
i
i

“1772” — 2024/10/25 — 19:22 — page 1 — #1 i
i

i
i

i
i

in Computational and
Applied Mathematics

Trends Trends in Computational and Applied Mathematics, 25 (2024), e01772
Sociedade Brasileira de Matemática Aplicada e Computacional
Online version ISSN 2676-0029 www.scielo.br/tcam
ORIGINAL ARTICLE
doi: 10.5540/tcam.2024.025.e01772

The application of homomorphism in cryptography

A. L. Z. LUNKES1 and F. BORGES2

Received on August 1, 2023 / Accepted on September 27, 2024

ABSTRACT. The increasing use of new technologies and the internet underscores the need to ensure users’
privacy and security while browsing the web. To achieve this, encryption schemes rely on sharing keys
among parties involved in message exchange. The concept of homomorphism, crucial in both mathematics
and cryptography, provides a solution by enabling computations on encrypted data without the need for
decryption. Furthermore, the RSA and ElGamal algorithms exemplify how homomorphism is applied in
practice, each with its specific methods for maintaining data security and privacy during cryptographic
processing.

Keywords: cryptography, homomorphism, computing, privacy, security.

1 INTRODUCTION

To ensure the security and privacy of information in the digital age, cryptography has become
an essential tool. With the increasing use of technology in both industry and daily life, and the
demand for applications that facilitate social network connectivity, banking transactions, and
file storage on mobile devices and computers, there is a growing concern for data security and
privacy. Thus, in this work, we introduce the concept of Homomorphic Encryption (HE).

Cryptography employs computational and mathematical techniques to transform information
into codes, ensuring secure communication in the presence of third parties, commonly referred
to as attackers or Eve, or in cloud computing scenarios where certain computable functions are
performed on data while preserving the characteristics of the function used and the format of
the encrypted data. Furthermore, there is a need to compute these data using operations such
as addition and multiplication. In some schemes, only addition or multiplication operations are
supported, as seen in algorithms like Paillier and RSA, respectively. Understanding the concept
and applications of homomorphism is crucial for utilizing HE effectively.

1Laboratório Nacional de Computação Cientı́fica, SCP, Av. Getúlio Vargas, 333, 25651-075, Petrópolis, RJ Brasil –
E-mail: alunkes@lncc.br https://orcid.org/0000-0002-1846-4853
2Laboratório Nacional de Computação Cientı́fica, SCP, Av. Getúlio Vargas, 333, 25651-075, Petrópolis, RJ, Brasil –
E-mail: borges@lncc.br http://orcid.org/0000-0001-5159-9517

i
i

“1772” — 2024/10/25 — 19:22 — page 2 — #2 i
i

i
i

i
i

2 THE APPLICATION OF HOMOMORPHISM IN CRYPTOGRAPHY

Furthermore, a HE scheme consists of four algorithms: 1) Key Generation for public and private
keys; 2) Encryption E(m); 3) Decryption D(E(m)); and 4) Homomorphism. The key generation
process returns a pair of public and private keys for the asymmetric version (known as Public
Key Cryptography) or a single key for the symmetric version.

The homomorphism algorithm is a specific operation in HE and was introduced by the authors
[10]. Taking as input the ciphertexts of messages m1 and m2, E(m1) and E(m2), it outputs the
ciphertext of a function f applied to m1 and m2, E(f (m1,m2)). Thus, the operation f is performed
on the messages without the need for prior decryption.

One important point in HE is that the format of encrypted messages, after the homomorphic
process, must be preserved to ensure correct decryption. In other words, the definition of ho-
momorphism guarantees this preservation. Additionally, a logarithmic growth in ciphertext size
is allowed with the number of homomorphic operations performed, as discussed in [5], often
referred to as circuit depth.

Furthermore, the terms Client-Server are commonly used in computing. In this work, we denote
them as Alice and Bob, respectively, as discussed in [11]. The Client is the entity that wishes to
send messages or data to the Server but does not share any of its resources with the Server. The
Server processes or stores the data and, when requested by the Client, performs certain functions
and returns results to the Client. In HE, the Client sends encrypted data to the Server, and the
Server does not decrypt the data; it only computes what the Client desires.

An example of Public Key Cryptography is digital signatures, where we can use the multiplica-
tive homomorphic property of the RSA algorithm. Alice (Client) wishes to sign a document sent
by Bob (Server) using Alice’s public key, as discussed in [1]. Since Alice holds the private key
for signing, her encrypted signature is decrypted using the public key, ensuring its authenticity
in the signature.

There are HE algorithms that are additive homomorphic and are used in electronic voting, such as
the Paillier algorithms discussed in [8], and Damgård-Jurik1. Additionally, there is the Fully Ho-
momorphic Encryption (FHE) scheme, which allows performing both additive and multiplicative
homomorphic operations in a single algorithm, such as the NTRU algorithm detailed in [7].

The aim of this work is to demonstrate that the concept of homomorphism operates similarly
in both mathematics and cryptography. Additionally, we will explore two widely used homo-
morphic encryption algorithms: RSA and ElGamal. These algorithms are crucial for ensuring
security and privacy in the exchange of sensitive information over insecure channels.

This work is structured as follows: In Section 2, we introduce the concept of homomorphism. In
Section 3, we discuss homomorphic encryption algorithms, presenting their characteristics and
operational principles. We then illustrate these concepts with practical examples of the RSA and
ElGamal algorithms. Finally, in Section 4, we conclude the work, highlighting the importance
and future challenges in the field of homomorphic cryptography.

1Available at: http://security.hsr.ch/msevote/damgardjurik

Trends Comput. Appl. Math., 25 (2024), e01772

i
i

“1772” — 2024/10/25 — 19:22 — page 3 — #3 i
i

i
i

i
i

A. L. Z. LUNKES and F. BORGES 3

2 HOMOMORPHISM

In this section, we discuss the concept of Homomorphism, which will be used throughout this
work. A homomorphism between two algebraic structures of the same type is a mapping that
preserves these structures. For example, the structures can be groups, rings, or vector spaces,
each with their respective operations. If G and H are non-empty sets with addition operation +

defined on both structures, then a homomorphism f from G H, for any x,y ∈ G, satisfies

f (x+ y) = f (x)+ f (y).

Now, if G and H are both rings with an additional multiplication operation ·, then, in addition to
the previous condition, the homomorphism f also satisfies

f (x · y) = f (x) · f (y)

for any x, y ∈ G. Let us present two examples of homomorphisms, the first associated with rings,
and the second with groups.

Example 2.1. Let G,H be any two rings with operations +, ·. Consider the function f : G → H
defined by f (x) = 0H for any x ∈ G, where 0H is the additive identity element in H. Then, clearly,
this function is a homomorphism.

One application of homomorphism is its use to ensure that two rings are isomorphic to each
other, meaning they have equivalent operations, and the homomorphism between them is also
a bijection. Thus, if f : A → B is a ring homomorphism, the image of f as a subring of B is
isomorphic to the quotient ring A/ker(f) , where ker(f) is the kernel of f . More information
about this result and its consequences can be found in [6] and [4].

Example 2.2. Let G be a non-empty group with operation ·. Let g ∈ G be a fixed element G, and
define the function ϕ : G → G by ϕ(x) = g · x ·g−1, for any x ∈ G.

Let x,y ∈ G be any two elements. Then, by associativity and the identity element of the group, we
have

ϕ(x) ·ϕ(y) = (g · x ·g−1) · (g · y ·g−1) = g · (x · y) ·g−1 = ϕ(x · y).

Therefore, ϕ is a Homomorphism.

3 HOMOMORPHIC ENCRYPTION

In this section, we will demonstrate the application of cryptography. Due to the high demand for
network data storage, a secure system is necessary to protect this data, and cryptography plays
a crucial role. Additionally, a homomorphic encryption scheme consists of four algorithms: 1)
KeyGen (key generation); 2) Encrypt (encryption) denoted by E(m); 3) Decrypt (decryption)
denoted by D(E(m)); and 4) Homomorphism (homomorphism), specifically

Trends Comput. Appl. Math., 25 (2024), e01772

i
i

“1772” — 2024/10/25 — 19:22 — page 4 — #4 i
i

i
i

i
i

4 THE APPLICATION OF HOMOMORPHISM IN CRYPTOGRAPHY

1. KeyGen where we generate the public and private keys. These keys are used to encrypt
and decrypt messages or data between the client and the server. The public key is known
to everyone, while the private key is known only to the owner. In key generation for digital
signatures, two functions are performed: authentication and encryption. In message au-
thentication, a cryptographic hash function is used, which accepts inputs of arbitrary sizes,
potentially up to gigabytes, and after encryption, produces standardized output values of
fixed length.

To access the message and produce a summary, finding a hash value can be challenging
due to its one-way nature.

For encryption, it utilizes the digest, which is the output of the hash function, and the
private key to generate the digital signature. To verify the authenticity of the signature,
software performs the following checks: 1) computes the hash function of the message; 2)
decrypts the signature using the signer’s public key; and 3) compares the computed result
with the deciphered one.

2. Encryption denoted by E(m), denoted by m is the message to be encrypted or the data to
be concealed. In this algorithm, we use the public key.

3. Decryption denoted by D(E(m)), denoted by E(m) is a message to be decrypted using the
private key.

4. Homomorphism is a specific application of HE, which converts encrypted messages into
encrypted messages, preserving the operations performed.

Given the messages m1 and m2, □ denotes an operation to be performed, which can be additive
or multiplicative. For the encrypted messages E(m1)□E(m2), then the homomorphic operations
are

E(m1)+E(m2) = E(m1 +m2),

E(m1)×E(m2) = E(m1 ×m2).

In Figure 1, we have a physical problem that needs to be solved. The client has some data about
the problem and uses their public key to encrypt this data, sending it to the server. The server
receives and stores the encrypted data, performs homomorphic processing on the encrypted data,
and returns the solution to the client. The client then uses their private key to correctly decrypt
the data.n Figure 1, we have a physical problem that needs to be solved. The client has some
data about the problem and uses their public key to encrypt this data, sending it to the server.
The server receives and stores the encrypted data, performs homomorphic processing on the
encrypted data, and returns the solution to the client. The client then uses their private key to
correctly decrypt the data.

In an example of cryptography, we have Alice as the Client who wants to send a message to Bob,
the Server. To facilitate this exchange securely, public and private keys are utilized. A pair of

Trends Comput. Appl. Math., 25 (2024), e01772

i
i

“1772” — 2024/10/25 — 19:22 — page 5 — #5 i
i

i
i

i
i

A. L. Z. LUNKES and F. BORGES 5

Figure 1: HE-client-server scenario.

public keys (accessible to any user) and private keys (accessible only to their respective owner)
are generated for both parties.

Alice uses HE to encrypt the message with Bob’s public key and sends it to him. Bob, upon
receiving the encrypted message, decrypts it using his private key. Importantly, if there is an
eavesdropper (Eve) intercepting communication between Alice and Bob over an insecure chan-
nel, Eve cannot decipher the message because she lacks access to Bob’s private key. This en-
sures the confidentiality of the communication between Alice and Bob. In the example described,
homomorphism plays a crucial role in ensuring secure message exchange using HE.

After Alice encrypts the message m with Bob’s public key, denoted as E(m), she sends this en-
crypted message to Bob. Bob then applies a homomorphism f on the encrypted message E(m)

without needing to know the original message m, resulting in f (E(m)). This operation preserves
the structure and format required for the message to be correctly decrypted by Bob using his
private key. In Figure 2, illustrates how this process unfolds, demonstrating the application of ho-
momorphism in maintaining the integrity and security of the encrypted communication between
Alice and Bob.

In Figure 3, Alice and Dave aim to exchange a message through an insecure channel. The attacker
(Eve) intercepts their communication but can only access encrypted messages, rendering her
attempts unsuccessful in decrypting the content.

Trends Comput. Appl. Math., 25 (2024), e01772

i
i

“1772” — 2024/10/25 — 19:22 — page 6 — #6 i
i

i
i

i
i

6 THE APPLICATION OF HOMOMORPHISM IN CRYPTOGRAPHY

Figure 2: Homomorphism in the HE scheme.

Alice

E(m, pk) −D(E, sk)

Dave

Criminal

m mE

Figure 3: Secure communication scenario between Alice, Bob, and Dave.

In Figure 4, Alice and Bob are attempting to securely send a message to Dave over an inse-
cure channel. They achieve this by transmitting encrypted messages, which Dave receives and
decrypts using his secret key. Additionally, Dave has access to the homomorphic sum of the
messages m1 and m2. This allows Dave to perform computations on the encrypted data with-
out decrypting it first, maintaining the security of the communication while enabling meaningful
operations on the encrypted content.

Trends Comput. Appl. Math., 25 (2024), e01772

i
i

“1772” — 2024/10/25 — 19:22 — page 7 — #7 i
i

i
i

i
i

A. L. Z. LUNKES and F. BORGES 7

Alice

Bob

E(m2, pk)

E(m1, pk)

E = E1 + E2

Criminal

D(E, sk)

Dave

m2

m1

E2

E1

m = m1 +m2

Figure 4: Secure communication scenario between Alice, Bob, and Dave.

Let n be an integer with n > 1. So the modular ring Zn inherits some properties of Z, as it is
a quotient ring from Z. Consider the set Un formed by the units of Zn, defined as Un = {x ∈
Zn|x has a multiplicative inverse in Zn}, where (x,n) denotes the greatest common divisor of x
and n. The set Un can also be expressed as Un = {x ∈ Zn|(x,n) = 1}, and that Un forms a mul-
tiplicative group under modulo n multiplication. The order of Un is denoted in general by ϕ(n),
where ϕ function is called Euler’s function.

The following results present properties of Euler’s function, and their proofs can be found in [6].
One of the fundamental results is known as Fermat’s Little Theorem.

Theorem 1 (Fermat’s Little Theorem). Let p be a prime number and suppose x ∈ Z satisfies
(x, p) = 1. Then, xp−1 ≡ 1 (mod p).

Theorem 2. Suppose p and q are distinct primes, n = pq, and m = ϕ(n) = (p− 1)(q− 1) is
Euler’s totient function. If a and b are integers such that ab ≡ 1 (mod m), then xab ≡ x (mod n)
for all x ∈ Z.

3.1 RSA

The RSA algorithm, based on the integer factorization problem of products of two large prime
numbers [10], is the most renowned asymmetric public-key cryptographic system. Due to its rel-
ative slowness, it is not recommended for users to use it directly to encrypt data, but rather to
transmit encrypted cryptographic keys that will be used in symmetric algorithms. These symmet-
ric algorithms allow for faster encryption and decryption processes. Below is a description of the
RSA algorithm:

KeyGen: let p and q be randomly generated prime numbers. Define n = pq and ϕ(n) =
(p− 1)(q− 1). Choose e such that mdc(e,ϕ(n)) = 1. By Euclid’s algorithm, compute d

Trends Comput. Appl. Math., 25 (2024), e01772

i
i

“1772” — 2024/10/25 — 19:22 — page 8 — #8 i
i

i
i

i
i

8 THE APPLICATION OF HOMOMORPHISM IN CRYPTOGRAPHY

as the modular inverse of e modulo ϕ(n), denoted as d = e−1 mod ϕ(n). Thus, we derive
the corresponding keys for this RSA scheme:

The public key: (e,n).

The secret key: (d,n).

Encryption: consider m the message to be encrypted, and M the set of all messages to be
encrypted. To encrypt m, we use the public key pair (e,n):

E(m) = me mod n, ∀ m ∈ M.

where:

E(m) is the encrypted ciphertext,

e is the public exponent,

n is the modulus.

This modular exponentiation operation me mod n ensures that m is encrypted into c using
the public key pair (e,n).

Decryption: To retrieve the original message m from the ciphertext E(m), use the secret
key pair (d,n) as follows:

D(E(m)) = E(m)d mod n = m.

Homomorphism: For RSA encryption, if c1 and c2 are the encrypted ciphertexts of mes-
sages m1 and m2, respectively, using the public key pair (e,n), then the homomorphic
property holds:

E(m1) ·E(m2) = (me
1 mod n) · (me

2 mod n)

= (m1 ·m2)
e mod n

= E(m1 ·m2).

where Em1·m2 is the encrypted ciphertext of m1 ·m2, and · denotes multiplication in the
plaintext domain. However, RSA does not support homomorphic addition of ciphertexts.
In other words, for encrypted messages Em1 and Em2 :

Em1+m2 ̸= Em1 +Em2 mod n.

Example 3.1. Let us consider that Alice wants to send a message ”CNMAC” to Bob. To ensure
the message’s security, we need to generate keys for encrypting and decrypting the message
correctly.

Trends Comput. Appl. Math., 25 (2024), e01772

i
i

“1772” — 2024/10/25 — 19:22 — page 9 — #9 i
i

i
i

i
i

A. L. Z. LUNKES and F. BORGES 9

For KeyGen:

1. Randomly choose two large prime numbers, p = 11 and q = 23;

2. we calculate n = p · q = 11 · 23 = 253, and the Euler function ϕ(n) = (p− 1)(q− 1) =
(11−1)(23−1) = 220;

3. Choose an integer e such that, 1 < e < ϕ(n), so that e and e is coprime with ϕ(n). For
example, select e = 7, because mdc(e,ϕ(n)) = (7,220) = 1;

4. Use Euclid’s algorithm to compute d = e−1 mod ϕ(n), where d is the multiplicative
inverse of e mod ϕ(n). For instance, calculate d = 7 mod 220, see Table 1.

Table 1: Table for calculating the Euclid’s Algorithm.

Line Q R U V
−1 - 220 1 0
0 - 7 0 1
1 31 3 1 −31
2 2 1 −2 63

Therefore, 220(r) + 7(d) = 1 −→ 220(−2) + 7(63) = 1 −→ d = 63. Thus, the public key is
(n,e)−→ (253,7), and the private key is the pair (63,253).

It seems you want to describe a bijection σ : L −→ Z26, where L = A,B,C, ·,X ,Y,Z represents
the letters of the alphabet, and represents integers modulo 26. The function σ maps each letter
to a corresponding integer as follows: σ(A) = 0,σ(B) = 1, . . . ,σ(Z) = 25, to transform letters
into whole numbers. The correspondences for each σ value are listed in the Figure 5.

Figure 5: Message matching Table.

Encryption: Based on the Figure 5, we will encode our message as follows, using the provided
mappings of letters to numbers.

Table 2: Message exchange Table.

C N M A C
2 13 12 0 2

To encrypt the message, where n−1 is given, we use Alice’s public key and perform a modular
potentiation:

E(m)≡ (CNMAC)7 mod 253.

Trends Comput. Appl. Math., 25 (2024), e01772

i
i

“1772” — 2024/10/25 — 19:22 — page 10 — #10 i
i

i
i

i
i

10 THE APPLICATION OF HOMOMORPHISM IN CRYPTOGRAPHY

The message is split into blocks to be transmitted over an insecure channel to Bob.

27 = 128 mod 253,

137 = 216 mod 253,

127 = 177 mod 253,

07 = 0 mod 253,

27 = 128 mod 253.

(3.1)

The encrypted message is {128,216,177,0,128}. Using Figure 5, we can decipher this message
as E(m) = Y IVAY . To decrypt the message using the private key, we perform another modular
potentiation:

E(m)63 ≡ (CNMAC) mod 253.

Hence,

12863 = 2 mod 253,

21663 = 13 mod 253,

17763 = 12 mod 253,

063 = 0 mod 253,

12863 = 2 mod 253.

(3.2)

Decryption: message is {2,13,12,0,2}, using Figure 5, we find that m =CNMAC. To apply
homomorphism, let us consider the messages m1 =CNMAC and m2 = 2022 =CACC (where we
replace numbers by corresponding alphabet letters as per Figure 5). Using the RSA algorithm,

E(m1) ·E(m2) = ((CNMAC)7 mod 253)) · ((CACC)7 mod 253)

= ((CNMAC) · (CACC))7 mod 253

= E((CNMAC) · (CACC)).

If the RSA algorithm allows additive homomorphism, then we can compute the encrypted sum
E(m1)+E(m2) as follows:

E(m1) ·E(m2) = ((CNMAC)7 mod 253))+((CACC)7 mod 253)

= ((CNMAC)+(CACC))7 mod 253

= E((CNMAC)+(CACC)).

3.2 ElGamal

ElGamal encryption is an asymmetric public key encryption algorithm that ensures message
confidentiality and supports digital signatures, providing authentication and integrity verification.
Its security stems from the complexity of solving the Discrete Logarithm Problem in finite fields

Trends Comput. Appl. Math., 25 (2024), e01772

i
i

“1772” — 2024/10/25 — 19:22 — page 11 — #11 i
i

i
i

i
i

A. L. Z. LUNKES and F. BORGES 11

or groups. This feature allows secure communication over insecure channels, ensuring messages
can be authenticated without compromising their confidentiality.

Moreover, ElGamal encryption supports multiplicative homomorphism, akin to RSA. In the
ElGamal scheme ([3]), which relies on the difficulty of computing discrete logarithms, this
property enables operations on plaintexts before encryption to correspond with operations on
their resulting ciphertexts. This capability is valuable in scenarios where computations must
be conducted on encrypted data without the need for prior decryption, preserving data privacy
throughout processing.

KeyGen: let g be a generator of the cyclic group G module p, where p and q are prime numbers
such that n = pq. In a cyclic group, the generator g allows us to generate all elements of the
group. Consider h = gx mod p, where x is a randomly chosen from the set {1,2, . . . , p− 1}.
Thus, we obtain the corresponding keys for this scheme:

The public key: (p,g,h).

The secret key: x.

This scheme utilizes the properties of cyclic groups and the computational complexity of the
Discrete Logarithm Problem for secure key generation and exchange.

Encrypt: a message m is encrypted using g and y ∈Zp, resulting in a pair of encrypted messages,
so

E(m) = (gy,mhy) mod p = (gy,mgxy) = (E1(m),E2(m)) mod p.

Decrypt: let s = h−y, then

D(E(m)) = E2(m) · s mod p = mgxy ×g−xy mod p = m.

Homomorphism:

E(m1)×E(m2) = (gx1 ,m1hx1) mod n× (gx2 ,m2hx2) mod n

= (gx1+x2 ,(m1 ×m2)hx1+x2) mod n.

Furthermore, this method supports only multiplicative operations.

Example 3.2. Let us consider that Alice wants to send a message to Bob, where the message
m is “CNMAC”. Therefore, we need to generate the keys to encrypt and decrypt the message
correctly.

For KeyGen:

1. Randomly choose a large prime number, p = 13;

2. Randomly choose an integer x, such that 1 ≤ x ≤ p−2, x = 7;

3. Calculates the public key: h = gx mod p = 27 mod 13 = 11.

Trends Comput. Appl. Math., 25 (2024), e01772

i
i

“1772” — 2024/10/25 — 19:22 — page 12 — #12 i
i

i
i

i
i

12 THE APPLICATION OF HOMOMORPHISM IN CRYPTOGRAPHY

The public key is given by (p,g,h)−→ (13,2,11), and the private key (x) is (7).

Then, since we have converted the letters into integers for the RSA algorithm, we will follow the
same process. The mappings for each σ value are listed in Figure 5 and Figure 2.

To encrypt the message, where n−1, we use Alice’s public key. We choose another random integer
y = 5 such that 1 ≤ y ≤ p−2, and perform a modular potentiation,

E(m)≡ (25,(0213120002) ·115) mod 13 ≡ (E1(m),E2(m)).

The encrypted message that can then be transmitted over an insecure channel to Bob is
{(1,7)(1,8) (1,2)(1,10)(1,7)}. Using Figure 5, this corresponds to the following message:

E(m) = {(B,H)(B, I)(B,C)(B,L)(B,H)}.

The decrypted message is {(1,7)(1,8)(1,2)(1,10)(1,7)}, for each pair (E1(m),E2(m)).

For each pair given by (E1(m),E2(m)) in the ciphertext, calculate

D(E(m)) = E1(m)x mod p = 17 mod 13 = 1,

and M = (E2(m) ·E1(m)−1) mod p.

Remembering that E1(m)−1 is the modular multiplicative inverse of E(m) mod p. In the case
of p = 13,E(m)−1 = 1, because 1 is the inverse of itself (1 ·1 mod 13 = 1). Implying that M =

(E2(m) ·1) mod 13 = E2(m). Using Figure 5, we have m =CNMAC.

To apply the homomorphism, we consider the messages m1 =CNMAC and m2 = 2022 =CACC
(where numbers are replaced by their corresponding letters from the alphabet, as shown in
Figure 5). Using the ElGamal algorithm,

E(m1) ·E(m2) = ((25,(CNMAC) ·115),(25,(CACC) ·115) mod 13)

= E((CNMAC) · (CACC)).

3.3 Complexities the Algorithms

In this subsection, we analyze the computational complexities inherent to the RSA and ElGamal
encryption algorithms. RSA encryption exhibits a time complexity of O(log(e)), where e denotes
the encryption exponent, typically small, and involves primarily modular exponentiation opera-
tions. In contrast, ElGamal encryption operates with a complexity of O(log(n)), necessitating
two modular exponentiations modulo n and a scalar multiplication operation (m×h), as detailed
in [9]. Efficiency enhancements are achievable through strategies that optimize the computation
of modular exponentiation products, as explored in [2].

Regarding decryption processes, both RSA and ElGamal algorithms share a comparable com-
plexity framework. RSA decryption involves modular exponentiation under the condition e < n,
achieving a time complexity of O(log(n)). In contrast, ElGamal decryption relies on modular

Trends Comput. Appl. Math., 25 (2024), e01772

i
i

“1772” — 2024/10/25 — 19:22 — page 13 — #13 i
i

i
i

i
i

A. L. Z. LUNKES and F. BORGES 13

exponentiation operations with n as the group order, also operating at O(log(n)) complexity.
The homomorphic properties inherent to these algorithms constrain operations to either addi-
tion or multiplication. Consequently, RSA decryption typically employs modular multiplication,
while ElGamal decryption necessitates two modular multiplications—one for each component of
the encrypted message. These complexities underscore the nuanced computational demands and
efficiency considerations in cryptographic applications utilizing RSA and ElGamal algorithms.

4 CONCLUSION

In Abstract Algebra, the concept of homomorphism plays a fundamental role in simplifying com-
plex algebraic structures into more manageable forms. This concept finds practical application
in cryptographic techniques, especially in HE. HE is important because it preserves both ad-
ditive and multiplicative operations, allowing computations to be performed on encrypted data
without the need for prior decryption, thereby maintaining data privacy and security. This capa-
bility facilitates secure communication among parties involved in sensitive transactions or data
exchanges. The computational complexities of homomorphic cryptographic algorithms illustrate
the efficiency and feasibility of RSA and ElGamal in practical cryptography scenarios. These
complexities highlight the computational demands and optimizations required in implementing
secure and efficient cryptographic algorithms, essential for protecting sensitive information in
modern digital communications.

REFERENCES

[1] S.S. Al-Riyami & K.G. Paterson. Certificateless Public Key Cryptography. In C.S. Laih (editor), “Ad-
vances in Cryptology - ASIACRYPT 2003”. Springer Berlin Heidelberg, Berlin, Heidelberg (2003),
p. 452–473.

[2] F. Borges, P. Lara & R. Portugal. Parallel algorithms for modular multi-exponentiation. Applied
Mathematics and Computation, 292 (2017), 406–416.

[3] T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms.
In “Proceedings of CRYPTO 84 on Advances in Cryptology”. Springer-Verlag, Berlin, Heidelberg
(1985), p. 10–18.

[4] A. Gonçalves. “Introdução à Álgebra”. Projeto Euclides - IMPA, 3nd ed. (1995).

[5] S. Halevi. “Homomorphic Encryption”. Springer International Publishing, Cham (2017), p. 219–276.
doi:10.1007/978-3-319-57048-8 5.

[6] R. Klima, N. Sigmon & E. Stitzinger. “Applications of Abstract Algebra with MAPLE”. CRC Press,
1nd ed. (1999).

[7] A. López-Alt, E. Tromer & V. Vaikuntanathan. On-the-fly Multiparty Computation on the Cloud
via Multikey Fully Homomorphic Encryption. In “Proceedings of the Forty-fourth Annual ACM
Symposium on Theory of Computing”, STOC ’12. ACM, New York, NY, USA (2012), p. 1219–1234.

Trends Comput. Appl. Math., 25 (2024), e01772

i
i

“1772” — 2024/10/25 — 19:22 — page 14 — #14 i
i

i
i

i
i

14 THE APPLICATION OF HOMOMORPHISM IN CRYPTOGRAPHY

[8] P. Paillier. Trapdooring Discrete Logarithms on Elliptic Curves over Rings. In T. Okamoto (edi-
tor), “Advances in Cryptology – ASIACRYPT 2000”. Springer Berlin Heidelberg, Berlin, Heidelberg
(2000), p. 573–584.

[9] D. Pereira, M. Aranha & F. Borges. HTTPS Keys in the Mediterranean. In “2019 II Workshop
on Metrology for Industry 4.0 and IoT (MetroInd4.0 & IoT)” (2019), p. 449–454. doi:10.1109/
METROI4.2019.8792830.

[10] R.L. Rivest, L. Adleman & M.L. Dertouzos. “On Data Banks and Privacy Homomorphisms”, 4.
Academia Press, Massachusetts (1978), p. 169–180.

[11] A. Sinha. Client-Server Computing. Commun. ACM, 35(7) (1992), 77–98. doi:10.1145/129902.
129908. URL https://doi.org/10.1145/129902.129908.

How to cite
A. L. Z. Lunkes & F. Borges. The application of homomorphism in cryptography. Trends in Computational
and Applied Mathematics, 25(2024), e01772. doi: 10.5540/tcam.2024.025.e01772.

Trends Comput. Appl. Math., 25 (2024), e01772

