∇gk(pk)λ1 =−∇ f (pk) (4.10)

Λ
k
∇gk(pk)T d1 +Gk(pk)λ1 = 0 (4.11)

and

Bkd2 +∇gk(pk)λ2 = 0 (4.12)

Λ
k
∇gk(pk)T d2 +Gk(pk)λ2 =−Λ

k. (4.13)

After solving systems (4.10)-(4.11) and (4.12)-(4.13), dk is then set as

dk = dk
1 +ρkdk

2.

We wish ρk such that (dk)T ∇ f (pk) < 0. The formula for dk can be used to find an appropriate
ρk. Indeed, we have that

(dk)T
∇ f (pk) = (dk

1)
T

∇ f (pk)+ρk(dk
2)

T
∇ f (pk).

Thus, as (dk
1)

T ∇ f (pk)< 0, if (dk
2)

T ∇ f (pk)≤ 0 then (dk)T ∇ f (pk)< 0, ∀ρk > 0.
If (dk

2)
T ∇ f (pk)> 0, by imposing

(dk)T
∇ f (pk)≤ ξ (dk

1)
T

∇ f (pk) with ξ ∈ (0,1)

we get
(dk

1)
T

∇ f (pk)+ρk(dk
2)

T
∇ f (pk)≤ ξ (dk

1)
T

∇ f (pk).

The latest inequality leads to

ρk ≤
(ξ −1)(dk

1)
T ∇ f (pk)

(dk
2)

T ∇ f (pk)
.

Therefore, if ρk is chosen as just described, dk = dk
1 +ρkdk

2 is assured to be a feasible descent
direction.

Figure 1 summarizes the previous discussion.

Trends Comput. Appl. Math., 25 (2024), e01767
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hk(x) = F(xk)+ sk · (x− xk)

(sk,−1)

pk

dk
1

ρkdk
2

dk = dk
1 +ρkdk

2

F

Figure 1: The NFDA search direction

A stepsize tk is defined by
tk = min{tmax,T}

where
tmax = max{t : gk

i (x
k,zk)+ tdk ≤ 0}

and T > 0 is a predefined parameter.

An auxiliary point
(yk,ωk) = (xk,zk)+µtkdk

is computed. Here, µ ∈ (0,1).

If F(yk)<ωk or, equivalently, if (yk,ωk)∈ (epi(F))0 then (xk+1,zk+1)= (yk,ωk), the hyperplane

hk+1 = F(xk+1)+ ⟨sk+1,x− xk+1⟩ , sk+1 ∈ ∂F(xk+1) ,

is computed and the constraint

gk+1(x,z) = hk+1(x)− z ≤ 0

is added to (P4.3). This procedure is called serious step.

If F(yk) ≥ ωk, then (xk+1,zk+1) = (xk,zk). This is called null step. In this case, the supporting
hyperplane hk+1 is defined by

hk+1(x) = F(yk)+ ⟨s,x− yk⟩ with s ∈ ∂F(yk)

and, as before,
gk+1(x,z) = hk+1 − z ≤ 0

is added to update the auxiliary problem (P4.3).

Trends Comput. Appl. Math., 25 (2024), e01767
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10 PARETO FRONT OF RIDGE AND LASSO BY NFDA

pk = (xk,zk)

F

dk

pk + tkdk

(yk,ωk) = pk +µtkdk = pk+1 = (xk+1,zk+1)

F(yk)< ωk

hk+1(x) = F(xk+1)+ sk+1 · (x− xk+1)

Figure 2: Serious step.

pk+1 = pk

F
dk

pk + tkdk

(yk,ωk) = pk +µtkdk

ωk < F(yk)

hk+1(x) = F(yk)+ s · (x− yk)

Figure 3: Null step.

It has been proved [12], [19] that the direction dk goes to zero as k grows. This fact provides
a stopping criterion for the algorithm. Moreover, the accumulation points of the limited se-
quence {(xk,zk)} ∈ (epi(F))0 generated by NFDA are solutions of (P4.1). This is also proved
in references [12], [19].

Trends Comput. Appl. Math., 25 (2024), e01767
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It is important to highlight that the problem (P4.3) is not solved. It may not even have a solution.
NFDA uses its linear and, therefore differentiable, structure to get a feasible descent direction.

NFDA is very easy to be coded. It practically only requires the solution of two linear systems
with the same matrix. It is robust as it does not require adjusting parameters and has shown good
performance in several applications, specially in the present context. We also highlight that, in the
description of NFDA given in this section, all the supporting hyperplanes are stored. There are
versions of NFDA in which only part of them are kept. Readers interested in detailed discussion
on NFDA, its assumptions, updating rules, convergence and other features are referred to [12],
[19]. In these references, one finds a comparison between NFDA and some algorithms that use
classical methods such as steepest descent and bundle methods, applied to a set of problems from
the literature [27].

Algorithm 1 NFDA
Parameters
ξ ,µ ∈ (0,1), ϕ > 0, T > 0, γ > 0.
Initial Data
(x1,z1) ∈ (epi(F))0, λ 1 > 0, B1 ∈ Rn+1 ×Rn+1 symmetric and positive definite.
Step k
Given pk = (xk,zk) ∈ (epi(F))0, hk, λ k > 0, compute gk(x,z) = hk(x)− z, gk = [g1,g2, ...,gk] and
∇gk = [∇g1,∇g2, ...,∇gk].
Find dk

1,d
k
2,λ

k
1 and λ k

2 by solving the systems{
Bkd1 +∇gk(pk)λ1 =−∇ f (pk)

Λk∇gk(pk)T d1 +Gk(pk)λ1 = 0

and {
Bkd2 +∇gk(pk)λ2 = 0
Λk∇gk(pk)T d2 +Gk(pk)λ2 =−Λk

where Bk is symmetric and positive definite, Gk(pk) and Λk are diagonal matrices with
Gk

ii(pk) = gk
i (pk) and Λk

ii = max{λ
k−1
i ,ϕ∥dk

1∥2}.

If dk
2∇ f (pk)> 0 set ρk = ϕ∥dk

1∥2 . Else, ρk = min
{

ϕ||dk
1||2,(1−ξ )

(dk
1)

T ∇ f (pk)

(dk
2)

T ∇ f (pk)

}
.

Set dk = dk
1 +ρkdk

2 and λ k = λ k
1 +ρkλ k

2 .
Compute tmax = min{t|gk

i (x,x)+ tdk ≤ 0} and the stepsize tk = max{tmax,T}.
Compute the auxiliary point (yk,wk) = (xk,zk)+µtkdk.
If F(yk) < wk then (xk+1,zk+1) = (yk,wk). Compute sk+1 ∈ ∂F(xk+1) and hk+1 =

F(xk+1)+ ⟨sk+1,x− xk+1⟩.
Otherwise, (xk+1,zk+1) = (xk,zk), compute s ∈ ∂F(yk) and hk+1 = F(yk)+ ⟨s,x− yk⟩.
Repeat Step k until ∥dk∥ ≤ γ .
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12 PARETO FRONT OF RIDGE AND LASSO BY NFDA

We finalize this section by pointing out that, in order to generate the Pareto fronts of Ridge and
Lasso via NFDA, one must set the function F in (P4.1) equal to w1∥Ax−b∥2

2 +w2∥x∥q
q and vary

w1 and w2 as many times as the number of Pareto points desired. This procedure is equivalent to
solving (P3.3.3) as many times as the number of Pareto points. For each given pair (w1,w2), the
solution x∗ of (P3.3.3) generates a point (∥Ax∗−b∥2

2,∥x∗∥q
q) on the front. Two important points

on the front are the so called end points which are (∥b∥q
q,0) and (∥Als−b∥2

2,∥ls∥q
q), obtained by

setting t = 0 and t = ∥ls∥q
q or equivalently, w1 = 0 and w2 = 1 or w1 = 1 and w2 = 0, respectively.

5 NUMERICAL EXPERIMENTS

5.1 Generating and Comparing Pareto Fronts

The success of our approach relies on the resolution of problem (P3.3.3). To check the effec-
tiveness of NFDA, we built the Pareto front of three examples using NFDA and MatLab’s mini-
mization function fminsearch. The matrices A and vectors b of examples 5.1 and 5.3 were made
up whereas, in example 5.2, A and b were randomly created by Matlab. The algorithms have
been implemented in MatLab (R2017b) in a microcomputer i7 of 2.60 GHz with 8.00 Gb of
RAM. Figures 4, 5, 7 and 8 show the Pareto fronts of Ridge and Lasso generated by NFDA and
MatLab, respectively. Subfigure (a) shows the Pareto front of example 1, subfigure (b) shows the
Pareto front of example 2 and subfigure (c) shows the Pareto front of example 3. To provide a
comparison, Figures 6 and 9 show the overlay of the fronts. We also used the hypervolume met-
ric [34], [29] with the nadir point (∥b∥q

q,∥ls∥q
q) as a reference point, to compare the algorithms

(Table 1).

Example 5.1. A =

[
1 2
3 4

]
, b =

[
5
6

]
.

Example 5.2. A =


0.3008 0.8961
0.9394 0.5975
0.9809 0.8840
0.2866 0.9437
0.8008 0.5492

 , b =


0.7284
0.5768
0.0259
0.4465
0.6463

 .

Example 5.3. A =


1 1 1

0.01 0 0
0 0.01 0
0 0 0.01

 , b =


1
1
1
1

 .
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(a) Example 1 (b) Example 2 (c) Example 3

Figure 4: Ridge – NFDA.

(a) Example 1 (b) Example 2 (c) Example 3

Figure 5: Ridge – MatLab.

(a) Example 1 (b) Example 2 (c) Example 3

Figure 6: Ridge – Overlay.

(a) Example 1 (b) Example 2 (c) Example 3

Figure 7: Lasso – NFDA.
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14 PARETO FRONT OF RIDGE AND LASSO BY NFDA

(a) Example 1 (b) Example 2 (c) Example 3

Figure 8: Lasso – MatLab

(a) Example 1 (b) Example 2 (c) Example 3

Figure 9: Lasso – Overlay.

Table 1: The Hypervolume metric.

Ridge MatLab Ridge NFDA Lasso MatLab Lasso NFDA
Example 1 2146.2 2145.9 456.9948 456.9566
Example 2 0.2481 0.2481 0.3893 0.3893
Example 3 0.2857 0.2856 0.6592 0.6590

5.2 On Time Consumed

In order to provide a comparison regarding the time, we built the Pareto front with 50 points of
7 problems with n features and p variables whose matrices and vectores were randomily created
in MatLab. We recall that n is the number of rows of A or the number of features and p is the
number of columns of A or the number of variables (coefficients) of the model.

Table 2 shows the average time consumed by the algorithms. Each instance was run 3 times.
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Table 2: Time consumed.

size Ridge Lasso
n p NFDA MatLab NFDA MatLab
20 10 2.95 s 20.50 s 5.86 s 15.90 s
50 10 4.43 s 21.65 s 6.02 s 16.34 s
60 20 5.80 s 76.06 s 12.84 s 19.45 s
80 20 6.43 s 82.86 s 14.35 s 26.95 s

120 40 10.12 s 225.68 s 64.86 s 89.23 s
160 40 12.46 s 344.43 s 69.98 s 178.70 s
500 100 121.21 s 3884.38 s 2283.76 s 3097.74 s

6 CONCLUSION

We have shown how to transform Ridge and Lasso regressions into bi-objective optimization
problems by using Multiobjective Optimization theory. We have presented NFDA, an algorithm
for solving convex optimization problems, used it for generating Pareto fronts of some problems
and compared the results with those obtained by the MatLab’s minimization function fminsearch.
The numbers suggest NFDA might be a useful tool for those who work with Ridge and Lasso
regressions. Furthermore, as the Pareto front provides a range of models from which the practi-
tioner can choose the most suitable one, it is essential to have a rule to pick the point on the front
that leads to the best model. As a future work, we plan to study Pareto fronts of real regression
problems to try to find some procedure that provides the best choice.
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School of Information Technology and Mathematical Sciences at University of South Australia
and for the meaningful debates on the theme of this work. The author also thanks the Department
of Mathematics of the Federal University of Juiz de Fora for the sabbatical leave granted in the
period 2018-2019 and the University of South Australia for the full support during his academic
visit.

REFERENCES

[1] V. Andriopoulos & M. Kornaros. LASSO Regression with Multiple Imputations for the Selection of
Key Variables Affecting the Fatty Acid Profile of Nannochloropsis oculata. Marine Drugs, 21 (2023),
483. doi:10.3390/md.2109483.

[2] S. Arlot & A. Celisse. A survey of cross-validation procedures for model selection. Statistics Surveys,
4 (2010), 40–79. doi:10.1214/09-SS054.

[3] K. Bennet & E. Parrado-Hernandez. The Interplay of Optimization and Machine Learning Research.
Journal of Machine Learning Research, 7 (2006), 1265–1281.

Trends Comput. Appl. Math., 25 (2024), e01767



i
i

“1767” — 2024/10/24 — 18:07 — page 16 — #16 i
i

i
i

i
i

16 PARETO FRONT OF RIDGE AND LASSO BY NFDA

[4] C. Bishop. “Pattern Recognition and Machine Learning”. Springer, New York (2006).

[5] R. Burachik, C. Kaya & M. Rizvi. A New Scalarization Technique and New Algorithms to Generate
Pareto Fronts. SIAM Journal on Optimization, 27(2) (2017), 1010–1034. doi:10.1137/16M1083967.

[6] H. Charkhgard & A. Eshragh. A New Approach to Select the Best Subset of Predictors in Lin-
ear Regression Modelling: Bi-Objective Mixed Integer Linear Programming. The Australian and
New Zealand Industrial and Applied Mathematical Journal, 61(1) (2019), 64–75. doi:10.1017/
S1446181118000275.

[7] V. Cherkassky & Y. Ma. Comparison of Model selection for Regression. Neural Computation, 15(7)
(2003), 1691–1714. doi:10.1162/089976603321891864.

[8] J. Copas. Regression, Prediction and Shrinkage. Journal of the Royal Statistical Society, Series B,
Methodological, 45(3) (1983), 311–354. doi:10.1111/j.2517-6161.1983.tb01258.x.

[9] J. Dutta & C. Kaya. A New Scalarization and Numerical Method for Constructing the weak Pareto
Front of Multiobjective Optimization Problems. Optimization, 60(8-9) (2011), 1091–1104. doi:10.
1080/02331934.2011.587006.

[10] M. Ehrgott. “Multicriteria Optimization”. Springer (2005).
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