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ABSTRACT. This paper proposes a family of line–search methods to deal with weighted orthogonal pro-
crustes problems. In particular, the proposed family uses a search direction based on a convex combination
between the Euclidean gradient and the Riemannian gradient of the cost function. The non–monotone line–
search of Zhang and Hager, and an adaptive Barzilai–Borwein step–size are the chosen tools, in order to
speed up the convergence of the new family of methods. One of the extremes of that convex combination
is reduced to well–known spectral projected gradient method, while the another one can be interpreted
as a Riemannian steepest descent method. To preserve feasibility of all the iterates, we use a projection
operator based on the singular value decomposition, which can be computed efficiently via the spectral de-
composition of an appropriate matrix. In addition, we prove that the entire uncountable collection of search
directions satisfies a descent condition. Some numerical experiments are provided in order to demonstrate
the effectiveness of the new approach.

Keywords: continuous optimization, constrained optimization, Stiefel manifold, procrustes analysis,
projected gradient method.

1 INTRODUCTION

In this paper, we consider the following equality constrained least–square problem

min
X∈Rm×n

1
2
∥AXC−B∥2

F , subject to X⊤X = I, (1.1)

where n≤m, A∈Rp×m, B∈Rp×q and C ∈Rn×q are three given data matrices. This optimization
problem is known as the weighted orthogonal procrustes problem (WOPP) [21, 23]. The set
formed by the constraints, that is St(m,n) := {X ∈Rm×n : X⊤X = I} is called the Stiefel manifold
[6]. The Stiefel manifold is a compact set, which guarantees that (1.1) has at least a global
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2 SOLVING WOPP VIA A PROJECTED GRADIENT METHOD

optimum. This set can be regarded as an embedded Riemannian sub–manifold of Rm×n with
dimension equals to mn− 1

2 n(n+1), see [1].

The optimization model (1.1) has many applications such as, body rigid movements [22], psy-
chometry [9], global positioning system [3] and trace minimization [24]. In addition, some di-
mension reduction techniques very useful in statistical pattern recognition such as laplacean
eigenmaps, locality preserving projections, orthogonal neighborhood preserving projection,
orthogonal locality preserving projections can be posed as problem (1.1), for details see [11].

Some special cases of the non–convex quadratic optimization problem with quadratic equality
constraints (1.1) have closed expressions for their solution. In particular, if B= 0 and C = In,q (i.e.
the rectangular diagonal matrix with diagonal entries equal one) then any global solution corre-
spond to a matrix X∗ whose columns span the eigenspace of A⊤A associated with the n–smallest
eigenvalues of A⊤A, and the optimal value is 0.5∥AX∥2

F = (∑n
i=1 λi)/2, where λ1 ≤ λ2 ≤ ·· ·λm

denotes the eigenvalues of A⊤A. In addition, if C = In,q, and m = n then the optimization prob-
lem (1.1) is known as the orthogonal procrustes problem (OPP) [21, 23, 28] or also balanced
procrustes problem [28] and an explicit solution can be derived by using the singular value de-
composition (SVD) of B⊤A, [21, 23]. The general case when C = In,q, and n < m is known as
unbalanced procrustes problem [28]. Unfortunately, both the unbalanced procrustes problem and
the weighted version of the orthogonal procrustes problem, i.e. the optimization model (1.1) do
not have closed expressions for their solutions. Moreover, compute a solution of the more general
problem (1.1) is a costly task, due to the non–linearity and non–convexity of the constraints set
St(m,n), which may generate that the WOPP problem have multiple local or global solutions. In
fact, Viklands in [23] conjectured that the WOPP problem has at most 2n unconnected minima.
Therefore, a solution is possible only computationally by using an iterative procedure. There
are several iterative algorithms, in the literature, that can be used to solve the problem (1.1),
see [8, 13, 15, 16, 18, 20, 25, 29]. The vast number of applications of the optimization prob-
lem (1.1) and the difficulty to solve it motivates the design of new iterative methods to obtain
approximations of at least its local minimizers.

In this paper, we develop a new iterative algorithm to tackle the optimization problem (1.1). In
particular, we design a new projected gradient–type method, which uses a search direction based
on a convex combination between the Euclidean gradient and the Riemannian gradient of the
quadratic cost function. To improve the efficiency of the method, we consider a self–adaptive step
size based on the Barzilai–Borwein step sizes, in combination with an inaccurate non-monotone
line–search. In order to preserve the feasibility of all the iterates, we use the standard projection
operator on the Stiefel manifold. Finally, we present some numerical experiments to illustrate the
efficacy and fast convergence of the new approach.

This paper is organized as follows. In the next section, we present some notations and tools
necessary for a good understanding of this paper. In subsection 2.1, we establishes the first–
order necessary optimality conditions corresponding with (1.1). Section 3 exhibits our proposed
algorithm, and comment its convergence properties. Section 4 presents some numerical results.
Finally, we provide the conclusions in Section 5.

Trends Comput. Appl. Math., 25 (2024), e01786
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HARRY OVIEDO and SHADAY GUERRERO-FLORES 3

2 NOTATIONS AND TOOLS

In the rest of the present manuscript, we say that W ∈Rn×n is skew–symmetric if W =−W⊤. The
expression Mn(Rm×n) will be denote the following set Mn(Rm×n) := {X ∈ Rm×n : rank(X) =

n}, where rank(X) denotes the rank of the matrix X . The objective function of problem (1.1)
will be denoted by F (X) := 1

2∥AXC−B∥2
F . The trace of X is defined as the sum of the diagonal

elements which we denote by tr[X ]. The Frobenius inner product of two matrices A,B ∈Rm×n is
given by ⟨A,B⟩ :=∑i, j ai jbi j = tr[A⊤B]. It is well–known that this inner product induces the norm
of Frobenius norm ∥A∥F =

√
⟨A,A⟩. Let F :Rn×p→R be a differentiable function, we denote by

∇F(X) = ( ∂F(X)
∂Xi j

) the matrix of partial derivatives of F (the Euclidean gradient of F). By a simple

calculation on the objective function of the problem (1.1) we have ∇F (X) = A⊤(AXC−B)C⊤,
for all X ∈ Rm×n. Additionally, the directional derivative of F along a given matrix Z at X is
defined by:

DF(X)[Z] := lim
t→0

F(X + tZ)−F(X)

t
= ⟨∇F(X),Z⟩. (2.1)

The tangent space TX St(m,n) of the Stiefel manifold at X ∈ St(m,n) is given by

TX St(m,n) = {Z ∈ Rm×n : Z⊤X +X⊤Z = 0}.

The orthogonal projection operator onto the Stiefel manifold is defined by the following
constrained optimization problem

π(X) = arg min
P∈St(m,n)

∥X−P∥F .

The proposition below shows that π : Mn(Rm×n)→ St(n, p) is a well–defined function, and also
provides us with an exact formula to evaluate this projection operator.

Proposition 1. Let X ∈ Rm×n be a rank n matrix. Then, π(X) is well defined. Moreover, if the
singular value decomposition of X is X = UΣV⊤, then π(X) = UIm,nV⊤, where Im,n ∈ Rm×n is
the rectangular diagonal matrix with diagonal entries equal one.

Proof. This result can also be found in [13]. In order to make this manuscript self–contained, we
briefly write the proof here. Let X ∈ Rm×n be a rank n matrix. Let us suppose that X =UΣV⊤ is
the singular value decomposition of X . Since the Frobenius norm is invariant under orthogonal
transformations, we have

arg min
P∈St(m,n)

∥X−P∥F ≡ arg min
Q∈St(m,n)

∥Σ−Q∥F . (2.2)

Hence, it is enough to prove that Q∗ = Im,n is the only solution of the following Stiefel manifold
constrained optimization problem

min
Q∈St(m,n)

∥Σ−Q∥2
F . (2.3)

Trends Comput. Appl. Math., 25 (2024), e01786
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4 SOLVING WOPP VIA A PROJECTED GRADIENT METHOD

In view of the definition of the Frobenius norm, we have ∥Σ−Q∥2
F = tr[(Σ−Q)⊤(Σ−Q)] =

p + tr[Σ⊤Σ]− 2tr[Σ⊤Q]. This relation indicates that solving (2.3) is equivalent to solve the
maximization problem presented below

max
Q∈St(m,n)

tr[Σ⊤Q]. (2.4)

Now, let us denote by σi j and qi j the elements (i, j) of the matrices Σ and Q respectively. Notice
that if Q ∈ St(m,n) is any matrix on the Stiefel manifold then q2

j j ≤∑
m
i=1 q2

i j = ∥q j∥2
2 = 1, where

q j denotes the j–th column of Q. Using this result, and the fact that the matrix Σ is diagonal, we
arrive at

tr[Σ⊤Q] =
n

∑
j=1

σ j jq j j ≤
n

∑
j=1

σ j j|q j j| ≤
n

∑
j=1

σ j j = tr[Σ⊤Im,n], ∀Q ∈ St(m,n). (2.5)

From (2.5), we conclude that Im,n is a global solution of problem (2.4), and consequently it is also
a global solution of (2.2). Now, by contradiction, suppose that there exists a matrix Q ∈ St(m,n)
such that Q ̸= Im,n and tr[Σ⊤Q] = tr[Σ⊤Im,n]. This last condition implies that

0 = tr[Σ⊤Q]− tr[Σ⊤Im,n] = tr[Σ⊤(Q− Im,n)] =
n

∑
j=1

σ j j(q j j−1). (2.6)

Since rank(X) = n then it must be verified that σii > 0, for all i ∈ {1, . . . ,n}. In addition, since
|q j j| ≤ 1, for all j, and σ j j > 0, for all j; then the equality (2.6) leads to q j j = 1, for all j.
However, Im,n is the unique matrix on the Stiefel manifold with diagonal elements equals one.
Thus Q = Im,n, which is a contradiction. This last fact demonstrates that Im,n is the unique global
solution to (2.2). □

Remark 2. In view of n≤ m, we can compute the projection π(X) efficiently using the spectral–
decomposition based SVD computation. Particularly,

π(X) = XV D−1/2V⊤,

where V ∈ Rn×n is an orthogonal matrix and D is a diagonal matrix satisfying the spectral
decomposition X⊤X = V DV⊤. This strategy is suggested in [7] to save computations in the
calculation of SVD factorizations.

2.1 The Karush–Khun–Tucker conditions

The Lagrangian function related to the optimization problem (1.1) is

L (X ,Λ) = F (X)− tr[Λ⊤(X⊤X− Ip) ], (2.7)

where Λ is the Lagrange multipliers matrix (the dual variable), which is symmetric because the
constraint X⊤X is also symmetric. By computing the derivative of L (X ,Λ) with respect to X
and Λ, we obtain the Karush–Khun–Tucker conditions for problem (1.1):

∇XL (X ,Λ)≡ ∇F (X)−2XΛ = 0, (2.8)

Trends Comput. Appl. Math., 25 (2024), e01786
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∇ΛL (X ,Λ)≡ X⊤X− Ip = 0. (2.9)

Notice that if (X ,Λ) is any critical point of the Lagrangian function then by multiplying by X⊤

in both side of equation (2.8) and using (2.9), we have an analytical formula for the dual variable
Λ

Λ =
1
2

X⊤∇F (X) =
1
2

∇F (X)⊤X , (2.10)

where the last equality is obtained from the symmetry of the Lagrange multiplier matrix.

The following proposition provides us with an important tool to identify critical points of
Lagrangian function.

Proposition 3. Let X ∈ St(m,n) be any orthogonal matrix satisfying that (1−θ)∥∇F (X)∥2
F +

θ∥W (X)∥2
F = 0, for a given θ ∈ [0,1], where W : Rm×n → Rm×m is the function defined by

W (X) = ∇F (X)X⊤ − X∇F (X)⊤. Then there exists Λ ∈ Rn×n such that the pair (X ,Λ) is
stationary point of the Lagrangian function.

Proof. Let us assume that X̄ ∈ St(m,n) is a matrix such that (1−θ)∥∇F (X̄)∥2
F +θ∥W (X̄)∥2

F =

0, for some θ ∈ [0,1]. Since X ∈ St(m,n) then the second condition (2.9) holds. Thus it is enough
to prove that (2.8) is also satisfied for some Lagrange multiplier. In fact, notice that if θ = 0 then
the hypothesis implies that ∇F (X̄) = 0. In this case, we have directly that the point (X̄ , Λ̄) =

(X̄ ,0) verifies the condition (2.9). Now, if 0 < θ ≤ 1 then the equality (1− θ)∥∇F (X̄)∥2
F +

θ∥W (X̄)∥2
F = 0 leads to W (X̄) = 0. Hence, by selecting Λ̄ = 1

2 ∇F (X̄)⊤X̄ , we arrive at

∇F (X̄)−2X̄Λ̄ = ∇F (X̄)− X̄∇F (X̄)⊤X̄

= ∇F (X̄)X̄⊤X̄− X̄∇F (X̄)⊤X̄

=
(

∇F (X̄)X̄⊤− X̄∇F (X̄)⊤
)

X̄

= W (X̄)X̄ = 0,

which means that the pair
(
X̄ , Λ̄

)
=

(
X̄ , 1

2 ∇F (X̄)⊤X̄
)

solve the equation (2.9). Therefore the
proposition is proved. □

Remark 4. Let X ∈ St(m,n) be an arbitrary matrix. If we equip the Stiefel manifold with the
Riemannian metric given by

⟨ξX ,ηX ⟩c := tr
[

ξ
⊤
X

(
I− 1

2
XX⊤

)
ηX

]
, ∀ξX ,ηX ∈ TX St(m,n),

then the matrix W (X)X reduces to the Riemannian gradient of the cost function F (·), for an
entire description about this fact see [1, 6].

In the next section, we will introduce a new projected line–search method whose search direction
is inspired by the convex combination of the matrices involved in Proposition 3. Furthermore,
Proposition 3 will be important to ensure the global convergence of our proposed method.

Trends Comput. Appl. Math., 25 (2024), e01786
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6 SOLVING WOPP VIA A PROJECTED GRADIENT METHOD

3 A NEW GRADIENT PROJECTION METHOD

Now, we introduce our iterative algorithm to deal with the optimization problem (1.1). However,
the approach presented below can also be used to minimize any smooth function on the Stiefel
manifold. Since we have available a projection operator on the feasible set of problem (1.1),
then the family of projected line–search methods become an interesting alternative for solving
(1.1). In particular, the projected line–search methods construct a sequence of feasible points
{Xk} ⊂ St(m,n) through the following recursive scheme

Xk+1 = π(Xk +αkZk), (3.1)

where αk > 0 represents the step–size, and Zk must be some descent direction for F (·) at Xk.

From Proposition 1, we known that the function π(X) is well defined if and only if X ∈ Rm×n is
a full rank matrix. Now, observe that

Y (α)≡ (Xk +αZk)
⊤(Xk +αZk) = I +α(X⊤k Zk +Z⊤k Xk)+α

2Z⊤k Zk. (3.2)

Since Y (0) = I is positive definite, then it follows from the continuity of the quadratic function
Y (α) that there must exists an interval Ik = [0,αmax

k ], with αmax
k > 0 such that Y (α) = (Xk +

αZk)
⊤(Xk +αZk) is positive definite, for all α ∈ Ik. This last relation implies that rank(Xk +

αZk) = n, for every α ∈Ik. Therefore, we can always project Xk +αkZk uniquely over St(m,n)
if the step–size is small enough.

A natural idea for the search direction in (3.1), is to select Zk as the negative of the gradient of the
objective function that is Z1

k =−∇F (Xk), since this direction gives rise to a successful and very
efficient method called spectral projected gradient method [4, 5], which was originally designed
to minimize smooth functions on convex and closed sets, but it was later extended to minimize
continuously differentiable functions on arbitrary closed domains [8]. On the other hand, the
equations (2.8) and (2.10) suggest the search direction Z2

k = −
(
∇F (Xk)−Xk∇F (Xk)

⊤Xk
)
=

−W (Xk)Xk, which is closely related to the gradient of the Lagrangian function with respect to
the primal variable. In order to take advantage of these two directions, we propose to select Zk as
the following weighed sum

Zk = −[(1−θk)∇F (Xk)+θkW (Xk)Xk]

= −∇F (Xk)+θk Xk∇F (Xk)
⊤Xk, (3.3)

where {θk} ⊂ [0,1] is any convergent sequence of non–negative real numbers such that
limk→∞ θk = θ ∈ [0,1]. Notice that Zk is a convex combination of Z1

k and Z2
k . The lemma below

indicates that (3.3) is indeed a descent direction for F at Xk.

Lemma 1. The search direction Zk ∈Rm×n defined in (3.3) is a descent direction for F (·) at Xk.
In particular, we have

DF (Xk)[Zk] =−(1−θk)∥∇F (Xk)∥2
F −

θk

2
∥W (Xk)∥2

F < 0.

Trends Comput. Appl. Math., 25 (2024), e01786
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Proof. By using the trace properties an the feasibility of Xk, we have

DF (Xk)[Zk] = tr[∇F (Xk)
⊤(−(1−θk)∇F (Xk)−θkW (Xk)Xk )]

= −(1−θk)∥∇F (Xk)∥2
F −

θk

2
tr[2∇F (Xk)

⊤W (Xk)Xk]

= −(1−θk)∥∇F (Xk)∥2
F −

θk

2
tr[2∇F (Xk)

⊤(∇F (Xk)X
⊤
k −Xk∇F (Xk)

⊤)Xk]

= −(1−θk)∥∇F (Xk)∥2
F −

θk

2

(
2∥∇F (Xk)∥2

F −2tr[∇F (Xk)
⊤Xk∇F (Xk)

⊤Xk]
)

= −(1−θk)∥∇F (Xk)∥2
F −

θk

2
(2∥∇F (Xk)∥2

F − tr[Xk∇F (Xk)
⊤Xk∇F (Xk)

⊤]

−tr[∇F (Xk)X
⊤
k ∇F (Xk)X

⊤
k ])

= −θk

2
tr[(Xk∇F (Xk)

⊤−∇F (Xk)X
⊤
k )(∇F (Xk)X

⊤
k −Xk∇F (Xk)

⊤)]

−(1−θk)∥∇F (Xk)∥2
F

= −(1−θk)∥∇F (Xk)∥2
F −

θk

2
∥W (Xk)∥2

F , (3.4)

which completes the proof. □

Lemma 1 guarantees that we will be able to decrease the value of the objective function through-
out the iterations. In addition, note that if we select θk = 1 then the update scheme (3.3)–(3.1)
reduces to the Riemannian steepest descent method (RSD) proposed by Manton in [13], while if
we choose θk = 0 then we recover the spectral gradient projection method (SPG), (see equation
(2.5) in [10]). Therefore, the convex combination (3.3) constitutes a unified framework that incor-
porates the SPG and RSD methods in the extreme values of the parameter θk, while the interme-
diate values θk ∈ (0,1) correspond to new non–Riemannian gradient type methods. In general,
the approach (3.1)–(3.3) defines a non–countable family of effective projected gradiente–type
methods for the solution of problem (1.1).

Example 3.1. Now we present an example to illustrate the numerical behavior of our up-
date scheme by considering θk = θ constant along the iterations but using several values
of θ . In this example, the WOPP problems are generated by the following Matlab com-
mands: randn(′seed′,5); A = diag(diag(ones(m)/sqrt(n))); B = rand(m,n)/sqrt(m); C =

eye(n); and [X0,∼] = qr(randn(m,n),0). In addition, we set m = 100, n = 10 and ε = 1e-
5. We solve this toy experiment with our porposed iterative scheme given by (3.1)–(3.3), for
θ ∈ {0,0.25,0.5,0.75,1}. The convergence behavior of the logarithm of the gradient norm
log(∥∇F (X)∥F) along the iteration is presented in Figure 1. In this figure, we note that the
performance of the Algorithm 1 changes for different values of θ .

On the other hand, we have not yet explained how we determine the scalar αk > 0 in our de-
veloped projected line–search procedure (3.1)–(3.3). In practice, we employ a non–monotone
globalization strategy combined with an adaptive Barzilai–Borwein step–size. It is well–known
that the Barzilai–Borwein [2, 19] step–sizes (BB–steps) can greatly speed up the convergence of

Trends Comput. Appl. Math., 25 (2024), e01786



i
i

“1786” — 2024/10/23 — 18:26 — page 8 — #8 i
i

i
i

i
i

8 SOLVING WOPP VIA A PROJECTED GRADIENT METHOD

Figure 1: Behavior of the Algorithm 1 varying θ . The y–axis represents the logarithm of the
gradient norm, that is log(∥∇F (Xk)−Xk∇F (Xk)

⊤Xk∥F)

the gradient–type methods, without increasing the computational cost too much. In view of these
numerical advantages, we use the recently published cyclic delayed weighted steplength [17]

α
ACSDMG
k =

{
min

{
αCSDMG

i : i ∈S m
k

}
if αCSDMG

k < καBB1
k

αCSDMG
k otherwise,

(3.5)

where S m
k = {max{1, . . . ,k−m}, . . . ,k}, m ∈ N, κ ∈ (0,1) and αCSDMG

k is given by

α
CSDMG
k = α

BB2
k

(
(1−µ)αBB1

k +2µ

(1−µ)αBB2
k +2µ

)
. (3.6)

where µ ∈ [0,1] is a fixed value. In addition, in (3.6) the parameters αBB1
k and αBB2

k refer to the
classical Brazilai–Borwein step–sizes [2], i.e.

α
BB1
k =

∥Sk−1∥2
F

| tr[S⊤k−1Yk−1] |
and α

BB2
k =

| tr[S⊤k−1Yk−1] |
∥Yk−1∥2

F
, (3.7)

where Sk−1 = Xk − Xk−1 and Yk−1 = ∇F (Xk) − ∇F (Xk−1). Because the inner product
tr[S⊤k−1Yk−1] can be equal to zero (or very close to zero); or it can even be very large, we will
consider the following safeguard to avoid numerical errors

α̂
ACSDMG
k = max{min{αACSDMG

k ,αM},αm},

where 0 < αm ≤ αM < 1e16 are two global parameters chosen by the user. In addition, since the
BB–type step–sizes do not necessary guarantee descent of the cost function along the iterative
process, these step–sizes are generally used in combination with some globalization technique

Trends Comput. Appl. Math., 25 (2024), e01786
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Algorithm 1 Gradient projection method
Require: X0 ∈ St(n, p), α > 0, 0 < αm ≤ αM , η ∈ [0,1), µ,κ,ρ1,ε,δ ∈ (0,1), m ∈ N, Q0 = 1,

C0 = F (X0), k = 0.
Ensure: X∗ an ε–KKT point.

1: while ∥∇F (Xk)−Xk∇F (Xk)
⊤Xk∥F > ε do

2: Select θk ∈ [0,1].
3: Zk =−∇F (Xk)+θk Xk∇F (Xk)

⊤Xk.
4: while F (π(Xk +αZk))>Ck +ρ1αDF (Xk)[Zk] do
5: α = δα ,
6: end while
7: Xk+1 = π(Xk +αZk).
8: Qk+1 = ηQk +1 and Ck+1 = (ηQkCk +F (Xk+1))/Qk+1.
9: Choose α = αACSDMG

k+1 with αACSDMG
k+1 according to (3.5).

10: α = max(min(α,αM),αm).
11: k← k+1.
12: end while
13: X∗ = Xk.

in order to ensure the global convergence. For this end, we use the non–monotone globalization
technique proposed by Zhang and Hager in [26]. The above description leads us to Algorithm 1.

It follows from Lemma 1 and Proposition 3 that the sequence of search directions {Zk} generated
by Algorithm 1 is a sequence of gradient–related directions (see Definition 4.2.1 in [1]), hence if
we set η = 0 (in this case the Zhang–Hager condition is reduced to the Armijo rule [12]) then we
can repeat the steps of the proof of Theorem 4.3.1 and Corollary 4.3.2 that appear in [1] to obtain
the global convergence of our proposal. Similarly, to derive the global convergence of Algorithm
1 for the case η ∈ (0,1), we can replicate the steps of the proofs of Lemma 2 and Theorem 1 that
appear in [14].

Now let us consider the particular case of (1.1) when C = In is the n-by-n identity matrix and
A ∈ Rm×m is a square matrix, that is, let us consider the following problem

min
X∈Rm×n

1
2
∥AX−B∥2

F , subject to X⊤X = I, (3.8)

where B is a known real matrix of correct dimensions. This problems is known as “unbalanced
orthogonal procrustes problem” (OPP), [23, 27, 28]. In general, this problem does not have an
analytical solution, except in the case when m = n, see [21, 23, 28]. However, if A is positive
definite matrix then we can derive a problem similar to (3.8) with closed–form solution.

Lemma 2. Let A ∈ Rm×m be a positive definite matrix, B ∈ Rm×n. Let us consider the the non–
convex constrained optimization problem

min
X∈Rm×n

1
2
∥AX−B∥2

A−1 , subject to X⊤X = I, (3.9)

Trends Comput. Appl. Math., 25 (2024), e01786



i
i

“1786” — 2024/10/23 — 18:26 — page 10 — #10 i
i

i
i

i
i

10 SOLVING WOPP VIA A PROJECTED GRADIENT METHOD

where ∥P∥A−1 :=
√

tr[P⊤(AA⊤)−1P] = ∥A−1P∥F , for any P ∈ Rm×n. Then, the global solu-
tion of (3.9) is X̂ = π(A−1B) = UIm,nV⊤, where A−1B = UΣV⊤ represents the singular value
decomposition of A−1B.

Proof. Let H(X) = 1
2∥AX−B∥2

A−1 be the cost function of (3.9). Notice that

H(X) =
1
2

tr[(AX−B)⊤(AA⊤)−1(AX−B)]

=
1
2

tr[(AX−B)⊤A−⊤A−1(AX−B)]

=
1
2

tr[(X⊤−B⊤A−⊤)(X−A−1B)]

=
1
2

tr[(X−A−1B)⊤(X−A−1B)]

=
1
2
∥X−A−1B∥2

F . (3.10)

So, the optimization problem (3.9) is equivalent to

min
X∈St(m,n)

1
2
∥X−A−1B∥2

F .

Thus, by applying Proposition 1, we have that the global minimizer of (3.9) is X̂ = π(A−1B),
completing the proof. □

It follows from the lemma above that if we replace the Frobenius norm in (3.8) by the ∥ · ∥A−1

then the new procrustes problem has an analytical solution. This result can be used to initialize
Algorithm 1 with the point X0 = π(A−1B), for the case when A is positive definite and C is the
identity matrix.

4 COMPUTATIONAL EXPERIMENTS

In order to give further insight into the Algorithm 1, we present some numerical comparisons.
For benchmarking, we compare our method with the Riemannian gradient method based on the
Cayley transform OptSt developed in [25]1, the Riemannian steepest descent method (Manton–
SD) introduced by Manton in [13], and the Riemannian conjugate gradient methods Algor.1a and
Algor.1b proposed in [29]2. All the experiments have been performed on a intel(R) CORE(TM)
i7-4770, CPU 2.20 GHz with 1TB HD and 16GB RAM. The algorithm was coded in Matlab
(version 2017b).

In this section, Time, Nfe, Nitr and Grad will denote the averaged total computing time in
seconds, the average number of function evaluations, the average number of iterations, the
averaged residual ∥∇F (X∗)∥F where X∗ is the optimum estimated by each method, respec-
tively. In addition, we stop the methods if one of the following conditions holds: (i) k ≥ N; (ii)

1The OptSt Matlab code is available in https://github.com/wenstone/OptM
2The Riemannian conjugate gradient methods Algor.1a, Algor.1b and Algor.1b+ZH can be downloaded from http:

//www.optimization-online.org/DB_HTML/2016/09/5617.html

Trends Comput. Appl. Math., 25 (2024), e01786
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∥∇F (Xk)−Xk∇F (Xk)
⊤Xk∥F ≤ ε , where the values of N and ε will be specificated for each

experiment. In our Algorithm 1, we set αm = 1e-15, αM = 1e+15, ρ1 = 1e-4, η = 0.85, δ = 0.2,
(m,κ) = (9,0.8) and µ ≡ µk = (k+1)/(k+2) varying along the iterations.

For the first experiment, we consider the following optimization problem

min
x∈Rn

x⊤Lx, s.t. x⊤x = 1, (4.1)

where L ∈ Rn×n is a symmetric matrix. Problem (4.1) can be seen as a particular version of
problem (1.1) obtained by substituting C = 1 and B = (0,0, . . . ,0)⊤ in (1.1); and considering
the identification L = A⊤A. It is well–known that the global solution of (4.1) corresponds to the
eigenvector associated with the smallest eigenvalue of L. In fact, problem (4.1) is equivalent to
minimizing the Rayleigh quotient of L. For this experiment, we solve (4.1) for the following 20
values of n, n ∈ {500,1000,1500, . . . ,9500,10000}. In order to make this experiment replicable,
we construct the matrix L as the discrete Laplacian operator, generated with the following Matlab
command L = gallery(′tridiag′,n,−1,2,−1), and the initial vector x0 ∈ Rn is chosen as x0 =

v/∥v∥2, where v = (1,2,3, . . . ,n)⊤. In this computational study, we use N = 15000, choose ε =

1e-6; and θk = k/(k + 1) in our algorithm. The accuracy of the computed eigenvalue and its
associated eigenvector of L are measured by using the absolute error

error= ∥Lx̂− (x̂⊤Lx̂)x̂∥2,

and the absolute residual in the objective value

residual=| f (x̂)−λmin |,

where x̂ denote the estimated solution of (4.1) obtained by each method, and λmin is the smallest
eigenvalue of L.

Table 1 summarizes the average values Time, Nfe, Nitr and Grad obtained by every method.
As shown in Table 1, the most efficient methods in terms of computational time and number of
iterations are Algorithm 1 and the Riemannian gradient method proposed by Manton in [13]. In
Figure 2, we show the absolute error and the absolute residual for each method and for each value
of n. From Figure 2, we can see that all the methods obtain the global solution of problem (4.1),
for all the considered values of n, with the pre–established precision. Furthermore, we observe
that Algorithm 1 converges to the solution faster than the Riemannian conjugate gradient methods
Algor.1a and Algor.1b.

Our second experiment was taken from [20]. Let n = q, p = m, A = PSR⊤ and C = QΛQ⊤,
where P,Q and R are orthogonal matrices randomly generated such that Q ∈Rn×n, R,P ∈Rm×m,
Λ ∈ Rn×n is a diagonal matrix with entries generated from a uniform distribution in the range
[ 1

2 ,2] and S is a diagonal matrix defined for each type of problem, see below for details. When
not specified, the entries of the matrix were generated using the standard Gaussian distribution.
The matrix B was randomly generated with entries follow a normal standard distribution. Finally,
for the different tested problems the diagonal matrix S is described below.

Trends Comput. Appl. Math., 25 (2024), e01786
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12 SOLVING WOPP VIA A PROJECTED GRADIENT METHOD

Table 1: Numerical results computing the smallest eigenvalue of tridiagonal matrices.

Method Nitr Nfe Time Grad
Manton–SD 3790.1 3894.2 0.51 9.87e-7
Algor.1a (CG) 12821.0 12854.0 3.16 9.65e-7
Algor.1b (CG) 12971.0 12971.0 3.12 9.71e-7
Algorithm 1 3530.7 3634.2 0.37 9.85e-7

(a) Residuals (b) Errors

Figure 2: The residuals of the computed eigenvalues (a) and the corresponding absolute errors
(b), of a tridiagonal matrix. The y–axis is in logarithmic scale.

Structure 1: The diagonal elements of S were generated by a normal distribution in the interval
[10,12].

Structure 2: The diagonal of S is given by Sii = i+2ri, where ri was a random number uniformly
distributed in the interval [0,1].

Structure 3: Each diagonal element of S was generated as follows: Sii = 1+ 99(i−1)
m+1 +2ri, with

ri uniformly distributed in the interval [0,1].

In this experiment, we use N = 50000 and choose ε = 1e-6; and θk = 1/(k+9) for our algorithm.
For all experiments, we randomly generate the starting point X0 using the following Matlab com-
mand [X0,∼] = qr(randn(n, p),0). In all the experiments, we solve 10 independent instances
for the different values of (n, p) and then we report the average values Time, Nfe, Nitr and Grad.
The numerical results concerning this test are contained in Table 2. From Table 2, we can see that
all the methods obtain an approximated solution with the required precision. In addition, we note
that our procedure obtains competitive results compared to the existing methods in the literature.
Finally, we notice that the most efficient methods, in terms of computational time, were the OptSt
method and our Algorithm 1.

Trends Comput. Appl. Math., 25 (2024), e01786
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Table 2: Numerical results on weighted orthogonal procrustes problems.

Method Nitr Nfe Time Grad Nitr Nfe Time Grad
Structure 1 with n = 500 and p = 70 Structure 1 with n = 1000 and p = 100

OptSt 37.4 38.4 0.12 6.40e-6 37.0 39.0 0.35 5.68e-6
Algor.1a (CG) 43.6 46.6 0.17 7.16e-7 40.9 43.1 0.53 6.97e-7
Algor.1b (CG) 34.0 36.0 0.12 6.90e-7 44.7 47.4 0.56 8.14e-7
Algorithm 1 31.2 34.2 0.07 6.58e-6 34.2 35.2 0.31 6.23e-6

Structure 2 with n = 100 and p = 50 Structure 2 with n = 100 and p = 100
OptSt 2942.5 3112.0 1.87 1.94e-6 2290.7 2494.0 1.96 8.41e-6
Algor.1a (CG) 4640.5 7735.2 6.00 1.07e-3 3033.5 4870.1 9.94 7.85e-7
Algor.1b (CG) 4488.8 7453.7 5.00 1.48e-4 3440.5 5607.5 8.97 8.49e-7
Algorithm 1 2293.8 2434.0 1.11 9.24e-6 2275.6 2377.1 2.51 9.55e-6

Structure 3 with n = 300 and p = 20 Structure 3 with n = 1000 and p = 100
OptSt 3397.2 3556.5 1.78 9.10e-6 957.4 999.5 2.56 8.42e-6
Algor.1a (CG) 6741.9 11863.0 5.93 2.55e-4 1136.5 1869.5 3.32 9.12e-7
Algor.1b (CG) 7289.0 12784.0 5.92 1.13e-3 1134.2 1876.3 3.35 8.61e-7
Algorithm 1 2865.8 3010.5 0.97 8.93e-6 751.4 789.7 1.41 9.21e-6

5 CONCLUDING REMARKS

In the present work, we have proposed a novel feasible line–search algorithm for solving a class
of linear least–square optimization problems on the Stiefel manifold. In particular, we have in-
troduced a projected gradient–type method with mixed direction, which uses the non–monotone
globalization strategy of Zhang and Hager combine with an alternate Barzilai-Borwein step–size.
All operations are performed with matrices to preserve the structure of the problem and avoiding
vectorization. The search direction used by our method involves the Riemannian gradient in or-
der to exploit the geometric information of the Stiefel manifold. In addition, the search directions
computed by our algorithm were proved to satisfy the sufficient descent condition, which guar-
antees that the method reduces the value of the cost function throughout the iterative process.
A numerical study with problems taken from the literature shows the reliability of adopting this
new approach for solving weighted orthogonal procrustes problems.

Our numerical results show that the new family of methods works very well for any selection of
the parameter θ in the interval [0,1]. But, since θ may be a problem dependent parameter, then
it will remain as future work, to develop and investigate self–adaptive strategies to select this
parameter along the iterative process, possibly using local information of the objective function,
in order to improve the performance of the new collection of methods.
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