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ABSTRACT. A new calculation of Green’s function for Poisson’s equation in plane polar coordinates is
presented. The method consists in first calculating the solution to the simpler problem, but with the same
Green’s function, that is obtained with the homogenization of the boundary conditions and then inferring
Green’s function by comparing this calculated solution with Green’s solution formula. Depending on how
the solution to the simplified problem is calculated, Green’s function may result as an integral or an infinite
series, but it is finally presented in a closed form, because it is possible to calculate the integral or the sum
of this series.

Keywords: Green’s function, Poisson, plane polar coordinates, disc sector, closed form, Dirichlet,
Neumann.

1 INTRODUCTION

This work describes a new calculation of Green’s function for Poisson’s equation in plane polar
coordinates in which it is obtained in closed form. To explain the method, we consider the domain
Ω of the problem to be the disc sector shown in Figure 1 as well as the boundary conditions
to be those indicated there: Dirichlet’s on the rectilinear boundary along the x-axis and on the
circular boundary, and Neumann’s on the other rectilinear boundary. This problem is formulated
as follows:

∇
2u(r,θ) =

∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = h(r,θ), r ∈ (0,b), θ ∈ (0,γ) ; (1.1a)

u(r,0) = f0(r), r ∈ [0,b) ; (1.1b)

∂u
∂θ

(r,γ) = gγ(r), r ∈ (0,b) ; (1.1c)

u(b,θ) = fb(θ), θ ∈ [0,γ] ; (1.1d)
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2 CALCULATION OF GREEN’S FUNCTION FOR POISSON’S EQUATION

where the functions f0, fb, gγ , and h are continuous. We want a solution u that is continuous
in Ω ∪ ∂Ω . In this work, we use the following notation: by writing (1.1), we refer to equations
(1.1a)–(1.1d) and therefore to the problem defined by them.

Figure 1: The problem for which Green’s function is calculated in this work: that defined in
equations (1.1a)–(1.1d).

Green’s formula for the solution u(r) = u(r,θ) is as follows:

2πu(r) =−
∫

Ω

G(r|r′)h(r′)dA′−
∫

∂ΩD

∂G
∂n′

(r|r′) f (r′)ds′+
∫

∂ΩN

G(r|r′)g(r′)ds′ , (1.2)

where ∂ΩD is the part of ∂Ω under Dirichlet’s conditions (on which f = f0 when θ = 0 and
f = fb when r = b), ∂ΩN is the part under Neumann’s conditions (on which g = gγ ), and G(r|r′)
is defined as the solution to the problem

∇
′2G(r|r′) =−2πδ (r′− r) , G(r|r′) = 0 for r′∈ ∂ΩD ,

∂G
∂n′

(r|r′) = 0 for r′∈ ∂ΩN . (1.3)

This formulation easily follows from Green’s representation formula (which is a well-established
result in the literature; see, for example, eq. (1.42) in Ref. [10].) Notice, however, that, in order
to get the above eq. (1.2) from that eq. (1.42) in Ref. [10], we need to multiply this equation
by 4π/2π and replace −ρ/ε0 with h, because our problem (1.1) is two-dimensional (and not
tridimensional) and exhibits simply h (instead of −ρ/ε0) in the right-hand side of Poisson’s
equation. A rigorous development of Green’s function method for Poisson’s equation is presented
in Section 2.2.4 of Ref. [7].

The method developed in this work takes advantage of the fact that Green’s function G(r|r′) for
problem (1.1) does not depend on the boundary data formed by the functions f0, fb, gγ , and h.
This statement is a direct consequence of the fact that the definition of Green’s function in (1.3)
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R. T. COUTO 3

does not involve those functions. Then, to calculate G(r|r′), we consider the following simplified
version of problem (1.1), in which all boundary conditions are homogeneous:

∇
2v(r,θ) =

∂ 2v
∂ r2 +

1
r

∂v
∂ r

+
1
r2

∂ 2v
∂θ 2 = h(r,θ), r ∈ (0,b), θ ∈ (0,γ) ; (1.4a)

v(r,0) = 0, r ∈ [0,b) ; (1.4b)

∂v
∂θ

(r,γ) = 0, r ∈ (0,b) ; (1.4c)

v(b,θ) = 0, θ ∈ [0,γ] . (1.4d)

The first step of the method is the calculation of the solution v(r,θ) to the above problem. In
this work, we solve this problem using eigenfunction expansion, and we do it twice, first using
angular eigenfunctions and then radial eigenfunctions.

The second step is the determination of the desired Green’s function G(r|r′) = G(r,θ |r′,θ ′)

[which is the same for both problems (1.1) and (1.4)] from the solution v(r) to problem (1.4)
calculated in the previous step. This is done as follows: Since, according to (1.2), Green’s formula
for the solution v(r,θ) to problem (1.4) is simply given by

v(r,θ) =− 1
2π

∫∫
Ω

G(r|r′)h(r′)dA′

=− 1
2π

∫
γ

0
dθ

′
∫ b

0
dr′ r′ h(r′,θ ′)G(r,θ |r′,θ ′) , (1.5)

it is possible to infer an expression for G(r,θ |r,θ ′) by writing the already calculated solution
v(r,θ) in the form of the double integral on the right side of the above equation. We will see that
this writing is not an automatic task, requiring some artifices in the first step.

A third step is still necessary, because the Green’s function expression obtained in the second
step may involve an integral or an infinite series. We therefore need to evaluate this integral or
the sum of this series to obtain Green’s function in closed form.

In what follows, in Sections 2 and 3, we apply the method outlined above to calculate Green’s
function for problem (1.1) expanded into angular and radial eigenfunctions, respectively. Sec-
tion 4 shows how to compute the sum of the infinite series in the Green’s function expression
calculated in the previous two sections to finally present it in closed form. Section 5 contains a
comparison of this closed-form Green’s function with the one provided by the method of images
for the particular case when γ = π/2. Section 6 briefly exposes the application of the method to
an extra problem. Section 7 ends the body of the paper with final conclusions.

2 THE CALCULATION BASED ON THE ANGULAR EIGENFUNCTIONS

In this section, we perform the first step of the method: the calculation of the solution to problem
(1.4). To this end, we admit that this solution can be expanded into the eigenfunctions Θn(θ) =

sin(nπθ/2γ) (n = 1,3,5 · · ·) {cf. Ref. [2], Sec. 10.1, Prob. 19, p. 595 & 786} that arise when the

Trends Comput. Appl. Math., 25 (2024), e01797
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4 CALCULATION OF GREEN’S FUNCTION FOR POISSON’S EQUATION

separation of variables v(r,θ) = R(r)Θ(θ) is used to solve the version of problem (1.4) in which
h(r,θ) ≡ 0 (Laplace’s equation) and the boundary condition on the circular boundary (at r = b)
is not homogeneous. That is, we admit that

v(r,θ) = ∑
n=1,3,5···

vn(r)sin
nπθ

2γ
. (2.1)

Notice that this expression automatically satisfies the conditions of problem (1.4) on the
boundaries at θ = 0 and θ = γ .

By substituting (2.1) into the partial differential equation of the problem, we get

∑
n=1,3,5···

[
v′′n +

1
r

v′n −
(nπ/2γ)2

r2 vn

]
sin

nπθ

2γ
= h .

This result shows that the terms in brackets for n = 1,3,5 · · · are the coefficients of a generalized
Fourier sine series of the function h ; therefore,

v′′n +
1
r

v′n −
(nπ/2γ)2

r2 vn(r) =
2
γ

∫
γ

0
h(r,θ)sin

nπθ

2γ
dθ ≡ hn(r) . (2.2)

We thus see that vn(r) is the solution to a nonhomogeneous Euler-Cauchy differential equation [9,
Sec. 1.6].

Since the general solution to the associated homogeneous equation is

vHn(r) = c1nrnπ/2γ + c2n/rnπ/2γ ,

a particular solution by the method of variation of parameters [9, Sec. 1.9] has the form

vPn(r) = An(r)rnπ/2γ +Bn(r)/rnπ/2γ , (2.3)

where the functions An(r) and Bn(r) are solutions to the system of equations{
A′

nrnπ/2γ +B′
n/rnπ/2γ = 0

(nπ/2γ)A′
nr(nπ/2γ)−1 − (nπ/2γ)B′

n/r(nπ/2γ)+1 = hn .

Solving it, we get

A′
n(r) =

γhn(r)
nπr(nπ/2γ)−1 ⇒ An(r) =

γ

nπ

∫ r

0

hn(r′)

r′(nπ/2γ)−1 dr′ , (2.4a)

B′
n(r) =−γhn(r)r(nπ/2γ)+1

nπ
⇒ Bn(r) =− γ

nπ

∫ r

0
hn(r′)r′(nπ/2γ)+1dr′ . (2.4b)

Using these results in (2.3), we can write the general solution vHn(r)+ vPn(r) to (2.2) as

vn(r) =
[

c1n +
γ

nπ

∫ r

0

hn(r′)

r′(nπ/2γ)−1 dr′
]

rnπ/2γ

+

[
c2n −

γ

nπ

∫ r

0
hn(r′)r′(nπ/2γ)+1dr′

]
1

rnπ/2γ
. (2.5)

Trends Comput. Appl. Math., 25 (2024), e01797
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R. T. COUTO 5

To determine c1n and c2n, we impose the conditions of the problem, first the one related to
continuity. To prevent (2.5) from becoming infinite when r → 0, it is necessary that

lim
r→0

[
c2n −

γ

nπ

∫ r

0
hn(r′)r′(nπ/2γ)+1dr′

]
= 0 ⇒ c2n = 0 .

With this result, (2.5) becomes

vn(r) =
[

c1n +
γ

nπ

∫ r

0

hn(r′)

r′(nπ/2γ)−1 dr′
]

rnπ/2γ

+

[
− γ

nπ

∫ r

0
hn(r′)r′(nπ/2γ)+1dr′

]
1

rnπ/2γ
. (2.6)

Now we require that (2.6) satisfies the condition

vn(b) = 0 , (2.7)

which results from the substitution of (2.1) into the condition v(b,θ) = 0 given by (1.4d). We
obtain

c1n =
γ

nπ

∫ b

0
dr′r′hn(r′)

[( r′

b2

) nπ
2γ −

( 1
r′

) nπ
2γ

]
.

Using this expression for c1n in (2.6), we can write vn(r) as follows:

vn(r) =
γ

nπ

∫ b

0
dr′r′hn(r′)

[( rr′

b2

) nπ
2γ −

( r
r′

) nπ
2γ

]
+

γ

nπ

∫ r

0
dr′r′hn(r′)

[( r
r′

) nπ
2γ −

( r′

r

) nπ
2γ

]
. (2.8)

This expression for vn(r) is not suitable to express v(r,θ) in the form of the double integral
in (1.5), because, in that double integral, the interval of integration with respect to r′ is [0,b],
whereas, in the second integral above, it is [0,r]. To overcome this difficulty we derive another
expression for vn(r) with a slightly different form as follows: Since the lower limit of integration
of the indefinite integrals in (2.4) is an arbitrary point of [0,b], we choose it now to be b (instead
of 0) to obtain, instead of (2.5), this other equivalent expression for the general solution to (2.2):

vn(r) =
[

d1n +
γ

nπ

∫ r

b

hn(r′)

r′(nπ/2γ)−1 dr′
]

rnπ/2γ

+

[
d2n −

γ

nπ

∫ r

b
hn(r′)r′(nπ/2γ)+1dr′

]
1

rnπ/2γ
. (2.9)

As before, to prevent this expression from becoming infinite as r → 0, it is necessary that

lim
r→0

[
d2n −

γ

nπ

∫ r

b
hn(r′)r′(nπ/2γ)+1dr′

]
= 0 ⇒ d2n =

γ

nπ

∫ 0

b
hn(r′)r′(nπ/2γ)+1dr′,

Trends Comput. Appl. Math., 25 (2024), e01797
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6 CALCULATION OF GREEN’S FUNCTION FOR POISSON’S EQUATION

and, by imposing condition (2.7) on (2.9) and then substituting the above expression for d2n, we
get

vn(b) = d1nbnπ/2γ +
d2n

bnπ/2γ
= 0 ⇒ d1n =− γ

nπ(b2)nπ/2γ

∫ 0

b
hn(r′)r′(nπ/γ)+1dr′ .

Using these results for d1n and d2n in (2.9), we can write the following expression for vn(r):

vn(r) =
γ

nπ

∫ b

0
dr′r′hn(r′)

[( rr′

b2

) nπ
2γ −

( r′

r

) nπ
2γ

]
+

γ

nπ

∫ b

r
dr′r′hn(r′)

[( r′

r

) nπ
2γ −

( r
r′

) nπ
2γ

]
. (2.10)

Now we have both (2.8) and (2.10) expressing vn(r). The idea is to add these two equations and
then replace the sum of the integrals

∫ r
0 and

∫ b
r with a single integral of the form

∫ b
0 , whose

interval of integration is the one in (1.5). Note, however, that this cannot yet be done, because
the integrands of these two integrals are not exactly the same. But since one becomes the other
by replacing r/r′ with r′/r, and since r ≥ r′ in the first integral and r ≤ r′ in the second integral,
one way to make these two integrals display the same integrand is to define

r< (r>) ≡ the smaller (larger) of r and r′ . (2.11)

In fact, with this notation, because r = r> and r′ = r< in the integral
∫ r

0 dr′, and r = r< and
r′ = r> in

∫ b
r dr′, we have that (2.8) and (2.10) are respectively given by

vn(r) =
γ

nπ

∫ b

0
dr′r′hn(r′)

[( rr′

b2

) nπ
2γ −

( r
r′

) nπ
2γ

]
+

γ

nπ

∫ r

0
dr′r′hn(r′)

[( r>
r<

) nπ
2γ −

( r<
r>

) nπ
2γ

]
and

vn(r) =
γ

nπ

∫ b

0
dr′r′hn(r′)

[( rr′

b2

) nπ
2γ −

( r′

r

) nπ
2γ

]
+

γ

nπ

∫ b

r
dr′r′hn(r′)

[( r>
r<

) nπ
2γ −

( r<
r>

) nπ
2γ

]
.

Therefore, adding these two equations, and again using (2.11), we get the proper form of the
expression of vn(r) to be used in (1.5):

2vn(r) =
γ

nπ

∫ b

0
dr′r′hn(r′)

[
2
( rr′

b2

) nπ
2γ −

( r<
r>

) nπ
2γ −

�
�

�
�( r>

r<

) nπ
2γ

]
+

γ

nπ

∫ b

0
dr′r′hn(r′)

[
�
�

�
�( r>

r<

) nπ
2γ −

( r<
r>

) nπ
2γ

]

⇒ vn(r) =
γ

nπ

∫ b

0
dr′r′hn(r′)

[( rr′

b2

) nπ
2γ −

( r<
r>

) nπ
2γ

]
. (2.12)

Trends Comput. Appl. Math., 25 (2024), e01797



i
i

“1797” — 2024/12/3 — 14:21 — page 7 — #7 i
i

i
i

i
i

R. T. COUTO 7

Taking this result into (2.1) and using the defining expression for hn given in (2.2), we get

v(r,θ) =

∑
n=1,3,5···

{
γ

nπ

∫ b

0
dr′r′

(
2
γ

∫
γ

0
dθ

′h(r′,θ ′)sin
nπθ ′

2γ

)[( rr′

b2

) nπ
2γ −

( r<
r>

) nπ
2γ

]}
sin

nπθ

2γ

=− 1
2π

∫
γ

0
dθ

′
∫ b

0
dr′r′h(r′,θ ′) ∑

n=1,3,5···

4
n

[( r<
r>

) nπ
2γ −

( rr′

b2

) nπ
2γ

]
sin

nπθ ′

2γ
sin

nπθ

2γ︸ ︷︷ ︸
G(r,θ |r′,θ ′)

, (2.13)

from which, by comparison with (1.5) , we infer the expression for G(r,θ |r′,θ ′) indicated above:

G(r,θ |r′,θ ′) = ∑
n=1,3,5···

4
n

[( r<
r>

) nπ
2γ −

( rr′

b2

) nπ
2γ

]
sin

nπθ ′

2γ
sin

nπθ

2γ
. (2.14)

3 THE CALCULATION BASED ON THE RADIAL EIGENFUNCTIONS

In this section we again calculate the solution to (1.4), now in the form of an expansion in radial
eigenfunctions. But, instead of using these eigenfunctions as functions of r, we find it more
convenient to consider them as functions of the variable ρ that is related to r as follows:

ρ = − ln(r/b) ∈ [0,∞) ⇔ r = be−ρ ∈ [0,b] . (3.1)

Using the notation
v(r,θ) = v(be−ρ ,θ)≡ V (ρ,θ)

and applying the chain rule, we obtain

r
∂v
∂ r

(r,θ) =−∂V
∂ρ

(ρ,θ) and r2 ∂ 2v
∂ r2 =

∂ 2V
∂ρ2 +

∂V
∂ρ

.

Consequently, Poisson’s equation in (1.4) takes the simpler form

r2
∇

2v(r,θ) =
∂ 2V
∂ρ2 +

∂ 2V
∂θ 2 (ρ,θ) = r2h(r,θ) ≡ H(ρ,θ)

(with constant coefficients), and the homogeneous boundary conditions are given by

V (ρ,0) = v(r,0) = 0 ,
∂V
∂θ

(ρ,γ) =
∂v
∂θ

(r,γ) = 0 , and V (0,θ) = v(b,θ) = 0 .

Therefore, problem (1.4) in terms of the variable ρ becomes

∂ 2V
∂ρ2 +

∂ 2V
∂θ 2 (ρ,θ) = H(ρ,θ), ρ ∈ (0,∞), θ ∈ (0,γ) ; (3.2a)

V (ρ,0) =
∂V
∂θ

(ρ,γ) = 0, ρ ∈ (0,∞) ; (3.2b)

V (0,θ) = 0, θ ∈ [0,γ] . (3.2c)

Trends Comput. Appl. Math., 25 (2024), e01797
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8 CALCULATION OF GREEN’S FUNCTION FOR POISSON’S EQUATION

Figure 2: Depiction of the problem in (3.2).

This problem is depicted in Figure 2.

Green’s formula for the solution V (ρ,θ) to problem (3.2) follows from (1.5) by making the
change from variables r and r′ to ρ and ρ ′ [we omit the variables of Green’s function, simply
denoting it by G, regardless of its dependence on (r,θ |r′,θ ′) or (ρ,θ |ρ ′,θ ′)],

V (ρ,θ) = − 1
2π

∫
γ

0
dθ

′
∫ 0

∞

[−dρ
′ r′ ]r′h(r′,θ ′)︸ ︷︷ ︸

H(ρ ′,θ ′)

G

= − 1
2π

∫
γ

0
dθ

′
∫

∞

0
dρ

′ H(ρ ′,θ ′) G . (3.3)

To solve (3.2) we employ the eigenfunctions that arise when the separation of variables V (ρ,θ)=

R(ρ)Θ(θ) is used to solve the version of this problem in which H(ρ,θ)≡ 0 (Laplace’s equation)
and the boundary conditions on the parallel borders in Figure 2 are not homogeneous. That
is, we admit that the solution to problem (3.2) can be expanded into the continuous-spectrum
eigenfunctions Rk(ρ) = sinkρ (k > 0) {cf. Ref. [5], Sec. 8.7}:

V (ρ,θ) =
∫

∞

0
V̄ (k,θ)sinkρ dk . (3.4)

Notice that this expression automatically satisfies the condition of problem (3.2) on the boundary
at ρ = 0.

By substituting (3.4) into the PDE of problem (3.2), we get∫
∞

0

[
∂ 2V̄
∂θ 2 − k2V̄ (k,θ)

]
sinkρ dk = H(ρ,θ) .

This result shows that the term in square brackets, according to the Fourier sine integral
representation of H(ρ,θ), is given by {cf. Ref. [4], Sec. 54, eqs. (5) and (6)}

∂ 2V̄
∂θ 2 − k2V̄ (k,θ) =

2
π

∫
∞

0
H(ρ,θ)sinkρ dρ ≡ H̄(k,θ) . (3.5)

Trends Comput. Appl. Math., 25 (2024), e01797
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R. T. COUTO 9

We thus see that V̄ (k,θ) is the solution to the above nonhomogeneous ordinary differential
equation.

Since the general solution to the associated homogeneous differential equation is

V̄H(k,θ) = c1 coshkθ + c2 sinhkθ ,

a particular solution by the method of variation of parameters {cf. Ref. [9], Sec. 1.9} has the
form

V̄P(k,θ) = A(θ)coshkθ +B(θ)sinhkθ , (3.6)

where the functions A(θ) and B(θ) are solutions to the system of equations{
A′ coshkθ +B′ sinhkθ = 0

kA′ sinhkθ + kB′ coskθ = H̄

Solving it, we get

A′(θ) =− H̄ sinkθ

k
⇒ A(θ) =−1

k

∫
θ

0
H̄(k,θ ′)sinhkθ

′ dθ
′ , (3.7a)

B′(θ) =
H̄ coshkθ

k
⇒ B(θ) =

1
k

∫
θ

0
H̄(k,θ ′)coshkθ

′ dθ
′ . (3.7b)

With the substitution of these results into (3.6), we obtain

V̄P(k,θ) =−coshkθ

k

∫
θ

0
H̄(k,θ ′)sinhkθ

′dθ
′+

sinhkθ

k

∫
θ

0
H̄(k,θ ′)coshkθ

′dθ
′

=−1
k

∫
θ

0
H̄(k,θ ′)sinhk(θ ′−θ)dθ

′ .

The general solution V̄H(k,θ)+V̄P(k,θ) to (3.5) is then given by

V̄ (k,θ) = c1 coshkθ + c2 sinhkθ − 1
k

∫
θ

0
H̄(k,θ ′)sinhk(θ ′−θ)dθ

′ . (3.8)

To determine c1 and c2, we impose the homogeneous boundary conditions at θ = 0 and θ = γ

listed in (3.2) [those on the two parallel borders in Figure 2]. To this end, we substitute them into
(3.4), obtaining

V̄ (k,0) =
∂V̄
∂θ

(k,γ) = 0 . (3.9)

Imposing these two conditions on the expression of V̄ (k,θ) given by (3.8), we get the following
expressions for c1 and c2:

V̄ (k,0) = c1 = 0

⇒ ∂V̄
∂θ

(k,γ) = kc2 coshkγ +
∫

γ

0
H̄(k,θ ′)coshk(θ ′− γ)dθ

′ = 0

⇒ c2 =− 1
k coshkγ

∫
γ

0
H̄(k,θ ′)coshk(θ ′− γ)dθ

′ .

Trends Comput. Appl. Math., 25 (2024), e01797
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10 CALCULATION OF GREEN’S FUNCTION FOR POISSON’S EQUATION

Substituting these results into (3.8), we obtain

V̄ (k,θ) =− sinhkθ

k coshkγ

∫
γ

0
dθ

′H̄(k,θ ′)coshk(θ ′− γ)

+
1
k

∫
θ

0
dθ

′H̄(k,θ ′)sinhk(θ −θ
′) . (3.10)

This expression for V̄ (k,θ) is not suitable to express V (ρ,θ) in the form of the double integral
in (3.3), because, in that double integral, the interval of integration with respect to θ ′ is [0,γ],
whereas, in the second integral above, it is [0,θ ]. To overcome this difficulty we derive another
expression for V̄ (k,θ) with a slightly different form as follows: Since the lower limit of inte-
gration of the indefinite integrals in (3.7) is an arbitrary point of [0,γ], we choose it now to be
γ (instead of 0) to obtain, instead of (3.8), the following equivalent expression for the general
solution to (3.5):

V̄ (k,θ) = d1 coshkθ +d2 sinhkθ − 1
k

∫
θ

γ

H̄(k,θ ′)sinhk(θ ′−θ)dθ
′ . (3.11)

As before, by imposing the conditions given in (3.9), we determine d1 and d2:

V̄ (k,0) = d1 −
1
k

∫ 0

γ

H̄(k,θ ′)sinhkθ
′dθ

′ ⇒ d1 =−1
k

∫
γ

0
H̄(k,θ ′)sinhkθ

′dθ
′ ;

∂V̄
∂θ

(k,γ) = kd1 sinhkγ + kd2 coshkγ = 0 ⇒ d2 =− sinhkγ

coshkγ
d1

⇒ d2 =
sinhkγ

k coshkγ

∫
γ

0
H̄(k,θ ′)sinhkθ

′dθ
′ .

The substitution of these two results into (3.11) gives

V̄ (k,θ) =−coshk(γ −θ)

k coshkγ

∫
γ

0
dθ

′H̄(k,θ ′)sinhkθ
′

+
1
k

∫
γ

θ

dθ
′H̄(k,θ ′)sinhk(θ ′−θ) . (3.12)

Now we have both (3.10) and (3.12) expressing V̄ (k,θ). The idea is to add these two equations
and then replace the sum of the integrals

∫
θ

0 and
∫

θ

γ
with a single integral

∫ γ

0 , whose interval of
integration is the one in (3.2). Note, however, that this cannot yet be done, because the integrands
of these two integrals are not exactly the same. But since one becomes the other by replacing
θ ′−θ with θ −θ ′, and since θ ≥ θ ′ in the first integral and θ ≤ θ ′ in the second integral, one
way to make these two integrals have the same integrand is by defining

θ< (θ>) ≡ the smaller (larger) of θ and θ
′ .

Trends Comput. Appl. Math., 25 (2024), e01797
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In fact, with this notation, because θ = θ> and θ ′ = θ< in the integral
∫

θ

0 dθ ′, and θ = θ< and
θ ′ = θ> in

∫ γ

θ
dθ ′, (3.10) and (3.12) are respectively given by

V̄ (k,θ) =− 1
k coshkγ

∫
γ

0
dθ

′H̄(k,θ ′)sinhkθ coshk(θ ′− γ)

+
1
k

∫
θ

0
dθ

′H̄(k,θ ′)sinhk(θ>−θ<)

and

V̄ (k,θ) =− 1
k coshkγ

∫
γ

0
dθ

′H̄(k,θ ′)coshk(γ −θ)sinhkθ
′

+
1
k

∫
γ

θ

dθ
′H̄(k,θ ′)sinhk(θ>−θ<) .

Therefore, adding these two equations we get the appropriate form of the expression for V̄ (k,θ)
to be used in (3.4):

2V̄ (k,θ) =− 1
k coshkγ

∫
γ

0
dθ

′H̄(k,θ ′)[sinhkθ coshk(θ ′− γ)+ coshk(γ −θ)sinhkθ
′]

+
1
k

∫
γ

0
dθ

′ H̄(k,θ ′)sinhk(θ>−θ<) ,

or

V̄ (k,θ) =
∫

γ

0
dθ

′ H̄(k,θ ′)
Γ (k,θ ,θ ′)

2k coshkγ
, (3.13)

where

Γ (k,θ ,θ ′) ≡ − sinhkθ coshk(θ ′− γ)− coshk(γ −θ)sinhkθ
′

+ coshkγ sinhk(θ>−θ<) . (3.14)

Taking (3.13) into (3.4) and then using the definition of H̄(k,θ ′) given by (3.5), we obtain

V (ρ,θ) =
∫

∞

0

{
V̄ (k,θ)

}
sinkρ dk =

∫
∞

0

{∫
γ

0
dθ

′
[

H̄(k,θ ′)

]
Γ (k,θ ,θ ′)

2k coshkγ

}
sinkρ dk

=
∫

∞

0

{∫
γ

0
dθ

′
[

2
π

∫
∞

0
H(ρ ′,θ ′)sinkρ

′ dρ
′
]

Γ (k,θ ,θ ′)

2k coshkγ

}
sinkρ dk

=− 1
2π

∫
γ

0
dθ

′
∫

∞

0
dρ

′ H(ρ ′,θ ′)
∫

∞

0
dk

−2Γ (k,θ ,θ ′)sinkρ ′ sinkρ

k coshkγ︸ ︷︷ ︸
G

.

By comparing this result with (3.2), we infer that Green’s function is as indicated above by G,
but, before displaying it, let us write (3.14) in terms of θ< and θ> only, that is, without the explicit
presence of θ or θ ′ :

Trends Comput. Appl. Math., 25 (2024), e01797
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12 CALCULATION OF GREEN’S FUNCTION FOR POISSON’S EQUATION

Γ (k,θ ,θ ′) = −sinhkθ coshk(θ ′− γ)− coshk(γ −θ)sinhkθ ′

+ coshkγ sinhk(θ>−θ<)

= −sinhkθ coshkθ ′coshkγ + sinhkθ sinhkθ ′sinhkγ − coshkθ coshkγ sinhkθ ′

+ sinhkθ sinhkγ sinhkθ ′+ coshkγ sinhk(θ>−θ<)

= 2sinhkθ> sinhkθ< sinhkγ − coshkγ(
hhhhhhhhsinhkθ>coshkθ<+ sinhkθ<coshkθ>)

+ coshkγ(
hhhhhhhhsinhkθ> coshkθ<− sinhkθ< coshkθ>)

= 2sinhkθ> sinhkθ< sinhkγ −2coshkγ sinhkθ< coshkθ>

= 2sinhkθ<(sinhkθ> sinhkγ − coshkγ coshkθ>)

= −2sinhkθ< coshk(γ −θ>) .

We thus have that

G =
∫

∞

0

4sinhkθ< coshk(γ −θ>)sinkρ ′ sinkρ

k coshkγ
dk ,

or, since 2sinkρ ′ sinkρ = cosk(ρ ′−ρ)− cosk(ρ ′+ρ),

G =
∫

∞

0

[
cosk(ρ>−ρ<)− cosk(ρ ′+ρ)

]2sinhkθ< coshk(γ −θ>)

k coshkγ
dk . (3.15)

In order to obtain Green’s function in closed form, we need to perform the integral above, which
is the difference between two integrals of the type of the integral I that is calculated below. Such
calculation is based on an usual application of the residue theorem: We express the integral (of
an even function) as half its extension to the whole real axis, close its path with a semicircle C+

R
of radius R → ∞ in the upper half of the complex plane of z = x+ iy, notice that, according to
Jordan’s lemma {cf. Ref. [1, eq.(7.43)]}, the integral over C+

R tends to zero, and evaluate the
residues at the simple poles of the integrand inside the closed contour C = [−R,R]∪C+

R , that is,
at the zeros nπi/2γ (n = 1,3,5, · · ·) of coshγz (z = 0 is a removable singularity).

I ≡
∫

∞

0
cosAx

2sinhαxcoshβx
xcoshγx

dx =
1
2

Re
∫

∞

−∞

eiAx 2sinhαxcoshβx
xcoshγx

dx

=
1
2

Re
(∮

C
−

↗0∫
C+

R

)
eiAz 2sinhαzcoshβ z

zcoshγz
dz =

1
2

Re

[
2πi ∑

n=1,3,5···
Res

(nπi
2γ

)]

= π Re

 i ∑
n=1,3,5···

lim
z→ nπi

2γ

z− nπi
2γ

coshγz
eiAz 2sinhαzcoshβ z

z



Trends Comput. Appl. Math., 25 (2024), e01797
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= π Re

 i ∑
n=1,3,5···

1
γ i sin nπ

2
e
−Anπ

2γ
2 · i sin αnπ

2γ
cos βnπ

2γ

nπi
2γ

 ,

= ∑
n=1,3,5···

4e
− nπA

2γ

nsin(nπ/2)
sin

nπα

2γ
cos

nπβ

2γ
, (3.16)

with A≥ 0, γ > 0, and α+β ≤ γ . These restrictions upon the parameters A , α , β , and γ guarantee
the convergence of the integral and the use of Jordan’s lemma.

Taking (3.16) into account, we can develop (3.15) as follows:

G = I
∣∣∣
A=ρ>−ρ<

− I
∣∣∣
A=ρ ′+ρ

(
with α = θ< and β = γ −θ>

)

= ∑
n=1,3,5···

4
n

e
− nπ(ρ>−ρ<)

2γ − e
− nπ(ρ ′+ρ)

2γ

sin(nπ/2)
sin

nπθ<

2γ
cos

nπ(γ −θ>)

2γ
.

At this point, we make use of (3.1) to return to the original variables r a r′, obtaining

G = ∑
n=1,3,5···

4
n

e
− nπ

2γ

(
ln b

r< − ln b
r>

)
− e

− nπ
2γ

(
ln b

r′
+ ln b

r

)
Z
Z
Z

sin
nπ

2

sin
nπθ<

2γ

Z
Z
Z

sin
nπ

2
sin

nπθ>

2γ

= ∑
n=1,3,5···

4
n

[( r<
r>

) nπ
2γ −

( rr′

b2

) nπ
2γ

]
sin

nπθ ′

2γ
sin

nπθ

2γ
. (3.17)

We see that we got rid of the integral in (3.15), but now having to find the sum of the infinite
series in (3.17) to express Green’s function in closed form; we calculate this sum in Section 4.
By the way, (2.14) and (3.17) give exactly the same expression for the desired Green’s function.

4 GREEN’S FUNCTION IN CLOSED FORM

To derive Green’s function in closed form we need to calculate the sum of the infinite series
in (3.17). To this end, using the complex variable z ≡ peiϕ (p ∈ R and ϕ ∈ R), from which
zn = pneinϕ = pn cosnϕ + ipn sinnϕ , we first evaluate the sum of the following infinite series:

∑
n=1,3,5···

1
n

pn cosnϕ︸ ︷︷ ︸
Rezn

= Re
∞

∑
k=0

z2k+1

2k+1
= Re

∫ z

0

[
∞

∑
k=0

(ζ 2)k
]

dζ

= Re
∫ z

0

1
1−ζ 2 dζ = Re

[ 1
2

ln(z+1)−1
2

ln(z−1)
]

=
1
2

ln |z+1|−1
2

ln |z−1| = 1
4

ln
1+ p2 +2pcosϕ

1+ p2 −2pcosϕ
(0 ≤ p < 1) ,

Trends Comput. Appl. Math., 25 (2024), e01797
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14 CALCULATION OF GREEN’S FUNCTION FOR POISSON’S EQUATION

where, to find the sum of the infinite series between square brackets, we used the formula for the
sum of a geometric series (noticing that |ζ 2| ≤ |z|2 = p2 < 1 along the straight path of integration
from ζ = 0 to ζ = z), and we also considered the definition of the complex logarithm.

Now, using the result above, we deduce the sum of this other infinite series:

S ≡ ∑
n=1,3,5···

4
n

(A
B

)nπ
2γ

sin
nπθ ′

2γ
sin

nπθ

2γ

= ∑
n=1,3,5···

2
n

pn
[
cos nπ(θ ′−θ)

2γ
− cos nπ(θ ′+θ)

2γ

]∣∣∣∣
p =

(A

B

)π/2γ

=

1
2

ln
1+ p2 +2pcos π(θ ′−θ)

2γ

1+ p2 −2pcos π(θ ′−θ)
2γ

− 1
2

ln
1+ p2 +2pcos π(θ ′+θ)

2γ

1+ p2 −2pcos π(θ ′+θ)
2γ


p =

(A

B

)π/2γ

=
1
2

ln
A

π
γ +B

π
γ +2(AB)

π
2γ cos π(θ ′−θ)

2γ

A
π
γ +B

π
γ −2(AB)

π
2γ cos π(θ ′−θ)

2γ

− 1
2

ln
A

π
γ +B

π
γ +2(AB)

π
2γ cos π(θ ′+θ)

2γ

A
π
γ +B

π
γ −2(AB)

π
2γ cos π(θ ′+θ)

2γ

.

Finally, since

G(r,θ |r′,θ ′) = S
∣∣∣∣ A= r<

B= r>

− S
∣∣∣∣ A= rr′/b

B=b

,

as we see from (3.17), we have that

2G(r,θ |r′,θ ′) = ln
r

π
γ +r′

π
γ +2(rr′)

π
2γ cos π(θ ′−θ)

2γ

r
π
γ +r′

π
γ −2(rr′)

π
2γ cos π(θ ′−θ)

2γ

− ln
r

π
γ +r′

π
γ +2(rr′)

π
2γ cos π(θ ′+θ)

2γ

r
π
γ +r′

π
γ −2(rr′)

π
2γ cos π(θ ′+θ)

2γ

− ln
(rr′/b)

π
γ +b

π
γ +2(rr′)

π
2γ cos π(θ ′−θ)

2γ

(rr′/b)
π
γ +b

π
γ −2(rr′)

π
2γ cos π(θ ′−θ)

2γ

+ ln
(rr′/b)

π
γ +b

π
γ +2(rr′)

π
2γ cos π(θ ′+θ)

2γ

(rr′/b)
π
γ +b

π
γ −2(rr′)

π
2γ cos π(θ ′+θ)

2γ

. (4.1)

5 COMPARISON WITH THE SOLUTION GIVEN BY THE METHOD OF IMAGES
WHEN THE DOMAIN IS THE FIRST QUADRANT OF THE DISC

The method of images {cf. Refs. [13, Sec. VII.13] and [6, Sec. 3]} allows to obtain the solution
faster when the problem presents a symmetry that allows to quickly infer the configuration of
images to use. Let us then apply this method for the particular case in which γ = π/2 to check
(4.1). In this case, we need the seven images P−

1 , P+
2 , P−

3 , P−
4 , P+

5 , P−
6 , and P+

7 shown in Figure 3,
where, in this notation, the superscript + or − indicates that, in Green’s function expression, the
corresponding harmonic term is added or subtracted. These terms are of the form [13, Sec. VII.13,
last paragraph] ± ln(1/|r ′− rn|), if the corresponding image is generated by reflection with re-
spect to the x or y-axis, or ± ln

[
(b/r)/|r ′ − rn|

]
, if by inversion with respect to the circle of

Trends Comput. Appl. Math., 25 (2024), e01797



i
i

“1797” — 2024/12/3 — 14:21 — page 15 — #15 i
i

i
i

i
i

R. T. COUTO 15

radius b centered at the origin, where rn denotes the position vetor of the n-th image. Green’s
function is therefore given by

G(r |r ′) = ln
1

|r ′− r |
− ln

1
|r ′− r1|

+ ln
1

|r ′− r2|
− ln

b/r
|r ′− r3|

− ln
1

|r ′− r4|
+ ln

b/r
|r ′− r5|

− ln
b/r

|r ′− r6|
+ ln

b/r
|r ′− r7|

. (5.1)

Figure 3: The configuration of images used to get, by the method of images, Green’s function for
problem (1.1) when γ = π/2 (the case in which the domain Ω is the first quadrant of the disc).

The plane polar coordinates of the position vectors above are as follows:

r(r , θ) , r ′(r′, θ
′) , r1(r , 2π−θ) , r2(r , π−θ) , r3(b2/r , θ) ,

r4(r , π+θ) , r5(b2/r , 2π−θ) , r6(b2/r , π−θ) , r7(b2/r , π+θ) .

Therefore, by using the definition of magnitude of a vector, or, geometrically, the law of cosines,
we can calculate all the distances |r ′− r |, |r ′− r1|, |r ′− r2| · · · in (5.1), obtaining

G(r,θ |r′,θ ′) =−1
2

ln
[

r2+ r′2−2rr′cos(θ ′−θ)

]
+

1
2

ln
[

r2+ r′2−2rr′cos(θ ′+θ)

]

− 1
2

ln
[

r2+ r′2+2rr′cos(θ ′+θ)

]
+

1
2

ln
[( rr′

b

)2
+b2−2rr′cos(θ ′−θ)

]
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16 CALCULATION OF GREEN’S FUNCTION FOR POISSON’S EQUATION

+
1
2

ln
[

r2+ r′2+2rr′cos(θ ′−θ)

]
− 1

2
ln
[( rr′

b

)2
+b2−2rr′cos(θ ′+θ)

]

+
1
2

ln
[( rr′

b

)2
+b2+2rr′cos(θ ′+θ)

]
− 1

2
ln
[( rr′

b

)2
+b2+2rr′cos(θ ′−θ)

]
,

which is exactly the same Green’s function given by (4.1) with γ = π/2.

6 RESULTS FOR ONE MORE PROBLEM

In this section we present the results for an extra problem so that we can observe how the cal-
culations associated with the method exposed here vary. This presentation is not detailed like
the one above, showing only the main intermediate results and the final one. We only show the
intermediate results obtained with angular eigenfunctions (Section 2), omitting those related to
radial eigenfunctions (Section 3) due to lack of space.

Let us consider Problem (1.1) with one modification: the replacement of Dirichlet’s condition in
(1.1b) with the Neumann’s condition [∂u/∂θ ](r,0) = g0(r) . In this case, according to Section 2,
the angular eigenfunctions to be used are Θn(θ) = cos(nπθ/γ) (n = 0,1,2,3, · · ·) {cf. Ref. [2],
Sec. 10.1, Prob. 18, p. 595 & 786}, and, performing the calculations, we verify that the equations
of that Section that are indicated below become as shown:

• Equation (2.1), for the modified problem of this section, becomes

v(r,θ) =
1
2

v0(r)+
∞

∑
n=1

vn(r)cos
nπθ

γ
.

• Equation (2.2) :

v′′n +
1
r

v′n −
(nπ/γ)2

r2 vn(r) =
2
γ

∫
γ

0
h(r,θ)cos

nπθ

γ
dθ ≡ hn(r) (n ≥ 0) .

• Equation (2.3) :

vP0(r) = A0 +B0 lnr and vPn(r)
∣∣∣

n≥1
= An(r)rnπ/γ +Bn(r)/rnπ/γ .

• Equation (2.8) :

v0(r) =
∫ b

0
dr′r′h0(r′) ln

r′

b
+

∫ r

0
dr′r′h0(r′) ln

r
r′

;

vn(r)
∣∣∣

n≥1
=

γ

2nπ

∫ b

0
dr′r′hn(r′)

[( rr′

b2

) nπ
γ −

( r
r′

) nπ
γ

]
+

γ

2nπ

∫ r

0
dr′r′hn(r′)

[( r
r′

) nπ
γ −

( r′

r

) nπ
γ

]
.
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• Equation (2.10) :

v0(r) =
∫ b

0
dr′r′h0(r′) ln

r
b
+

∫ b

r
dr′r′h0(r′) ln

r′

r
;

vn(r)
∣∣∣

n≥1
=

γ

2nπ

∫ b

0
dr′r′hn(r′)

[( rr′

b2

) nπ
γ −

( r′

r

) nπ
γ

]
+

γ

2nπ

∫ b

r
dr′r′hn(r′)

[( r′

r

) nπ
γ −

( r
r′

) nπ
γ

]
.

• Equation (2.12) :

v0(r) =
∫ b

0
dr′r′h0(r′) ln

r>
b

;

vn(r)
∣∣∣

n≥1
=

γ

2nπ

∫ b

0
dr′r′hn(r′)

[( rr′

b2

) nπ
γ −

( r<
r>

) nπ
γ

]
.

• Equation (2.14) :

G(r,θ |r′,θ ′) =
2π

γ
ln

b
r>

+
∞

∑
n=1

2
n

[( r<
r>

) nπ
γ −

( rr′

b2

) nπ
γ

]
cos

nπθ ′

γ
cos

nπθ

γ
.

To express this result in closed form, we work in a similar way to that in Section 4, first obtaining
the following formula:

∞

∑
n=1

1
n

pn cosnϕ =−1
2

ln(1+ p2 −2pcosϕ) (0 ≤ p < 1) .

Then, using it, we get the sum of this other infinite series:

S ≡
∞

∑
n=1

2
n

(A
B

)nπ
γ

cos
nπθ ′

γ
cos

nπθ

γ

=−1
2

ln
[

1+
(A

B

) 2π
γ

−2
(A

B

)π
γ

cos
π(θ ′−θ)

γ

]
− 1

2
ln
[

1+
(A

B

) 2π
γ

−2
(A

B

)π
γ

cos
π(θ ′+θ)

γ

]
.

Finally, since

G(r,θ |r′,θ ′) =
2π

γ
ln

b
r>

+ S
∣∣∣∣ A= r<

B= r>

− S
∣∣∣∣ A= rr′/b

B=b

,
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we deduce the following closed form for Green’s function:

G(r,θ |r′,θ ′) =
2π

γ
ln

b
r>

−1
2

ln
[

1+
( r<

r>

) 2π
γ −2

( r<
r>

)π
γ

cos
π(θ ′−θ)

γ

]
−1

2
ln
[

1+
( r<

r>

) 2π
γ −2

( r<
r>

)π
γ

cos
π(θ ′+θ)

γ

]

+
1
2

ln
[

1+
( rr′

b2

) 2π
γ

−2
( rr′

b2

)π
γ

cos
π(θ ′−θ)

γ

]

+
1
2

ln
[

1+
( rr′

b2

) 2π
γ

−2
( rr′

b2

)π
γ

cos
π(θ ′+θ)

γ

]
.

To allow a comparison of this result with the one provided by the method of images, we consider
the particular case of a semi-disc, that is, we let γ = π above, obtaining

G(r,θ |r′,θ ′) =−1
2

ln
[
r2 + r′2 −2rr′ cos(θ ′−θ)

]
− 1

2
[
r2 + r′2 −2rr′ cos(θ ′+θ)

]
+

1
2

ln
[
b2 +

( rr′

b

)2

−2rr′ cos(θ ′−θ)
]
+

1
2

ln
[
b2 +

( rr′

b

)2

−2rr′ cos(θ ′+θ)
]
.

Let us build Green’s function using the method of imagens, taking Section 5 into account. Figure
4 shows the three required images P+

1 , P−
2 , and P+

3 . This configuration of images implies the
following Green’s function:

G(r |r ′) = ln
1

|r ′− r |
+ ln

1
|r ′− r1|

− ln
b/r

|r ′− r2|
− ln

b/r
|r ′− r3|

,

the development of which leads to the same expression in the previous equation.

7 FINAL COMMENTS

The method can be applied in any domain Ω where r ∈ (a,b) and θ ∈ (0,γ), with any a and b
such that b > a ≥ 0 and any γ ∈ (0,2π]. Furthermore, many experimental calculations performed
privately indicate that, whenever the boundary conditions are Dirichlet’s or Neumann’s, it will
be possible to determine Green’s function in closed form, which is a nice feature of the method.

When there are enough symmetries (what may happen when γ = π/2, π , 3π/2, 2π), the method
of images also gives results in closed form and, moreover, more quickly, thus becoming the
best method. But when this is not the case, this method becomes considerably involved, and the
method presented here is preferable.

Consider the problem in Figure 1 in the particular case of a semi-disc, whose closed-form Green’s
function is given by (4.1) with γ = π . This is an interesting example of a problem in which using
the method of images is very complicated. The complication lies in the boundary conditions;
indeed, when such conditions are those in Figure 4, the application of this method is simple.
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Figure 4: The configuration of images to get Green’s function for the problem considered in
Section 6 when γ = π .

It is expected that the method presented in this work will find application in problems that are
objects of research. Let us mention a few. It could be applied to calculate the gravitational poten-
tial in spiral galaxies (like the Milky Way) that typically have a flattened, disc-like structure. In
this problem, the surface mass density forming the inhomogeneous term of Poisson’s equation
could be given by eq. (2) in Ref. [8]. In addition, at a specific radius representing the edge of
the observable galaxy, the gravitational potential or the flux of matter across it would compose
Dirichlet’s or Neumann’s condition, respectively (depending on the available measured data).
Other applications would be the calculation of the electric field at two-dimensional corners and
along sharp edges (cf. [10, Sec. 2.11], [11], and [3]), or the calculation of the solution to the
incompressible Navier-Stokes equations [12, eq. (15)] in the case of two-dimensional flows on
domains shaped like circular sectors, in which it is required the solution to the pressure Poisson
equation under Neumann’s conditions [12, eq. (16)].
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