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ABSTRACT. In this paper, we consider the following initial-boundary value problem
∂tu = ∆u−g(u).∇u+ f (u) in Q× (0,T ),

σ∂tu+∂ν u = 0 on ∂Q× (0,T ),

u(x,0) = u0(x) in Q,

where Q is a bounded domain in RN with smooth boundary ∂Q, ∆ is the Laplacian, ν is the exterior normal
unit vector on ∂Q, u0 ∈C2(Q). The dissipative parameter σ ∈C1 (∂Q× (0,∞)) is a bounded function and
u0(x)> 0, x ∈ Q. We perturbe the above problem and under some assumptions, we show that the solution of
the perturbed form blows up in a finite time and we estimate its blow-up time. We also prove the continuity
of the blow-up time with respect to the initial datum.

Keywords: Blow up, nonlinear parabolic equation, dynamical boundary conditions, continuity of the blow
up time.

1 INTRODUCTION

Let Q be a bounded domain in RN with smooth boundary ∂Q. Consider the following initial-
boundary value problem

∂tu = ∆u−g(u).∇u+ f (u) in Q× (0,T ), (1.1)

σ∂tu+∂ν u = 0 on ∂Q× (0,T ), (1.2)

u(.,0) = u0 > 0 in Q, (1.3)
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1Université Nangui Abrogoua, UFR-Sciences Fondamentales Appliquées, Laboratoire de Mathématiques et Informa-
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2 CONTINUITY / BLOW-UP TIME

where g :R→RN , f :R→R, Q is a bounded domain in RN with C2-boundary ∂Q, ν the exterior
unit normal vector on ∂Q.We always assume that the parameters in the equations (1.1)–(1.3) are
smooth

σ ∈C1(∂Q× (0,∞)) is a bounded function, (1.4)

g ∈C1(R,RN). (1.5)

Typical example of a pair ( f ,g,u0) satisfying the assumptions throughout this paper is given by
f (u)= up with p> 1, g(u)= (uq1 , · · · ,uqi , · · · ,uqN ) with qi > 1, i= 1, · · · ,N, u0(x)=

2+cos(π∥x∥∞)
4

where ∥x∥∞ = max{|x1|, · · · , |xN |} .

The problem (1.1)–(1.3) appears in heat conduction theory and in this area blow-up phenomena
play an important role. The equation ∂tu = ∆u− g(u).∇u+ f (u) can be interpreted as a heat
equation with convective gradient term g(u).∇u and f a nonlinear source (see [3] and [8]). A
motivation for studying this type of equation is to investigate the effect of the convective gradient
term on global existence or nonexistence of solution, and their asymptotic behavior in finite or
infinite time. More physical explanations can be found in [14].

For the nonlinear term f (u), our standing assumptions are the following:

(A1) f : (0,∞) → (0,∞) is a C1 strictly convex, non-decreasing function satisfying
lims→∞ f (s) = ∞ and

∫
∞

0
dy
f (y) < ∞.

(A2) There exists a positive constant C0 such that

s f ′(H(s))≤C0 for s ≥ 0, (1.6)

where H is the inverse of the function F defined as follows

F(s) =
∫

∞

s

dy
f (y)

.

An example of function verifying this assumption is f (u) = up.

For the initial datum, we make the following hypotheses:

(A3) u0 ∈C2(Q), u0(x)> 0 in Q, and there exists a positive constant B such that

∆u0(x)−g(u0(x)).∇u0(x)+ f (u0(x))≥ B f (u0(x)) in Q. (1.7)

Throughout, we shall assume the dissipativity condition

σ ≥ 0 on ∂Q× (0,∞). (1.8)

Here (0,T ) is the maximal time interval of existence of the solution u and by a solution we mean
the following.

Trends Comput. Appl. Math., 26 (2025), e01776
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R. K. KOUAKOU and F. K. N’GOHISSE 3

Definition 1.1. A solution of (1.1)–(1.3) is a function u(x, t) continuous in Q× [0,T ), u(x, t)> 0
in Q× [0,T ), and twice continuously differentiable in x and once in t in Q× (0,T ). The time T
may be finite or infinite. When T is infinite, then we say that the solution u exists globally. When
T is finite, then the solution u develops a singularity in a finite time, namely,

lim
t→T

∥u(·, t)∥∞ = ∞,

where ∥u(·, t)∥∞ = maxx∈Q |u(x, t)|. In this case, we say that the solution u blows up in a finite
time and the time T is called the blow-up time of the solution u (see [2] and [6]).

Solutions of nonlinear parabolic equations which blow up in a finite time have interested many
authors (see [1]– [25], [4], [6]– [7], and the references cited therein). In particular in [14], the
above problem has been considered and existence and uniqueness of a classical solution have
been studied (see [14], Theorems 3.3 and 3.4). Under some assumptions, the authors have also
shown that the classical solution blows up in a finite time and its blow-up time has been estimated.
In this paper, we are interested in the continuity of the blow-up time as a function of the initial
datum u0. More precisely, we consider the following initial-boundary value problem

∂tφ = ∆φ −g(φ).∇φ + f (φ) in Q× (0,Th), (1.9)

σ∂tφ +∂ν φ = 0 on ∂Q× (0,Th), (1.10)

φ(.,0) = φ0 > 0 in Q, (1.11)

where φ0(x) = u0(x)+h(x), h ∈C1(Q), σ∂th+∂ν h = 0, h(x)≥ 0 in Q (φ0(x) = u0(x)+ 1
1000 for

example).

Here (0,Th) is the maximal time interval on which the solution φ of (1.9)–(1.11) exists. Definition
1.1 remains valid for the solution φ of (1.9)–(1.11) and we state that this solution is sufficiently
regular. It is worth noting that the regularity of solutions increases with respect to the regularity
of initial data, and one may apply without difficulties the maximum principle (see [14], Section
2, Theorem 2.1.) When Th is finite, then we say that the solution φ of (1.9)–(1.11) blows up in
a finite time, and the time Th is called the blow-up time of the solution φ . It follows from the
maximum principle that φ ≥ u as long as all of them are defined. We deduce that Th ≤ T. In the
present paper, we prove that if ∥h∥∞ is small enough, then the solution φ of (1.9)-(1.11) blows up
in a finite time, and its blow up time Th goes to T as ∥h∥∞ tends to zero, where T is the blow-up
time of the solution u of (1.1)-(1.3) and ∥h∥∞ = supx∈Q |h(x)| (from convexity of f ). Recently,
in [16], an analogous study has been done considering the problem (1.1)-(1.3) in the case where
g = 0. Let us notice that in [16], the authors have considered the phenomenon of quenching (we
say that a solution quenches in a finite time if it reaches a singular value in a finite time).

The remainder of the paper is organized as follows. In the next section, under some assumptions,
we show that the solution φ of (1.9)-(1.11) blows up in a finite time and estimate its blow-up
time. In the third section, we prove the continuity of the blow-up time.

Trends Comput. Appl. Math., 26 (2025), e01776
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4 CONTINUITY / BLOW-UP TIME

2 BLOW UP TIME

In this section, under some assumptions, we show that the solution φ of (1.9)-(1.11) blows up in a
finite time and estimate its blow up time. The result contained in the following theorem proceeds
from an idea of Friedman and McLeod in [6]. But before stating the main result, let us recall the
result on the maximum principle already proved in [14, Section 2, Theorem 2.1].

Lemma 2.1. Assume hypotheses (A1), (A3) and (1.8)-(1.5). Suppose that σ does not depend on
time

σ ∈C1(∂Q). (2.1)

Then the solution u of Problem (1.1)–(1.3) satisfies

u > 0 in Q× (0,T ).

Now, let us state our result concerning the blow-up time.

Theorem 2.1. Suppose that there exists a constant A ∈ (0,1], such that the initial datum at (1.11)
satisfies

∆φ0(x)−g(φ0(x)).∇φ0(x)+ f (φ0(x))≥ A f (φ0(x)) in Q. (2.2)

Then, the solution φ of (1.9)-(1.11) blows up in a finite time Th which obeys the following estimate

Th ≤
F(∥φ0∥∞)

A
.

Proof. Since (0,Th) is the maximal time interval of existence of the solution φ , our aim is to
show that Th is finite and satisfies the above inequality. Introduce the function V (x, t) defined as
follows

V (x, t) = ∂tφ(x, t)−A f (φ(x, t)) in Q× [0,Th),

where A is the constant defined in (2.2).

A direct calculation reveals that

∂tV −∆V +g(φ).∇V = ∂t (∂tφ −∆φ +g(φ).∇φ)−A f ′(φ)∂tφ (2.3)

+A∆ f (φ)−Ag(φ).∇ f (φ) in Q× (0,Th).

A straightforward computation shows that

∆ f (φ) = f ′′(φ)|∇φ |2 + f ′(φ)∆φ in Q× (0,Th),

which implies that

∆ f (φ)≥ f ′(φ)∆φ and ∇ f (φ) = f ′(φ)∇φ in Q× (0,Th).

Trends Comput. Appl. Math., 26 (2025), e01776
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Using these estimates and (2.3), we arrive at

∂tV −∆V +g(φ).∇V ≥ ∂t (∂tφ −∆φ +g(φ).∇φ) (2.4)

−A f ′(φ)(∂tφ −∆φ +g(φ).∇φ) in Q× (0,Th).

It follows from (1.9), and (2.4) that

∂tV −∆V +g(φ).∇V ≥ f ′(φ)∂tφ −A f ′(φ) f (φ) in Q× (0,Th).

Taking into account the expression of V, we find that

∂tV −∆V +g(φ).∇V ≥ f ′(φ)V in Q× (0,Th).

We also see, according to (1.10), that

σ∂tV = σ∂t(∂tφ)−Aσ f ′(φ)∂tφ on ∂Q× (0,Th),

which leads to

σ∂tV = ∂t(−∂ν φ)+A f ′(φ)(∂ν φ) on ∂Q× (0,Th),

and we have

σ∂tV +∂νV = 0 on ∂Q× (0,Th).

Due to (2.3), we discover that

V (x,0) = ∆φ0(x)−g(φ0(x)).∇φ0(x)+ f (φ0(x))−A f (φ0(x))≥ 0 in Q.

Apply the maximum principle to get

V (x, t)≥ 0 in Q× (0,Th),

or equivalently

∂tφ(x, t)−A f (φ(x, t))≥ 0 in Q× (0,Th). (2.5)

It follows from (2.5) that

Th ≤
1
A

∫
φ(x,Th)

φ(x,0)

dy
f (y)

for x ∈ Q. (2.6)

According to (2.5), we see that φ is increasing with respect to the second variable, which implies
that 0 ≤ φ(x,0)≤ φ(x,Th),x ∈ Q. Since f > 0,∫

φ(x,Th)

φ(x,0)

dy
f (y)

≤
∫

∞

φ(x,0)

dy
f (y)

for x ∈ Q.

We deduce from (2.6) that

Th ≤
F(∥φ0∥∞)

A
.

Consequently, we deduce that φ blows up at the time Th because the quantity on the right hand
side of the above inequality is finite. This ends the proof. □

Trends Comput. Appl. Math., 26 (2025), e01776
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6 CONTINUITY / BLOW-UP TIME

Remark 2.1. Let t ∈ (0,Th). Integrating the inequality in (2.6) from t to Th, we get

Th − t ≤ 1
A

∫
∞

φ(x,t)

dy
f (y)

for x ∈ Q.

We deduce that

Th − t ≤ F(∥φ(·, t)∥∞)

A
for t ∈ (0,Th).

Remark 2.2. In view of the condition (1.7) and reasoning as in the proof of Theorem 2.1, it is not
hard to see that there exists a positive constant B such that ∥u0(t)∥∞ ≥H(B(T −t)) for t ∈ (0,T ).
We also need the following result which shows an upper bound of ∥φ(·, t)∥∞ for t ∈ (0,T ).

Theorem 2.2. Let φ be solution of (1.9)–(1.11). Then, the following estimate holds

∥φ(·, t)∥∞ ≤ H(T − t) for t ∈ (0,T ).

Proof. Let r(t) be the function defined as follows

r(t) = ∥φ(·, t)∥∞ for t ∈ [0,Th).

For each t1, t2 ∈ [0,Th), there exist x1, x2 interior points of Q such that r(t1) = φ(x1, t1) and
r(t2) = φ(x2, t2). Applying Taylor’s expansion, we observe that

r(t2)− r(t1)≥ φ(x2, t2)−φ(x2, t1) = (t2 − t1)φt(x2, t2)+o(t2 − t1),

r(t2)− r(t1)≤ φ(x1, t2)−φ(x1, t1) = (t2 − t1)φt(x1, t1)+o(t2 − t1),

which implies that r(t) is Lipschitz continuous. Further, if t2 > t1, then

r(t2)− r(t1)
t2 − t1

≤ φt(x1, t1)+o(1) = ∆φ(x1, t1)−g(φ(x1, t1)).∇(φ(x1, t1))

+ f (φ(x1, t1))+o(1).

Obviously, it is not hard to see that ∆φ(x1, t1)≤ 0 and ∇(φ(x1, t1)) = 0. Letting t2 → t1, we obtain
r′(t)≤ f (r(t)) for a.e. t ∈ (0,Th) or equivalently dr

f (r) ≤ dt for a.e t ∈ (0,Th). Integrate the above

inequality over (t,Th) to obtain Th−t ≥
∫

∞

r(t)
dy
f (y) for t ∈ (0,Th). Since r(t) = ∥φ(·, t)∥∞, we arrive

at ∥φ(·, t)∥∞ ≤ H(Th − t) for t ∈ (0,Th) and the proof is completed. □

Remark 2.3. According to the last part of the proof of Theorem 2.2, we observe that Th ≥∫
∞

r(0)
dy
f (y) . Thus, we have a lower bound of the blow-up time of the solution φ of (1.9)–(1.11).

In the same way, it is not hard to see that
∫

∞

∥u0∥∞

dy
f (y) is a lower bound of the blow-up time of the

solution u of (1.1)–(1.3).

Trends Comput. Appl. Math., 26 (2025), e01776
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3 CONTINUITY OF THE BLOW-UP TIME

This section is devoted to our main result. Under some assumptions, we show that the solution
φ of (1.9)-(1.11) blows up in a finite time and its blow-up time goes to that of the solution u of
(1.1)-(1.3) when h tends to zero in L∞ norm.

We also provide an upper bound of |Th − T | in terms of ∥φ0 − u0∥∞. Our result regarding the
continuity of the blow-up time is stated in the following theorem.

Theorem 3.1. Suppose that the problem (1.1)–(1.3) has a solution u which blows up at the time
T. Then, under the assumptions of Theorem 2.1, the solution φ of (1.9)–(1.11) blows up in a finite
time Th, and there exist positive constants β and λ such that the following estimate holds

|Th −T | ≤ β∥φ0 −u0∥λ
∞,

when h goes to zero in L∞ norm.

Proof. We know from Theorem 2.1 that the solution φ blows up in a finite time Th. Now, to
achieve our objective, it remains to prove the above estimate. We begin by proving that Th ≤ T.
In order to obtain this result, we proceed as follows. Since φ0(x)≥ u0(x) in Q, we know from the
maximum principle that φ ≥ u for t ∈ (0,T ∗) with T ∗ =min{T,Th}. In fact, since φ is bigger than
u, φ reaches ∞ before u, this implies that Th ≤ T, and consequently, we have T −Th = |Th −T |.
In order to show the remaining part of the proof, we proceed by introducing the error function
ε(x, t) defined as follows

ε(x, t) = φ(x, t)−u(x, t) in Q× [0,T ).

Let t0 be any positive quantity satisfying t0 < T. By the mean value theorem, we have

∂tε −∆ε = g(u) ·∇u−g(φ) ·∇φ + f (φ)− f (u)

= −g(φ) ·∇(φ −u)+(g(u)−g(φ)) ·∇u+ f (φ)− f (u)

= εg′(θ1) ·∇u−g(φ) ·∇ε + f ′(θ)ε,

where θ and θ1 are intermediate values between u and φ .

Since g is a smooth function and Q is bounded with smooth boundary ∂Q, there exists a positive
constant M such that −g(φ) ·∇ε + εg′(θ1) ·∇u ≤ M|∇ε|, and we obtain

∂tε −∆ε ≤ M. | ∇ε |+ f ′(θ)ε in Q× (0, t0),

σ∂tε +∂ν ε = 0 on ∂Q× (0, t0),

ε(x,0) = φ0(x)−u0(x) in Q.

Due to the fact that φ(x, t) ≥ u(x, t) in Q× (0, t0), and making use of Theorem 2.2, it is easy to
check that

θ(x, t)≤ ∥φ(·, t)∥∞ ≤ H(T − t) in Q× (0, t0), (3.1)

Trends Comput. Appl. Math., 26 (2025), e01776
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8 CONTINUITY / BLOW-UP TIME

and since f ′ is increasing by convexity of f , we have

∂tε ≤ ∆ε +M. | ∇ε |+ f ′(H(T − t))ε in Q× (0, t0).

In view of the condition (1.6), we observe that there exists a positive constant C0 such that

∂tε ≤ ∆ε +M. | ∇ε |+ C0

T − t
ε in Q× (0, t0).

Let W (t) be the solution of the following ODE

W ′(t) =
C0W (t)

T − t
for t ∈ (0, t0), W (0) = ∥φ0 −u0∥∞.

When we solve the above ODE, we observe that its solution W (t) is given explicitly by

W (t) = TC0∥φ0 −u0∥∞(T − t)−C0 for t ∈ [0, t0).

On the other hand, an application of the maximum principle renders

ε(x, t)≤W (t) =C1∥φ0 −u0∥∞(T − t)−C0 in Q× [0, t0),

where C1 = TC0 . Fix a a positive constant and let t1 ∈ (0,T ) be a time such that ∥ε(·, t1)∥∞ ≤
C1∥φ0 −u0∥∞(T − t1)−C0 = a for h small enough. This implies that

T − t1 =
(

C1∥φ0 −u0∥∞

a

) 1
C0

. (3.2)

Making use of Remark 2.1 and the triangle inequality, it is easy to see that

|Th − t1| ≤
F(∥φ(·, t1)∥∞)

A
≤ F(∥φ(·, t1)∥∞ +∥ε(·, t1)∥∞)

A
.

Since ∥ε(·, t1)∥∞ ≤ a and due to the fact that the function F : [0,∞)→ [0,∞) is non-decreasing,
we infer from Theorem 2.2 that

|Th − t1| ≤
1
A

F(H(T − t1)+a). (3.3)

Having in mind that H is the inverse of F, we deduce that H : [0,∞) → [0,∞) is also non-
decreasing. We recall that lims→∞ F(s) = ∞, which implies that lims→∞ H(s) = ∞. Introduce
the function ψ defined as follows

ψ(x) = H(x(T − t1)), x ∈ [0,∞).

It is clear that ψ(x) is non-decreasing for x ∈ [0,∞). In addition limx→∞ ψ(x) = ∞. According
to the fact that ψ(1)+ a belongs to (0,∞), we conclude that there exists a positive constant C2

such that ψ(1)+a ≤ ψ(C2), which implies that H(T − t1)+a ≤ H(C2(T − t1)). Recalling that
F(x) is non-decreasing for x ∈ [0,∞), we deduce that 1

A F(H(T − t1)+a)≤ 1
A F(H(C2(T − t1))).

Exploiting the above inequality and (3.3), we find that

|Th − t1| ≤
1
A

F(H(C2(T − t1))) =
C2

A
|T − t1|. (3.4)

Trends Comput. Appl. Math., 26 (2025), e01776
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We deduce from (3.4) and the triangle inequality that

|T −Th| ≤ |T − t1|+ |Th − t1| ≤ |T − t1|+
C3

A
|T − t1|,

which leads us, using equality (3.2) to

|T −Th| ≤ (1+
C2

A
)

(
C1∥φ0 −u0∥∞

a

) 1
C0

.

Which ends the proof. □
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