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Abstract. This work presents an open-loop discrete-time dynamic optimization
scheme for continuous-variable impulsive control problems. This methodology can
be more useful than the classical optimal control in several contexts, since it delivers
control actions just in discrete times, which introduce discontinuities in the system
state variables. Two case studies are presented: the biological control of pests in
crops using a prey-predator model and the optimal vaccination in epidemics control
using an SIR model.
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1. Introduction

Control actions in the form of jumps at certain time instants can be useful to be
considered in many classes of continuous-time control problems coming from real
world applications. This technique is called impulsive control. The main idea
is to split the continuous-time interval in some stages, performing control actions
impulsively just in some time instants. The dynamic system keeps its autonomous
dynamics in the time intervals between the consecutive impulsive control actions.
The concept and the principles of the impulsive control, and also some simple exam-
ples of applications in systems whose variables should be changed instantaneously
have been presented by Yang [14].

The article [6] has used continuous-time dynamic programming to solve
an impulsive control problem, in which solutions have been synthesized via the
Hamilton-Jacobi-Bellman (HJB) approach. Discrete-time dynamic programming
with continuous-variable discretization is a well-known multi-stage optimization
technique [1], that could be another alternative for solving the same problem. In
the present article, the solution of impulsive control problems is sought by means
of an open-loop continuous-variable dynamic optimization algorithm. The scheme
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proposed here is more flexible than the HJB approach, since it allows rather arbi-
trary objective function and constraints, and is an alternative to using enumerative
discrete-time discrete-variable dynamic programming algorithms, which have pro-
hibitive computational complexity [1, 3].

Two case studies are considered here: the biological control of pests in a farm
using a prey-predator model and the pulse vaccination strategy using an SIR epi-
demic model. Some recent applications of impulsive control in prey-predator models
and in SIR epidemic models, for example, are presented in [7, 11].

This article is structured as follows: Section 2. discusses the impulsive control.
Section 3. discusses the proposed open-loop discrete-time approach for impulsive
control problems. Section 4. presents the application of the proposed methodology
in two numerical case studies.

2. Impulsive Control

Let T ∈ R be the optimization horizon and Γ = {τ0, . . . , τN} be a set of control
instants in [0, T ], such that: τk < τk+1, τ0 = 0 and τN = T . These intervals do not
have to be equidistant. Consider a plant whose state variables belong to X ⊂ R

n

and the inputs or the control laws belong to Uk ⊂ R
m, for all k = 0, . . . , N − 1.

The state at time τk is x(τk) (a continuous-time variable) and the control action
at time τk is u[k] (a discrete-time variable). The time instant τ+

k is defined as a
time instant “just after” the impulsive action in τk. The time instant τ+

k is formally
defined as a number that fulfills τ+

k = τk + ǫ, with 0 < ǫ < δ, for any finite δ > 0.

Definition 2.1 (Yang). In an impulsive control problem, the state at each time

τk, x(τk) ∈ X, can be changed impulsively by

x(τ+
k ) = x(τk) + u[k], (2.1)

with u[k] ∈ Uk.

The impulsive differential equations (IDEs) describing the resulting dynamic
system can have the form:















x′(t) = f1(t, x(t));
t ∈ (τ+

k , τk+1];
x(τ+

k ) = x(τk) + u[k];
k = 0, . . . , N − 1;

(2.2)

where f1 : R+ × R
n → R

n is continuous.
Each initial value problem in (2.2) is valid when there is no control action –

the system presents its autonomous dynamics within such time intervals. A new
initial condition for the system, x(τ+

k ), is established in each stage according to
the difference equation (2.1), linking each stage with the next one. The equations
(2.2) describe a hybrid system, in which a continuous-time dynamics is driven, at
discrete instants, by impulsive control inputs that cause discontinuities in the system
state variables. Such hybrid system involves the interaction of a continuous-time
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and a discrete-time dynamics: each discrete-time action performs jumps on the
continuous-time system, and the continuous dynamics performs the state transition
of the discrete dynamics. Hybrid systems with impulsive control have been studied
in [2, 10,13], among others.

The aim of this article is to study impulsive control problems from a discrete-time
optimization point of view. For this, the following discrete-time variable notation is
considered: x[k] = x(τk) and x[k+] = x(τ+

k ). Thus, the corresponding discrete-time
dynamic system can be written as

x[k+] = x[k] + u[k]. (2.3)

In this sense, the values of the state variables are considered in the optimization
just in a time instant set Γ = {τ0, . . . , τN} previously chosen, and the state in each
stage is supposed to be calculated by the impulsive differential equation shown in
(2.2). In many control problems, there is an end-point constraint: the final state
must reach a target, for all feasible initial state:

x(T ) = x∗. (2.4)

This end-point target may be an equilibrium of the impulsive system. An
equilibrium x̄ of an impulsive dynamic system is defined as a vector for which
holds:

x̄ = x(τk) = x(τk+1), ∀k. (2.5)

Thus, considering a fixed time interval associated with this equilibrium x̄, there are
two other fixed variables: the control ū, such that: ū = u[k] = u[k + 1], for each
k, and x̄+, the initial condition of the IVP, such that: x̄+ = x(τ+

k ) = x(τ+
k+1), for

each k. For this situation of stability, x̄+ = x̄ + ū.

3. Discrete-time Dynamic Optimization Scheme

Consider gk(x[k], u[k]) as the separable cost function of the time-stage k, and
gN (x[N ]) as the final cost. A ranking based on the sum of the costs per stage
leads to the optimal solution. This is the “Bellman’s Optimality Principle” [1].

The discrete-time dynamic optimization problem for impulsive systems is for-
mulated as

min
u[0],...,u[N−1]

N−1
∑

k=0

gk(x[k], u[k]) + gN (x[N ]) (3.1)

subject to:























x′(t) = f1(t, x(t));
t ∈ (τ+

k , τk+1];
x(τ+

k ) = x[k+] = x[k] + u[k];
k = 0, 1, . . . , N − 1;
x[0] = x0 and x[N ] = x∗ are given.
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Due to the difficulties to reach on equality constraints, a relaxation in the end-
point target (2.4) can be performed, using an inequality constraint defining a set of
admissible size around the target, for instance a ball with a given radius ǫ around
the end-point target.

The impulsive problems are treated in this article as continuous-variable discrete-
time dynamic optimization problems. The optimization procedure employed here
is similar to the one presented in [3], which performs an optimization in open-loop,
considering the objective function and all the constraints as functions of the initial
state and of the optimal control action sequence only. This technique is similar to
the sub-optimal procedure known as open-loop feedback controller (OLFC) [1].

The idea is study the dynamics of the system through the iteration of sets instead
of either using discretization and enumerative methods that place the dynamics in
arcs of a graph (as in discrete-variable dynamic programing), or generating analyt-
ical solutions (as in variational formulations of continuous variable problems). It is
well-known that enumerative algorithms have hard computational costs [1] and that
variational formulations usually involve analytical manipulations that require that
the objective function and constraints have some specific mathematical forms [4].
The proposed dynamic optimization scheme for impulsive control involves: (i) To
allow the relaxation of the end-point constraint at the final stage; (ii) To consider
the pre-image of the relaxed end-point into the initial stage, re-writing the states
as functions of the initial state and of the optimal control action sequence; (iii)
To make the dynamic optimization sequentially, for each stage, updating the initial
state, running the open-loop optimization procedure, and implementing just the
present-time control.

4. Numerical Case Studies

4.1. Biological control of pests

Biological control of pests in crops aim the reduction of pest populations, achieved
with the action of other living organisms, often called natural enemies [5, 8]. The
interaction of pests and their natural enemies (organisms that can cause injury to
the pests, such as predators and parasites) can be represented by predator-prey
models. This article considers the prey-predator model shown in (4.1).

{

x′(t) = x(a − γx − αy),
y′(t) = y(−b + βx).

(4.1)

Above, the parameters a, γ, α, b and β are positive constants with known values
and x = x(t) and y = y(t) denote the density of preys and predators, respectively.

This case study considers the relation between the caterpillar of the soy (Anti-

carsia gematalis) and its enemies, like wasps and spiders. The values of the system
parameters, borrowed from [8], are shown in Table 1.

The origin (0, 0) is an unstable equilibrium of this system and there is a stable
equilibrium with nonzero number of pests (65.5172, 4.7241). As the acceptable
number of pests is x∗ = 20, a control action must be applied, through the insertion
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Table 1: Parameter values of the prey-predator system (4.1) considering the relation

between the Anticarsia gematalis and its enemies.

a b α γ β
0.16 0.19 0.02 0.001 0.0029

of caterpillar natural enemies. The work [8] has studied this control problem, seeking
solutions by continuous-time dynamic programming.

The objective function of this problem is supposed to be linear, with the para-
meters ck (corresponding to the pests) and dk (corresponding to the predators) as
positive constants. This assumption is reasonable, since the cost of predators is pro-
portional to the quantity being launched, and the cost of crop loss is proportional
to the number of pest units (at least within a large variable range, in which the soy
plants do not approximate a situation of being destroyed). The decision variable
sequence {u[0], . . . , u[N − 1]} represents the density of predators to be launched at
each discrete time stage.

This impulsive-time dynamic optimization problem can be formulated as

min
u[0],...,u[N−1]

N−1
∑

k=0

(ckx[k] + dku[k]) + cNx[N ] (4.2)

subject to:














































x′(t) = x(a − γx − αy);
y′(t) = y(−b + βx);
t ∈ (τ+

k , τk+1];
x(τ+

k ) = x[k+] = x[k];
y(τ+

k ) = y[k+] = y[k] + u[k];
k = 0, 1, . . . , N − 1;
x[0] = x0 and y[0] = y0 are given;
x[N ] ≤ x∗ = 20.

The initial prey density is x0 = 100, the initial predator density is y0 = 0 and
the time horizon is T = 200 days. The duration of each stage is δT = 20 days;
therefore, there are N = 10 stages. The constants ck and dk are all equal to 1.

Figure 1 shows the optimal evolution of preys and predators throughout the
stages (in logarithmic scale) and its phase diagram. The cost function value of
this solution is J∗ = 446. Notice that the end-point x∗ has been reached since
the first optimization stage. A direct comparison between the proposed strategy
and the continuous-time control action proposed in [8] cannot be made, since in [8]
the resulting control action is continuous (the release of predators is assumed to be
performed continuously along the time), which is very impractical. However, the
control action obtained from [8] can be discretized in the following way: (i) some
time instants are defined for performing the control action; (ii) the integral of the
continuous control action is applied, impulsively, in such time instants. In this case,
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the value of the cost function value that is achieved becomes J∗ = 1177.6, much
greater than the one that is achieved with the methodology proposed here.
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Figure 1: Behavior of the predator-prey system (4.1) with the optimal impulsive control

action. Due of the logarithmic scale, the null initial condition is not displayed in this

figure.

4.2. Optimal vaccination strategies in epidemic control

Epidemic is an alteration in one or more characteristics in a significant number of
individuals, normally related to the the loss of health. The interaction between
individuals of a population and the environment is the basic mechanism behind the
epidemic spread. These interactions have been mathematically modeled and stud-
ied. This case study considers the mathematical model of an epidemic propagation
called SIR [9, 12]. This model classifies the individuals in three states: susceptible
(S), infected (I) and recovered (R). These three states are related by the dynamic
system:







S′(t) = µN − µS − βIS/N ;
I ′(t) = βIS/N − γI − µI;
R′(t) = βI − µR.

(4.3)

Above, N is the size of population, µ is the ratio of new susceptible per time unit, γ
is the ratio of infected individuals that are recovered per time unit and β is the ratio
of contacts between individuals that lead to disease transmission, per time unit. It
is assumed that N is constant along the time; therefore the variables can be written
as ratios: s(t) = S(t)/N , i(t) = I(t)/N , r(t) = R(t)/N and also r(t) = 1−s(t)−i(t).
Thus, the dynamic system (4.3) can be rewritten as a two-dimensional system:

{

s′(t) = µ − µs − βis;
i′(t) = βis − γi − µi.

(4.4)

The basic reproductive number R0 is defined as R0 = β/(µ+γ), which represents
the average number of infections produced by an infected individual. It can be
shown [9] that the system (4.4) has an asymptotically stable endemic equilibrium
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iff R0 > 1. Table 2 presents the values of the parameters in this paper, borrowed
from [12], which are related to measles epidemics. Note that R0 > 1, thus this
system has an asymptotically stable endemic equilibrium. In fact, by simulation, it
can be seen that 24% of the population would be infected in the equilibrium state.
Therefore, a control action must be applied in this system, for instance a vaccination
process. This work proposes using non-fixed pulse vaccination strategies, which is
an impulsive control defined by repeated application of vaccination in discrete times
with constant time interval. Pulse vaccination has been studied recently also in [7].

Table 2: Parameter values of the system SIR (4.4) considering the epidemic of measles in

the United Kingdom in 1950-68.

µ γ β N R0

1/70 1/24 0.95 2 × 106 17

The strategy to be considered here is: the public health policy-maker should
choose a time-interval for vaccination and an equilibrium point (in the sense of im-
pulsive system equilibrium), with an acceptable level of infected individuals4. This
equilibrium corresponds to a constant percentage of the population being vacci-
nated in each time-stage. This choice can be performed via a bi-objective analysis,
considering both the cost related to the damage with infection and the vaccination
cost as a non-linear function of the vaccination coverage. The percentage of the
population to be vaccinated in the infinite time horizon, p̄, is associated to constant
numbers of susceptible and infected (those will be called s̄ and ī, respectively). The
vector of the equilibrium state of the impulsive system is taken as the end-point
constraint of the dynamic optimization problem.

The decision variable sequence is {p[0], . . . , p[N − 1]}, the percentage of suscep-
tible to be vaccinated in each stage (k). A positive-definite quadratic cost function
is considered (the parameters ck and dk are positive scalars). The end-point con-
straint is i[N ] = i∗, corresponding to the given impulsive equilibrium p̄. Note that
the optimization with the equality end-point constraint i[N ] = i∗ may be difficult to
be attained, and a relaxation in the end-point constraint is allowed. An impulsive
control formulation considering a square-ball (without lost of generality) around the
target can be given as

min
p[0],...,p[N−1]

N−1
∑

k=0

(cki[k]2 + dkp[k]2) + cN i[N ]2 (4.5)

4For some diseases, the acceptable level should be zero infected individuals, corresponding to
the disease eradication.
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subject to:































































s′(t) = µ − µs − βis;
i′(t) = βis − γi − µi;
t ∈ (τ+

k , τk+1];
s(τ+

k ) = s[k+] = s[k](1 − p[k]);
s[k] = s(τk);
i(τ+

k ) = i[k+] = i[k];
i[k] = i(τk);
k = 0, 1, . . . , N − 1;
s[0] = s0 and i[0] = i0 are given;
||i[N ] − i∗||∞ ≤ ǫ.

The initial susceptible ratio is s0 = 0.999, the initial infected ratio is i0 = 0.001
and the optimization horizon is T = 100 years. The duration of each stage is one
year, δT = 1. Therefore, there are N = 100 stages. The end-point target of this
problem is i∗ = 10−5, corresponding to the constant periodic impulsive vaccination
with p̄ = 0.5. The ratio of the square-ball around the chosen end-point target is
supposed to be ǫ = 10−4, what means that it allows 0.1% of infected individuals in
the final stage. The constant parameters of the objective function are ck = 0, 9×107

and dk = 0, 1× 10. Each decision variable p[k] is constrained to be between 0.4 and
0.8 (since the vaccination of more than 80% of a population can be very difficult).

An interesting observation, related to the relaxation of the end-point constraint
in this case is: the SIR model assumes a population of infinite size, in which the
statistical fluctuations around the mean predicted behavior do not occur. As long as
the actual populations are finite, a very low but non-zero level of infected individuals
will eventually lead to disease eradication, due to such fluctuations. Exploiting such
effect can lead to disease eradication policies that are much less costly than “brute-
force” ones, with similar effectiveness.

Figure 2 shows the evolution of the system (in logarithmic scale) and its phase
diagram for a constant periodic impulsive vaccination p̄ = 0.5, as proposed in [12].
Figure 3 shows the optimal evolution (in logarithmic scale) and its phase diagram
as found by the algorithm proposed here. The value of the optimal cost function
is 190, and the value of the same cost function for the constant vaccination of [12],
with percentage p̄ = 0.5, is 700 (almost 200% greater). Note the evolution of the
susceptible (going to a periodic condition) and the evolution of infected (going to
i∗ = 10−5) and also note that in Figure 3 the susceptibles reach the equilibrium
before T = 50, the half of the optimization horizon.

The control action prescription resulting from the dynamic optimization of im-
pulsive dynamic system models can be implemented efficiently as health policy
actions, from the practical point of view. Other computational tests have been
performed, with other equilibrium points, and with linear, non-convex and dis-
continuous cost-functions, with satisfactory results. The technique presented here
can be used easily, considering other control actions (such as isolation, or mixed
strategies).
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Figure 2: Behavior of the SIR system (4.4) with constant impulsive vaccination p̄ = 0.5.
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Figure 3: Behavior of the SIR system (4.4) with the optimal impulsive control action.

5. Conclusions

This article has presented an open-loop discrete-time dynamic optimization scheme
for impulsive control problems, similar to OLFC. The numerical results obtained
in two case studies show the applicability and efficiency of the proposed approach
in the context of biological control problems. The methodology is expected to be
useful in other contexts of applications in real-world dynamic problems.

Resumo. Este trabalho propõe um método de otimização dinâmica em tempo
discreto em malha aberta para problemas de controle impulsivo com variáveis
cont́ınuas. Essa metodologia pode ser mais útil que o controle ótimo clássico, uma
vez que prescreve ações de controle a serem aplicadas apenas em instantes discre-
tos, nos quais são introduzidas descontinuidades nas variáveis de estado do sistema.
Dois estudos de casos são apresentados: o controle biológico de pragas na lavoura
usando um modelo presa-predador e o controle de epidemias por vacinação ótima
usando um modelo SIR.

Palavras-chave. Controle Impulsivo, Programação Dinâmica, Presa-Predador,
SIR.



30 Cardoso and Takahashi

Referências

[1] D.P. Bertsekas, “Dynamic Programming and Optimal Control”, Athena Sci-
entific, 1995.

[2] M.S. Branicky, “Studies in Hybrid Systems: Modeling, Analysis, and Control”,
Phd dissertation, Electrical Engineering and Computer Science Department,
Massachusetts Institute of Technology, USA, 1995.

[3] R.T.N. Cardoso, R.H.C. Takahashi, Algoritmos para programação dinâmica
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