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Sociedade Brasileira de Matemática Aplicada e Computacional
Online version ISSN 2676-0029 www.scielo.br/tcam
ORIGINAL ARTICLE
doi: 10.5540/tcam.2024.025.e01805

Parameter Identification Problem in the discrete-time SIR Model

JEMY A. MANDUJANO VALLE1 and ALEXANDRE L. MADUREIRA2

Received on January 29, 2024 / Accepted on August 13, 2024

ABSTRACT. We investigate the problem of determining time dependent parameters for discrete-time epi-
demiological compartmental models such as the Susceptible-Infected-Recovered (SIR). We show how to
determine parameters based on minimal error type iterative schemes. Such methods involve the compu-
tation of the adjoint of the derivative operator of a nonlinear function. This is a nontrivial task that we
accomplish by carefully crafting auxiliary problems. To show the efficiency of the method, we consider
examples involving real COVID-19 data.
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1 INTRODUCTION

Compartmental models for infectious diseases are pervasive in theoretical epidemiology, and
became even more popular when the scientific community was faced with the challenge of pre-
dicting the dynamics of the COVID-19 pandemics. However, concealed in the models apparent
simplicity, there is the difficult problem of determining time dependent parameters. In the case of
diseases that affect humans, this is even more subtle since people’s behavior depend on the very
dynamics of the disease, government policies, etc. Given enough data, computational methods
provide tools to determine parameters, even when the data is noisy.

The Susceptible-Infected-Recovered SIR model is one of the simplest and commonly used epi-
demiological models [20], and many authors use SIR-like models to analyze and estimate the
dynamics of various diseases such as Ebola, HIV and Zika viruses [11, 19, 22] among many
others. See [14] for details on compartmental models and a through review of the last century
literature, and [10] for more recent literature, specially related to COVID-19 modeling.

In our variant of SIR model, the susceptibles are part of the total population that is healthy but at
risk of becoming infected. The infected are those who have and might transmit the disease. Those
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2 PARAMETER IDENTIFICATION PROBLEM

who recover are immune, and, for simplicity, those who die are also counted as “recovered.” We
assume that the population is homogeneous, and that the initial number of infectious patients is
known.

Since the outbreak of COVID-19, a considerable number of studies related to the computational
modeling of the evolution of COVID-19 have been published, often based on SIR-like com-
partmental models. Regarding parameter estimation, [12, 15, 30] use the maximum likelihood
method to estimate the basic reproduction method. The basic reproduction number is also es-
timated in [7, 24, 28], but this time based on the least square method. Different techniques to
estimate several parameters from real data are considered in the literature, as statistical based ar-
guments [2,3,4], machine learning [5,6], or genetic algorithms [1]. See also [9,26] for interesting
considerations and other approaches.

In this work we propose a new method to estimate the basic time dependent reproduction number,
among other parameters. The method can be extended to other compartmental models, e.g. SIRD,
SEIR and SEAIR.

Consider a population of size P > 0. The discrete time SIR compartmental model determines for
all discrete time j = 1,2,3, . . . , the size of the susceptible population S j, the number of infectious
I j, and the size of the “removed” population R j. Let S j = S j/P be the susceptible fraction of
the population, I j = I j/P the infected fraction of the population, and R j =R j/P the recovered
fraction of the population. The dynamics is determined by

S j+1 = S j −β jI jS j,

I j+1 = I j +β jI jS j − γ jI j,

R j+1 = R j + γ jI j.

(1.1)

The initial conditions are determined by a given I1 infected individuals (to avoid trivialities, we
assume that I1 is positive and smaller than 1), and S1 = 1− I1, and R1 = 0. Note that at all times,
S j + I j +R j = 1, reflecting the assumption that demographic changes are irrelevant due to the
short time scale of the disease.

At a time j fixed, the parameters β j and γ j represent the probability of adequate contacts and
the recovery probability [23]. We assume that both are unknown and we use the available data to
estimate them. In our case, the data is the daily number of new infected individuals.

Note that these parameters are not available in practice, and it is hard (impossible?) to extract
them directly from the data. But they are of paramount importance since they determine the
dynamics of the disease. They also allow the computation of the basic and reproductive num-
bers, revealing whether the disease is subsiding or not. We present here a method to estimate
those parameters, and show in two simulations, using real data, that the correct dynamics can be
captured.

In what follows we summarize the contents of the article. In Section 2 we make some new
definitions and describe how we handle the data. In Section 3, we define the Minimal Error
Method, leaving the mathematical derivations for Section 4. Section 5 contains numerical tests

Trends Comput. Appl. Math., 25 (2024), e01805
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related to our method applied to two cities of different sizes, while Section 6 concludes the
paper. Appendix A describes the smoothing method, and Appendix B outlines the Minimal Error
Method in its generality.

2 HANDLING THE DATA

Consider that there are N days of data available, and let

BBB = (β1,β2, . . . ,βN)
T , ΓΓΓ = (γ1,γ2, . . . ,γN)

T , ϒϒϒ = (1,1, . . . ,1)T ∈ RN

ooo =

0
0
0

 , aaa j =

S j

I j

R j

 , AAA =


aaa1 ooo . . . ooo
ooo aaa2 . . . ooo
ooo ooo . . . ooo
...

...
. . .

...
ooo ooo . . . aaaN

 ,

ΛΛΛ =


aaa2 ooo . . . ooo
ooo aaa3 . . . ooo
ooo ooo . . . ooo
...

...
. . .

...
ooo ooo . . . aaaN+1

 , 0
¯
=

0 0 0
0 0 0
0 0 0

 , mmm j =

0 −S j 0
I j 0 0
0 0 0

 ,

MMM =


mmm1 0

¯
. . . 0

¯
0
¯

mmm2 . . . 0
¯

0
¯

0
¯

. . . 0
¯...

...
. . .

...
0
¯

0
¯

. . . mmmN

 , qqq =

0 0 0
0 −1 0
0 1 0

 , QQQ =


qqq ooo . . . ooo
ooo qqq . . . ooo
ooo ooo . . . ooo
...

...
. . .

...
ooo ooo . . . qqq

 .

Then, (1.1) is equivalent to
ΛΛΛϒϒϒ = AAAϒϒϒ+MMMAAABBB+QQQAAAΓΓΓ. (2.1)

Assume that IIIcumul =
(
Icumul
1 , Icumul

2 , · · · , Icumul
N

)
and I j

cumul is the cumulative number of in-
fections on day j, resulting from smoothing the real data using exponential moving average
techniques (EMA - details in the Appendix A). Let

Ŝ j = 1−
Icumul

j

P
j = 1,2, . . . ,N. (2.2)

In this paper, we estimate BBB and ΓΓΓ from (2.1), such that S1, . . . ,SN is close to Ŝ1, . . . , ŜN . In the
following section, we describe how we do so.

3 MINIMAL ERROR METHOD

Let
ddd j = (S j,0,0)T DDD = (ddd1,ddd2, . . . ,dddN).

Trends Comput. Appl. Math., 25 (2024), e01805
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4 PARAMETER IDENTIFICATION PROBLEM

Consider the nonlinear operator F : R2N →R3N that takes the parameters BBB and ΓΓΓ and returns DDD,
i.e., DDD = F(BBB,ΓΓΓ), where (2.1) holds. Our goal is to find (BBB,ΓΓΓ) such that D̂DD ≈ DDD = F(BBB,ΓΓΓ). Here,
D̂DD is as DDD where S j is replaced by Ŝ j.

We use an iterative method of Minimal Error Method type that, given D̂DD and an initial guess
(BBB1,ΓΓΓ1) determines a sequence (BBBk,ΓΓΓk) by

(BBBk+1,ΓΓΓk+1) = (BBBk,ΓΓΓk)+ω
kF ′(BBBk,ΓΓΓk)T (D̂DD−DDDk), (3.1)

for k = 1,2, . . . , where DDDk = F(BBBk,ΓΓΓk),

ωk =
1
M

∥D̂DD−DDDk∥2

∥F ′(BBBk,ΓΓΓk)T (D̂DD−DDDk)∥2 ,

such that M > 1/2 is chosen by the user [25]. We consider M = N.

Above, ∥ · ∥ denotes the Euclidean norm, and F ′(BBBk,ΓΓΓk)T denotes the transpose of the Jaco-
bian matrix of F computed at (BBBk,ΓΓΓk). The above iteration is provably convergent under certain
assumptions [25], and has the advantage that no matrix inversions are necessary. However, it
requires the computation of F ′, a nontrivial task.

A theoretical result of this paper shows how to compute F ′(BBBk,ΓΓΓk)T (D̂DD−DDDk) without explic-
itly computing F ′(BBBk,ΓΓΓk)T . We postpone the statement and the lengthy proof of this result to
Section 4, but its application yields that

F ′(BBBk,ΓΓΓk)T (D̂DD − DDDk) =

(
ϒϒϒ

T ÃAA
kT

MMMkAAAk + S̃SS
k
0 − ĨII

k
0 , ϒϒϒ

T ÃAA
kT

QQQAAAk + S̃SS
k
0 − ĨII

k
0

)
. (3.2)

The terms above are defined as follows. First, AAAk, MMMk are defined as AAA, MMM at the kth step of the
iterative scheme. Next, consider the recurrence relation

S̃k
j = S̃k

j+1 −β k
j+1Ik

j+1S̃k
j+1 −β k

j+1Ik
j+1 Ĩk

j+1 + Ŝ j+1 −Sk
j+1,

Ĩk
j = Ĩk

j+1 +β k
j+1 Ĩk

j+1Sk
j+1 − γk

j+1 Ĩk
j+1 +β k

j+1Sk
j+1S̃k

j+1,

R̃k
j = R̃k

j+1 + γk
j+1 Ĩk

j+1,

(3.3)

with final conditions S̃k
N = 0, Ĩk

N = 0 , R̃k
N = 0, and define ÃAA

k
similarly to AAA but using S̃k

j , Ĩk
j , R̃k

j
instead. Also,

S̃SS
k
0 =

(
S̃k

0, S̃
k
0, . . . , S̃

k
0

)
∈ RN , ĨII

k
0 =

(
Ĩk
0 , Ĩ

k
0 , . . . , Ĩ

k
0

)
∈ RN .

It follows from the iterative method (3.1) and identity (3.2) that

BBBk+1 = BBBk −wk
ξξξ

k
, ΓΓΓ

k+1 = ΓΓΓ
k +wk

ζζζ
k
, wk =

1
N

∥DDD−DDDk∥2

∥(ξξξ k
,ζζζ

k
)∥

2 , (3.4)

where we denote

ξξξ
k
= ϒϒϒ

T ÃAA
kT

MMMkAAAk + S̃SS
k
0 − ĨII

k
0, ζζζ

k
= ϒϒϒ

T ÃAA
kT

QQQAAAk + S̃SS
k
0 − ĨII

k
0. (3.5)

Trends Comput. Appl. Math., 25 (2024), e01805
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For given BBB1 and ΓΓΓ
1, the above steps completely describe the method. Indeed, from (3.3) we

compute ÃAA
k

and then ξξξ
k, ζζζ

k follow from (3.5). That allows the computation of BBBk+1, ΓΓΓ
k+1

from (3.4).

It becomes clear from the numerical simulations that the algorithm performance was sensible to
the initial guesses of BBB1 and ΓΓΓ

1. Approximating ΓΓΓ from the data is usually easier since it depends
on the recovering period of the infected patients. That does not hold for BBB. To come up with a
fair BBB1, we propose an preprocessing algorithm based on a SI (Susceptible-Infected) model.

The SI model is a simple compartmental models, written as

Ŝ j+1 = Ŝ j −
β 1

j Ŝ j Îcumul
j

P
, Îcumul

j+1 = Îcumul
j +

β 1
j Ŝ j Îcumul

j

P
for j = 1, . . . ,N − 1, (3.6)

where we replace the susceptible and infected by the known data ŜSS and ÎII, leaving BBB1 as the only
unknown. It follows from the first equation that

β
1
j =−

P
(
Ŝ j+1 − Ŝ j

)
Ŝ j Îcumul

j
for j = 1,2, . . . ,N −1, (3.7)

and we set β 1
N = β 1

N−1. Note that the second equation in (3.6) is also satisfied since Ŝ j = P−
Îcumul

j .

For ΓΓΓ
1, we consider

γ
1
j = 1/7, for j = 1,2, . . . ,N, (3.8)

assuming that patients recover in week, in average.

As a way to measure the overall quality of our approximations and as a stopping criteria of our
iterative scheme, we employ the regression (or determination) coefficient

Rk
2 = 1−

N
∑
j=1

(Ŝ j −Sk
j)

2

N
∑
j=1

(Ŝ j −S̄)2
, S̄ =

1
N

N

∑
j=1

Ŝ j. (3.9)

Such coefficient is often used to evaluate the fitting ability of various methods [7, 13, 16, 21, 27].
It ranges from zero to one, where being close to one indicates good approximations.

In this work, we stop our iterations as soon as Rk
2 > 0.99999; See Algorithm 1.

4 APPLICATION OF THE MINIMUM ERROR METHOD TO THE MODEL

In this section, we show how to compute the action of the dual of F . Indeed, the following
theorem holds.

Theorem 1. Let F be described as above, where (2.1) holds. Then

F ′(BBB,ΓΓΓ)T (D̂DD−DDD) =
(

ϒϒϒ
T ÃAA

T
MMMAAA+ S̃SS0 − ĨII0 , ϒϒϒ

T ÃAA
T

QQQAAA+ S̃SS0 − ĨII0

)
,

Trends Comput. Appl. Math., 25 (2024), e01805
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6 PARAMETER IDENTIFICATION PROBLEM

Algorithm 1 Iteration to estimate (BBB,ΓΓΓ).

Data: ŜSS
Result: Compute an approximation for (BBB,ΓΓΓ) using the Minimal Error Iteration Scheme
Choose (BBB1,ΓΓΓ1) from Eqs. (3.7) and (3.8) Compute SSS1 and III1from Eq. (1.1), up to j = N − 1

replacing (BBB,ΓΓΓ) by (BBB1,ΓΓΓ1) Compute R1
2 from Eq. (3.9), replacing SSSk by SSS1 k = 1 while(

Rk
2 < 0.99999

)
do

Compute sssk+1 and iiik+1 from Eq. (3.3), replacing (BBBk,ΓΓΓk) by (BBBk+1,ΓΓΓk+1) Compute
(BBBk+1,ΓΓΓk+1) using Eq. (3.4) Compute SSSk+1 and IIIk+1 from Eq. (1.1), replacing (BBB,ΓΓΓ) by
(BBBk+1,ΓΓΓk+1) Compute Rk+1

2 from Eq (3.9), replacing SSSk by SSSk+1 k=k+1;
end

where we define ÃAA, S̃SS0, ĨII0 as follows. Consider first the recurrence relation
S̃ j = S̃ j+1 −β j+1I j+1S̃ j+1 −β j+1I j+1 Ĩ j+1 + Ŝ j+1 −S j+1,

Ĩ j = Ĩ j+1 +β j+1 Ĩ j+1S j+1 − γ j+1 Ĩ j+1 +β j+1S j+1S̃ j+1,

R̃ j = R̃ j+1 + γ j+1 Ĩ j+1,

with final conditions S̃N = 0, ĨN = 0 , R̃N = 0, and define ÃAA as AAA but using S̃ j, Ĩ j, R̃ j. Let,

S̃SS0 =
(

S̃0, S̃0, . . . , S̃0

)
∈ RN , ĨII0 =

(
Ĩ0, Ĩ0, . . . , Ĩ0

)
∈ RN .

Proof. Let F(xxx) = DDD, where xxx = (BBB,ΓΓΓ) and DDD is such that (2.1) holds. Let ΘΘΘBBB =

(θβ 1,θβ 2, . . . ,θβ N), ΘΘΘΓΓΓ = (θγ 1,θγ 2, . . . ,θγ N), ΘΘΘ = (ΘΘΘBBB,ΘΘΘΓΓΓ) ∈ R2N be arbitrary vectors, and
λ ∈ R be nonzero. Evaluating the operator F at xxx+λΘΘΘ, we obtain F(xxx+λΘΘΘ) = DDDλ , where DDDλ

is such that 

Sλ
j+1 = Sλ

j −
(

β j +λθβ j

)
Iλ

j Sλ
j ,

Iλ
j+1 = Iλ

j +
(

β j +λθβ j

)
Iλ

j Sλ
j −

(
γ j +λθγ j

)
Iλ

j ,

Rλ
j+1 = Rλ

j +
(

γ j +λθγ j

)
Iλ

j ,

Sλ
1 = S1 +λ ∑

N
j=1

(
θβ j +θγ j

)
,

Iλ
1 = 1−S1 −λ ∑

N
j=1

(
θβ j +θγ j

)
,

Rλ
1 = 0.

(4.1)

As in (2.1), we gather that

ΛΛΛ
λ

ϒϒϒ = AAAλ
ϒϒϒ+MMMλ AAAλ (BBBλ +λΘΘΘBBB)+QQQAAAλ (ΓΓΓλ +λΘΘΘΓΓΓ), (4.2)

with initial condition

aaaλ
1 =

(
S(1)+

〈
(ϒϒϒ,ϒϒϒ),(ΘΘΘBBB,ΘΘΘΓΓΓ)

〉
R2N

,1−S(1)−
〈
(ϒϒϒ,ϒϒϒ) , (ΘΘΘBBB,ΘΘΘΓΓΓ)

〉
R2N

, 0
)
.

Trends Comput. Appl. Math., 25 (2024), e01805
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The Gateaux derivative of F at xxx in the direction ΘΘΘ is given by

DDD = F ′(xxx)(ΘΘΘ) = lim
λ→0

F(xxx+λΘΘΘ)−F(xxx)
λ

, (4.3)

where DDD = (S1,0,0,S2,0,0, . . . ,SN ,0,0). We denote the following limits

AAA = lim
λ→0

AAAλ −AAA
λ

, ΛΛΛ = lim
λ→0

ΛΛΛ
λ −ΛΛΛ

λ
, MMM = lim

λ→0

MMMλ −MMM
λ

. (4.4)

Considering the difference between (4.2) and (2.1), dividing by λ and taking the limit λ → 0, we
have

ΛΛΛϒϒϒ = AAAϒϒϒ+MMMAAABBB+MMMAAABBB+MMMAAAΘBBB +QQQAAAΓΓΓ+QQQAAAΘΓΓΓ, (4.5)

with initial condition

aaa1 =
(〈

(ϒϒϒ,ϒϒϒ),(ΘΘΘBBB,ΘΘΘΓΓΓ)
〉
R2N

,−
〈
(ϒϒϒ,ϒϒϒ) , (ΘΘΘBBB,ΘΘΘΓΓΓ)

〉
R2N

, 0
)
.

This last equation is yet another system of coupled nonlinear difference equations, depending on
the parameter ΘΘΘ, representing an arbitrary point in R2N . From the minimal error iteration (3.1)
and ΘΘΘ ∈ R2N arbitrary, we have〈

F ′(xxx)T (D̂DD−F(xxx)),ΘΘΘ
〉
R2N

=
〈

F ′(xxx)T (D̂DD−DDD),ΘΘΘ
〉
R2N

=
〈

D̂DD−DDD, F ′(xxx)(ΘΘΘ)
〉
R3N

.

by definition of adjoint operator. From Eq. (4.3) and the previous equation, we obtain〈
F ′(xxx)T (D̂DD−F(xxx)),ΘΘΘ

〉
R2N

=
〈

D̂DD−DDD, DDD
〉
R3N

=
〈

D̂DD−DDD, AAA
〉
R3N

, (4.6)

Multiplying (4.5) by ÃAA
T

, we obtain

ϒϒϒ
T ÃAAΛΛΛϒϒϒ = ϒϒϒ

T ÃAA
T

AAAϒϒϒ+ϒϒϒ
T ÃAA

T
MMMAAABBB+ϒϒϒ

T ÃAA
T

MMMAAABBB+

ϒϒϒ
T ÃAA

T
MMMAAAΘΘΘBBB +ϒϒϒ

T ÃAA
T

QQQAAAΓΓΓ+ϒϒϒ
T ÃAA

T
QQQAAAΘΘΘΓΓΓ. (4.7)

We denote

Λ̃ΛΛ =


ãaa0 ooo . . . ooo
ooo ãaa1 . . . ooo
ooo ooo . . . ooo
...

...
. . .

...
ooo ooo . . . ãaaN


then, from (3.3), we have

Λ̃ΛΛϒϒϒ = ÃAAϒϒϒ+ M̃MMAAABBB−MMMT ÃAABBB+QQQT ÃAAΓΓΓ+ D̂DD−DDD. (4.8)

Multiplying (4.8) by AAA
T

, it follows that

ϒϒϒ
T AAA

T
Λ̃ΛΛϒϒϒ = ϒϒϒ

T AAA
T

ÃAAϒϒϒ+ϒϒϒ
T AAA

T
M̃MMAAABBB−ϒϒϒ

T AAA
T

MMMT ÃAABBB+ϒϒϒ
T AAA

T
QQQT ÃAAΓΓΓ+ϒϒϒ

T AAA
T
(D̂DD−DDD). (4.9)

Trends Comput. Appl. Math., 25 (2024), e01805
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Note that

AAA
T

ÃAA = ÃAA
T

AAA, AAA
T

M̃MM = ÃAA
T

MMM, −AAA
T

MMMT ÃAA = ÃAA
T

MMMAAA

AAA
T

QQQT ÃAA = ÃAA
T

QQQAAA, AAA
T

QQQT ÃAA = ÃAA
T

QQQAAA.
(4.10)

Substituting (4.10) in (4.9), we have

ϒϒϒ
T AAA

T
Λ̃ΛΛϒϒϒ = ϒϒϒ

T ÃAA
T

AAAϒϒϒ + ϒϒϒ
T ÃAA

T
MMMAAABBB + ϒϒϒ

T ÃAA
T

MMMAAABBB + ϒϒϒ
T ÃAA

T
QQQAAAΓΓΓ + ϒϒϒ

T AAA
T
(D̂DD − DDD). (4.11)

Subtracting equations (4.7) and (4.11),

ϒϒϒ
T ÃAA

T
ΛΛΛϒϒϒ−ϒϒϒ

T AAA
T

Λ̃ΛΛϒϒϒ = ϒϒϒ
T ÃAA

T
MMMAAAΘΘΘBBB +ϒϒϒ

T ÃAA
T

QQQAAAΘΘΘΓΓΓ −ϒϒϒ
T AAA

T
(D̂DD−DDD)

ãaaT
NaaaN+1 −aaaT

1 ãaa0 = ϒϒϒ
T ÃAA

T
MMMAAAΘΘΘBBB +ϒϒϒ

T ÃAA
T

QQQAAAΘΘΘΓΓΓ −ϒϒϒ
T AAA

T
(D̂DD−DDD).

From (3.3), ãaaT
N = (0,0,0), and previous equation, we gather that

−aaaT
1 ãaa0 =

〈
ϒϒϒ

T ÃAA
T

MMMAAA,ΘΘΘBBB

〉
RN

+
〈

ϒϒϒ
T ÃAA

T
QQQAAA,ΘΘΘΓΓΓ

〉
RN

−
〈

D̂DD−DDD, ϒϒϒ
T AAA

〉
R3N

=

〈(
ÃAA

T
MMMAAA, ÃAA

T
QQQAAA

)
,(ΘΘΘBBB,ΘΘΘΓΓΓ)

〉
R2N

−
〈

D̂DD−DDD, ϒϒϒ
T AAA

〉
R3N

.

So we have 〈
D̂DD−DDD, AAAϒϒϒ

〉
R3N

=

〈(
ϒϒϒ

T ÃAA
T

MMMAAA,ϒϒϒT ÃAA
T

QQQAAA
)
,(ΘΘΘBBB,ΘΘΘΓΓΓ)

〉
R2N

+aaaT
1 ãaa0.

From equation (4.5) and the previous equation, we obtain

〈
D̂DD−DDD, AAAϒϒϒ

〉
R3N

=

〈(
ϒϒϒ

T ÃAA
T

MMMAAA,ϒϒϒT ÃAA
T

QQQAAA
)
,(ΘΘΘBBB,ΘΘΘΓΓΓ)

〉

+
(〈

(ϒϒϒ,ϒϒϒ),(ΘΘΘBBB,ΘΘΘΓΓΓ)
〉
,−

〈
(ϒϒϒ,ϒϒϒ) , (ΘΘΘBBB,ΘΘΘΓΓΓ)

〉
, 0

)(
S̃0, Ĩ0, R̃0

)T
.

Then〈
D̂DD−DDD, AAA

〉
R3N

=

〈(
ϒϒϒ

T ÃAA
T

MMMAAA,ϒϒϒT ÃAA
T

QQQAAA
)
,(ΘΘΘBBB,ΘΘΘΓΓΓ)

〉
+
〈
(S̃SS0, S̃SS0),(ΘΘΘBBB,ΘΘΘΓΓΓ)

〉
−
〈
(̃III0, ĨII0) , (ΘΘΘBBB,ΘΘΘΓΓΓ)

〉
=

〈(
ϒϒϒ

T ÃAA
T

MMMAAA+ S̃SS0 − ĨII0 , ϒϒϒ
T ÃAA

T
QQQAAA+ S̃SS0 − ĨII0

)
, (ΘΘΘBBB,ΘΘΘΓΓΓ)

〉
R2N

. (4.12)

From Eqs. (4.12) and (4.6)〈
F ′(xxx)T (D̂DD−F(xxx)),ΘΘΘ

〉
R2N

=〈(
ϒϒϒ

T ÃAA
T

MMMAAA+ S̃SS0 − ĨII0 , ϒϒϒ
T ÃAA

T
QQQAAA+ S̃SS0 − ĨII0

)
, (ΘΘΘBBB,ΘΘΘΓΓΓ)

〉
R2N

.
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Since ΘΘΘ ∈ R2N is arbitrary, we obtain

F ′(xxxk)T (D̂DD−F(xxx)) =
(

ϒϒϒ
T ÃAA

T
MMMAAA+ S̃SS0 − ĨII0 , ϒϒϒ

T ÃAA
T

QQQAAA+ S̃SS0 − ĨII0

)
.

□

5 NUMERICAL RESULTS

We consider numerical results for the evolution of the COVID-19 pandemics using data from
two cities in Brazil: Rio de Janeiro, with a total population of 6.775.561 people, and the city of
Petrópolis, with a population of “only” 307.144 people. The epidemiological data was obtained
from the Brazilian Ministry of Health (https://covid.saude.gov.br), for the period March
28, 2020 up to February 10, 2021, when the Brazilian Government started vaccination campaigns.
Due to the EMA-smoothing procedure of the data, we consider for practical purposes that the
available data starts on April 03, 2020.

Using the minimal error method, implemented as in Algorithm 1, we estimate the time-dependent
transmission probability BBB and removal probability ΓΓΓ, using as data the susceptible population ŜSS.
In the process, we also estimate RRR, the size of the immune population at a certain given moment,
and III, the total number of infected people. Note that III cannot be obtained directly from ÎII

cumul

since this later data refer to the total amount of infected patients since the start of the pandemic,
and III is related to the total amount of sick patients at a fixed day. Knowing BBB and ΓΓΓ, we compute
the discrete-time basic and effective reproduction numbers

R◦
j =

β j

γ j
, R j =

β j

γ j
S j =R◦

jS j j = 1,2, · · · ,N,

and R◦R◦R◦ = (R◦
1,R◦

2, . . . ,R◦
N), RRR= (R1,R2, . . . ,RN).

We start by showing that the smoothing step preserves accuracy while smoothing the data. Fig-
ure 1, displays ÎII

EMA
and ÎII

cumul
for the cities of Rio de Janeiro and Petrópolis. Note that ÎII

EMA
is

able to smooth out the rough data.

Next we show the numerical results related to our scheme. The data estimation for the final days
suffer from a minor instability, and to avoid that we disregard the last five days from the data.

Figure 2 presents the results obtained from the SIR model (1.1) using the estimated parameters BBB
and ΓΓΓ. Subplot (A) compares the susceptible population real data (in red) with the model results
(in blue). Note that are no perceptive difference between data and our computer simulation,
showing that our parameter estimation algorithm is effective. Subplots (B) and (C) represent the
infected and removed population obtained from the SIR model. See also Figure 4 for similar
results for Petrópolis.

Figure 3-A displays the estimated infection and recovery probability parameters. We point out
that the recovery probability is roughly 1/10, very similar to what is used for numerical sim-
ulations. Figure 3-B shows the computed basic and effective reproduction numbers. Finally,

Trends Comput. Appl. Math., 25 (2024), e01805
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10 PARAMETER IDENTIFICATION PROBLEM

Figure 3-C shows the number of new reported cases. Note that running SIR model with the
estimated parameters yields an accurate aproximation of the smoothed data.

The results for Petrópolis are similar (see Figures 4 and 5) indicating that the method also works
for cities with smaller populations.

Figure 1: Plots for Rio de Janeiro and Petrópolis. The red line represents the cumulative number
of confirmed cases from March 28, 2020, to February 10, 2021. The blue line is the EMA of the
cumulative number of confirmed cases from April 03, 2020, to February 10, 2021.

Trends Comput. Appl. Math., 25 (2024), e01805
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Figure 2: Plots for Rio de Janeiro. The y-axis represents the population. Subplot (A) shows the
susceptible population, where the red line is the real data and the blue line is the approximation
obtained from the SIR model (1.1) using the estimated parameters. Subplots (B) and (C) represent
the infected and removed population obtained from the SIR model, respectively.
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12 PARAMETER IDENTIFICATION PROBLEM

Figure 3: Plots for Rio de Janeiro. In Subplot (A), the blue line represents the transmission prob-
ability and red line shows the removal probability. Subplot (B) displays the basic and effective
reproduction numbers (we also plot the constant line equal to one as a reference). In Subplot (C),
the green line represents the new daily cases from March 28, 2020, to February 10, 2021. The
blue line is the EMA of the new daily cases from April 03, 2020, to February 10, 2021. The red
plot depicts the predicted new cases using the estimated parameters.
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Figure 4: Plots for Petrópolis. See Figure 2 for the subplot description.
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Figure 5: Plots for Petrópolis. See Figure 3 for the subplot description.
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Remark 1. In this paper, we estimate the parameters βi and γi for i = 1,2, . . . ,N based on known
data. Regarding predictions, one could, for instance, use constants β and γ for predictions.
In [10], the authors predict pessimistic/optimistic outcomes of up to 70 days based on maxi-
mum/minimum values of β of a prior period. In [29], the author employs the Gomperz model
combined with an iterative method to estimate future points.

6 CONCLUSION

Computational modeling yields a powerful helping hand in understanding the dynamics of com-
plex phenomena, but it is often the case that model parameters are not all available. That is the
case with epidemiological models, in particular when human activity is involved. Here, we em-
ploy a SIR model combined with real data to understand the dynamics of COVID-19 infections.
To find out important time dependent parameters modeling the probability of contacts and prob-
ability of recovery, we use a minimal error method. This type of scheme yields an iterative way
to approximate parameters. There is a caveat however: one of the steps of the algorithm is ex-
tremely hard to compute, specially for nonlinear problems as ours. We circumvent such hurdle
by carefully constructing auxiliary problems that makes the algorithm feasible.

We show that the scheme is reliable by testing with data from two different Brazilian cities: Rio
de Janeiro and Petrópolis. The first one with a population of almost seven million people, and
Petrópolis with roughly three hundred thousand people. After approximating the parameters, we
use them in the model and reproduce the dynamics of the disease with surprising accuracy. That
shows that the estimation of parameters was correct. We point out that the results for both cities
were qualitative analogous, indicating that the method does not depend on the population size.
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APPENDIX A EXPONENTIAL MOVING AVERAGE (EMA)

The real data indicating the number of daily infected patients is too “rough”, and hampers the convergence
of the algorithm. That can be avoided by replacing the data ÎII

cumul with a exponential moving average

ÎII
EMA

=
(

ÎEMA
1 , ÎEMA

2 , . . . , ÎEMA
N

)
as described below.

Moving average techniques smooth data over a specified period of time. There is a wide variety of moving
averages, and the Simple Moving Average (SMA), and Exponential Moving Average (EMA) are of interest.

An EMA gives “more weight” to recent numbers in an attempt to make it more responsive to new infor-
mation. To calculate an EMA, you first choose a window of d days. In our case, we choose d = 10. Then,
compute the SMA using the first d days, i.e., simply take the data average of the first d days. Next, it is
enough to compute the EMA using appropriate weights. Then, the EMA of the rough data containing the
cumulative number of confirmed cases

ÎII
rough

=
(

Îrough
1 , Îrough

2 , . . . , Îrough
N+d

)
,

follows the formula

Îcumul
j =


Îrough
1 +Îrough

2 +...+Îrough
d

d , if j = 1,

Îrough
j+d−1

( 2
1+d

)
+ Îcumul

j−1
(
1− 2

1+d
)
, if j = 2,3, . . . ,N,

and Îcumul
j represents EMA of ÎII

rough at day j. Note that the smoothed data “starts” at day d +1. Again, we
consider d = 10.

APPENDIX B MINIMAL ERROR METHOD

In this appendix we outline mathematical details of the Minimal Error Method. Let F : D(F)⊂Rp →Rq be
a nonlinear operator, where D(F) is domain of F , and F(xxx) = ( f1(xxx), f2(xxx), · · · , fq(xxx)) = yyy. The problem
is to estimate xxx, given yyy.

The transpose of a vector xxx is denoted by xxxT . The linear continuous operator F ′(xxx) : Rp → Rq is called
the Fréchet derivative of F at xxx, and in finite dimensional problems this operator is the Jacobian matrix
evaluated at xxxT = (x1,x2, · · · ,xp) [8, 17].

The transpose (or adjoint operator) F ′(xxx)T (or F ′(xxx)∗) of F ′(xxx) is an operator F ′(xxx)T : Rq → Rp satisfying〈
F ′(xxx)T zzz,www

〉
Rp

=
〈

zzz,F ′(xxx)www
〉
Rq
, for all zzz ∈ Rq, www ∈ Rp,

where
〈
aaa,bbb

〉
Rp = aaaT bbb denotes the inner product of the vectors aaa and bbb in Rp.

To obtain an approximation for xxx, given yyy and guess initial xxx1, we used the minimal error method

xxxk+1 = xxxk +ω
kF ′(xxxk)T (yyy−F(xxxk)), (B.1)

where the weight

ωk =
1
M

∥yyy−F(xxxk)∥2
Rp

∥F ′(xxxk)
T
(yyy−F(xxxk))∥

2
Rq

.
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Above, ∥ · ∥Rp is the Euclidean norm and 1/M < 2; see [25]. In our numerical tests, M = p delivered the
best results.

It is possible to show that, under certain conditions, xxxk converges to a solution of F(xxx)= yyy; see [18, Theorem
3.21] or [25, Theorem 2.6].

From iteration (B.1), to get xxxk+1 we need to calculate the transpose of Jacobian matrix F ′(xxxk)
T , that makes

the algorithm impractical. In this work, we show that it is possible to calculate xxxk+1 without computing the
transpose of the Jacobian matrix.
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