
TEMA Tend. Mat. Apl. Comput., 9, No. 1 (2008), 63-72.

c© Uma Publicação da Sociedade Brasileira de Matemática Aplicada e Computacional.

Two Methods of Solving Heat and Wave Problems

R.T. COUTO1 , Depto. Matemática Aplicada, Universidade Federal Fluminense
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Abstract. Two methods of solving a large class of heat and wave problems are

described. The problems are two-dimensional and exhibit not only non-homogeneity

of the differential equation and of the initial and boundary conditions but also

time dependence of the sources and of the initial and boundary data. The two

corresponding solutions are proved to be equal, and an illustration of the methods

is provided by applying them to solve a specific problem using the polar coordinates.

1. Introduction

In this work, we solve a large class of two-dimensional heat and wave problems by
means of two different methods. They are powerful methods which are capable of
dealing with a variety of troublesome problems analytically, in a compact and uni-
form way. In fact, the heat and wave problems solved here present non-homogeneity

of the differential equation and of the initial and boundary conditions as well as time

dependence of the sources and of the initial and boundary data.
We develop such methods by generalizing those described in Reference [2, Sec.

9.17]. The generalization achieved allows the application of the methods to problems
with more than one spatial dimension and under boundary conditions of the first
(Dirichlet), second (Neumann) or third types. We also confirm that the solutions
derived with the two methods are equal. In addition, we illustrate the methods by
applying them to solve a specific heat problem.

The fact that we have considered two spatial dimensions to develop the methods
offers no difficult in applying them to three-dimensional problems. Moreover, since
the main features of the methods do not depend on the kind of the problem (heat or
wave), we expound them by solving the heat problem only. Afterwards, by changing
the heat problem solution in an obvious way, we provide the wave problem solution.

In Section 2, we define the heat and wave problems to be solved as well as, for its
necessity in the succeeding sections, present the solution for the particular case of
homogeneous differential equation and boundary condition. In Sections 3 and 4, we
solve the heat problem according to the first and second methods. In Section 5, we
exemplify the methods by applying them to solve the Dirichlet problem for the heat
equation in a unit disk. In Section 6, we demonstrate that the solutions obtained
with the two methods are equivalent. A section of final comments concludes the
body of the paper.
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2. Formulation of the Problem

Consider a bounded domain A ⊂ R
2, and let us denote its boundary by ∂A and the

closure A∪∂A by Ā. We will use the vector variables ~ρ and ~ρB to refer to a generic
point of Ā and ∂A, respectively, and this is to be understood unless another use is
made.

In this work, we solve the following two initial-boundary value problems: the
heat problem

Tt(~ρ, t) −∇2T = f(~ρ, t) , B̂T (~ρB , t) = g(~ρB , t) , T (~ρ, t0) = h(~ρ ) (2.1)

and the wave problem

ztt(~ρ, t) −∇2z = f(~ρ, t) , B̂ z(~ρB , t) = g(~ρB , t) , z(~ρ, t0) = h(~ρ ) , zt(~ρ, t0) = v(~ρ ) ,
(2.2)

with t ≥ t0. Here, B̂ is the operator

B̂ ≡ p(~ρB) + q(~ρB) ∂/∂n , (2.3)

where ∂/∂n = ~n · ∇, the normal derivative, with the unit normal vector ~n directed
outward from Ā at a point of ∂A. In particular, if B̂ = 1 or B̂ = ∂/∂n, we have the
Dirichlet or the Neumann condition, respectively.

It is well known (c.f. References [2, Ch. 9] and [6, Ch. IX, Sec. 4]) that, when
f = g ≡ 0, we can use the method of separation of variables, obtaining, for the heat
problem, the solution

T (~ρ, t) =
∑

λ

Aλ e
−λt ψλ(~ρ ) , (2.4)

where the λ’s are the eigenvalues and the ψ’s are the eigenfunctions of the eigenvalue
problem (studied, for example, in Reference [6, Ch. VIII, Sec. 10], wherein the
statements below are also discussed)

∇2ψ + λψ(~ρ ) = 0 , B̂ψ(~ρB) = 0 . (2.5)

The self-adjointness of ∇2 implies that the eigenvalues are real and justifies the
imposition of the orthornormality condition

∫

A

dA ψ∗
λ′(~ρ ) ψλ(~ρ ) = δλ′λ . (2.6)

By using it, we can calculate the coefficients of the generalized Fourier series of a
function F (~ρ ) :

F (~ρ ) =
∑

λ

Fλ ψλ(~ρ ) ⇒ Fλ =

∫

A

dA ψ∗
λ(~ρ )F (~ρ ) . (2.7)

By demanding that (2.4) satisfy the initial condition in (2.1) and using (2.7),
we can find Aλ. As a result, we have that the solution of the problem (2.1) without

sources (f ≡ 0) and with homogeneous boundary condition (g ≡ 0) is given by

T (~ρ, t) =
∑

λ

hλ e
−λ(t−t0) ψλ(~ρ ) , with hλ =

∫

A

dA ψ∗
λ(~ρ ) h(~ρ ) . (2.8)
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In an analogous manner, we obtain the following solution for the wave problem
(2.2) when f = g ≡ 0 (Reference [6, Ch. VIII, Secs. 8 and 9]):

z(~ρ, t) =
∑

λ

ψλ(~ρ ) [hλ Cλ(t− t0) + vλ Sλ(t− t0) ] ,

where vλ =
∫

A
dA ψ∗

λ(~ρ ) v(~ρ ),

Cλ(t) ≡
{

1 (λ = 0)

cos (t
√
λ ) (λ > 0)

and Sλ(t) ≡
{

t (λ = 0)

( 1/
√
λ ) sin (t

√
λ ) (λ > 0) .

That the eigenvalues are nonnegative can be deduced from a physical reasoning
(such as that in Reference [5, Sec. 8.2]) or analytically.

3. The First Method of Solution

Let us try to obtain the solution of the problem (2.1) in the following form:

T (~ρ, t) =
∑

λ

Tλ(t) ψλ(~ρ ) . (3.1)

Our goal here is to determine Tλ(t), which, according to (2.7), can be written as

Tλ(t) =

∫

A

dA ψ∗
λ(~ρ ) T (~ρ, t) . (3.2)

If we differentiate it with respect to t and use the heat equation in (2.1) to replace
Tt by ∇2T + f , we obtain

Ṫλ(t) =

∫

A

dA ψ∗
λ(~ρ ) Tt(~ρ, t) =

∫

A

dA ψ∗
λ∇2T +

∫

A

dA ψ∗
λ f . (3.3)

We can develop the integral of ψ∗
λ∇2T above by using integration by parts, Helm-

holtz’s equation in (2.5) and Green’s second identity as follows:

∫

A

dA ψ∗
λ∇2T =

∫

A

dA [T

−λψ∗

λ

︷ ︸︸ ︷

∇2ψ∗
λ + ∇ · (ψ∗

λ∇T − T ∇ψ∗
λ ) ] =

−λ
∫

A

dA ψ∗
λ T +

∮

∂A

ds

[

ψ∗
λ

∂T

∂n
− T

∂ψ∗
λ

∂n

]

= −λTλ(t) +Bλ(t) , (3.4)

where, in the last step, we have used (3.2) and the definition

∮

∂A

ds

[

ψ∗
λ(~ρ )

∂T

∂n
(~ρ, t) − ∂ψ∗

λ

∂n
(~ρ )T (~ρ, t)

]

≡ Bλ(t) . (3.5)

Therefore, with the substitution of the result in (3.4) into (3.3), this equation be-
comes

Ṫλ(t) + λTλ(t) = Bλ(t) + fλ(t) , (3.6)
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where we have recognized the last term in (3.3) as the coefficient of the generalized
Fourier series of f(~ρ, t) :

f(~ρ, t) =
∑

λ

fλ(t)ψλ(~ρ ) , with fλ(t) =

∫

A

dA ψ∗
λ(~ρ ) f(~ρ, t) . (3.7)

The first-order ODE (3.6) is to be solved under the initial condition Tλ(t0) = hλ,
which can be deduced by using the problem initial condition in (2.1) as well as (3.1)
and (2.8). It is a simple matter to show that the solution is

Tλ(t) = hλ e
−λ(t−t0) +

∫ t

t0

dt′ e−λ(t−t′) [fλ(t
′) +Bλ(t

′)] . (3.8)

In summary, by substituting (3.8) into (3.1), we can affirm that the solution of
the problem defined by (2.1) is given by

T (~ρ, t) =
∑

λ

ψλ(~ρ ) e−λt
{

hλ e
λt0 +

∫ t

t0

dt′ eλt
′

[fλ(t
′) +Bλ(t

′)]

}

, (3.9)

with the hλ, fλ(t) and Bλ(t) given in (2.8), (3.7) and (3.5), respectively.

For the wave problem defined by (2.2), an analogous procedure would lead to
the solution

z(~ρ, t) =
∑

λ

ψλ(~ρ )

{

hλ Cλ(t−t0) + vλ Sλ(t−t0)+
∫ t

t0

dt′
[
fλ(t

′)+Bλ(t
′)

]
Sλ(t−t′)

}

.

(3.10)

4. The Second Method of Solution

Another method of solving the heat problem given by (2.1) consists of first ho-
mogenizing the boundary condition. This is done by subtracting from T a suitable
function U also satisfying the boundary condition, that is, by considering the differ-
ence T − U ≡ T ⋆, which satisfies the homogenized boundary condition (that with
g ≡ 0). We choose U as the solution of the problem

∇2 U(~ρ | t) = 0 , B̂U(~ρB | t) = g(~ρB , t) , (4.1)

where t is viewed as a parameter.

Next we determine the correction T ⋆. It is easily seen to be the solution of the
following heat problem:

T ⋆t (~ρ, t)−∇2T ⋆ = f(~ρ, t)−Ut(~ρ | t), B̂T ⋆(~ρB , t) = 0, T ⋆(~ρ, t0) = h(~ρ )−U(~ρ | t0) .
(4.2)

In fact, notice that

T (~ρ, t) = T ⋆(~ρ, t) + U(~ρ | t) (4.3)
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satisfies the problem (2.1):

Tt(~ρ, t) −∇2T = (T ⋆t −∇2T ⋆)
︸ ︷︷ ︸

f−Ut

+(Ut −∇2U
︸ ︷︷ ︸

0

) = f X

B̂T (~ρB , t) = B̂T ⋆
︸︷︷︸

0

+ B̂U
︸︷︷︸

g

= g X

T (~ρ, t0) = T ⋆(~ρ, t0)
︸ ︷︷ ︸

h(~ρ )−U(~ρ | t0)

+ U(~ρ | t0) = h(~ρ ) X

Finally, we apply both the superposition and Duhamel’s principles (cf. References
[6, Prob. 6.5 of Ch. VIII and Prob. 2.9 of Ch. IX] and [4, Ch. 5, 1, c]) to obtain the
solution of the problem (4.2):

T ⋆(~ρ, t) = I(~ρ, t) +

∫ t

t0

dt′Q(~ρ, t | t′) , (4.4)

where I(~ρ, t), with t > t0, is the solution of

It(~ρ, t) −∇2I = 0 , B̂ I(~ρB , t) = 0 , I(~ρ, t0) = h(~ρ ) − U(~ρ | t0) , (4.5)

and Q(~ρ, t | t′), with t > t′ > t0, is the solution of

Qt(~ρ, t | t′) −∇2Q = 0 , B̂Q(~ρB , t | t′) = 0 , Q(~ρ, t′ | t′) = f(~ρ, t′) − Ut′(~ρ | t′) .
(4.6)

These are simpler heat problems, without source and with homogeneous boundary
conditions, of the same type of that solved at the end of Section 2. Their solutions
are thus given by (2.8), but with the initial temperature h replaced by those given
in (4.5) and (4.6). [Notice that, as required by Duhamel’s principle, the initial time
for the second problem is t = t′ instead of t = t0.] Therefore, we can immediately
write

I(~ρ, t) =
∑

λ

[

hλ − Uλ(t0)
]

e−λ(t−t0) ψλ(~ρ ) ,

Q(~ρ, t | t′) =
∑

λ

[

fλ(t
′) − U̇λ(t

′)
]

e−λ(t−t′)ψλ(~ρ ) .

Let us summarize the solution derived above. It is given by (4.3), (4.4) and the
two equations above, which, when joined, read

T (~ρ, t) = U(~ρ |t)+
∑

λ

ψλ(~ρ ) e−λt
{

[
hλ− Uλ(t0)

]
eλt0 +

∫ t

t0

dt′ eλt
′[
fλ(t

′) − U̇λ(t
′)

]
}

.

(4.7)
In this,

Uλ(t) ≡
∫

A

dA ψ∗
λ(~ρ ) U(~ρ | t) , U̇λ(t) =

∫

A

dA ψ∗
λ(~ρ ) Ut(~ρ | t) =

dUλ
dt

, (4.8)
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whereas hλ and fλ(t) are given in (2.8) and (3.7).
For the wave problem, the solution that would be obtained using the method

above is

z(~ρ, t) = U(~ρ | t) +
∑

λ

ψλ(~ρ )

{[

hλ − Uλ(t0)
]

Cλ(t− t0)+

[

vλ − U̇λ(t0)
]

Sλ(t− t0) +

∫ t

t0

dt′
[

fλ(t
′) − Üλ(t

′)
]

Sλ(t− t′)

}

. (4.9)

5. Exemplification of the Methods

5.1. The exemplifying problem

In this section, we apply the methods expounded in Sections 3 and 4 to solve the
following heat problem in plane polar coordinates:

Tt(ρ, ϕ, t) −∇2T = f(ρ, ϕ, t) , T (1, ϕ, t) = g(ϕ, t) , T (ρ, ϕ, 0) = h(ρ, ϕ) , (5.1)

with t ≥ 0, 0 ≤ ρ ≤ 1, ϕ ∈ R , and under the condition of periodicity

T (ρ, ϕ, t) = T (ρ, ϕ+ 2π, t) . (5.2)

Its solution is the temperature in the disk of unit radius and centered at the origin of
the xy plane. This problem is a particular case of that in (2.1), with Ā corresponding
to the points of that disk, B̂ = 1 (Dirichlet boundary condition), and t0 = 0.

First of all, we need to solve the two-dimensional eigenvalue problem specified
by (2.5), which here takes the form

ψρρ + ρ−1ψρ + ρ−2ψϕϕ + λψ(ρ, ϕ) = 0 , ψ(1, ϕ) = 0 . (5.3)

The substitution of the separation of variables approach ψ = R(ρ)F(ϕ) gives

(R′′ + ρ−1R′

R + λ

)

ρ2 + F ′′/F
︸ ︷︷ ︸

−µ

= 0 . (5.4)

We indicate above that the last term must be equal to the constant −µ. This
fact and the condition of periodicity (5.2) lead to the well known one-dimensional
eigenvalue problem

F ′′ + µF(ϕ) = 0 , F(ϕ) = F(ϕ+ 2π) ,

whose solutions (cf. Reference [1, Secs. 8.3 and 9.2]) are the eigenfunctions Fm(ϕ) =
eimϕ, corresponding to the eigenvalues µm = m2, with m = 0, ±1, ±2, · · · .

With µ determined, we can solve the other 1D eigenvalue problem which follows
from the radial ODE separated in (5.4) and the boundary condition in (5.3):

ρ2R′′
m + ρR′

m + (λmρ
2 −m2)Rm(ρ) = 0 , Rm(1) = 0 .
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Actually, this is an eigenvalue problem for each value ofm. The well known eigenval-
ues are λmn = j2mn and the corresponding eigenfunctions are Rmn(ρ) = Jm(jmnρ),
where jmn is the n-th positive zero of the Bessel function Jm (n = 1, 2, 3 · · · ) (cf.
Reference [1, Sec. 9.7]).

Therefore, the eigenvalues of (5.3) and the corresponding eigenfunctions satis-
fying the normalization condition contained in (2.6) are

λmn = j2mn , ψmn(ρ, ϕ) =
Jm(jmnρ) e

imϕ

√
π Jm+1(jmn)

. (5.5)

5.2. Solution according to the first method

The solution of (5.1) according to (3.9) is, using (5.5),

T (ρ, ϕ, t) =
∞∑

m=−∞

∞∑

n=1

ψmn(ρ, ϕ) e−j
2

mn
t

{

hmn +

∫ t

0

dt′ ej
2

mn
t′ [fmn(t

′) +Bmn(t
′)]

}

,

(5.6)
where hmn and fmn(t

′), according to (2.8) and (3.7), and using (5.5), are given by

hmn
fmn(t

′)

}

=

2π∫

0

dϕ

1∫

0

dρ ρψ∗
mn(ρ, ϕ)

{
h(ρ, ϕ)
f(ρ, ϕ, t′)

=

2π∫

0

dϕ

1∫

0

dρ ρ
Jm(jmnρ) e

−imϕ

√
π Jm+1(jmn)

{
h(ρ, ϕ)
f(ρ, ϕ, t′)

(5.7)
In addition, according to (3.5), Bmn(t

′) can be calculated as follows:

Bmn(t
′) =

∫ 2π

0

dϕ
[

ψ∗
mn(1, ϕ)

︸ ︷︷ ︸

0

∂T

∂ρ
(1, ϕ, t) − T (1, ϕ, t)

︸ ︷︷ ︸

g(ϕ,t)

∂ψ∗
mn

∂ρ
(1, ϕ)

]

,

which, using the boundary conditions in (5.3) and (5.1) as indicated above, and
substituting ψmn(ρ, ϕ) from (5.5), becomes

Bmn(t
′) =

−dJm(jmnρ)
dρ

∣
∣
∣
ρ= 1√

π Jm+1(jmn)

2π∫

0

dϕ g(ϕ, t) e−imϕ =
jmn√
π

2π∫

0

dϕ g(ϕ, t) e−imϕ . (5.8)

5.3. Solution according to the second method

The solution of the exemplifying problem (5.1) according to (4.7) is

T (ρ, ϕ, t) = U(ρ, ϕ | t) +

∞∑

m=−∞

∞∑

n=1

ψmn(ρ, ϕ) e−j
2

mn
t

{

hmn − Umn(0) +

∫ t

0

dt′ ej
2

mn
t′
[
fmn(t

′) − U̇mn(t
′)

]
}

. (5.9)

In this, the hmn and fmn(t
′) are those in (5.7), and U(ρ, ϕ | t), Umn(0) and U̇mn(t

′)
are determined as follows:
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The function U(ρ, ϕ | t) is obtained by solving the problem defined by (4.1),
which here takes the form

∇2U(ρ, ϕ | t) = 0 , U(1, ϕ | t) = g(ϕ, t) .

The solution thereof is given by the well known Poisson’s integral formula (Reference
[2, Sec. 9.5])

U(ρ, ϕ | t) =
1

2π

∫ 2π

0

dφ
(1 − ρ2)

1 − 2ρ cos(φ− ϕ) − ρ2
g(φ, t) . (5.10)

Therefore, from (4.8), and using (5.5), we see that

Umn(0)

U̇mn(t
′)

}

=

∫ 2π

0

dϕ

∫ 1

0

dρ ρ
Jm(jmnρ) e

−imϕ

√
π Jm+1(jmn)

{
U(ρ, ϕ | 0)
Ut′(ρ, ϕ | t′) ,

with, from (5.10),

U(ρ, ϕ | 0)
Ut′(ρ, ϕ | t′)

}

=
1

2π

∫ 2π

0

dφ
(1 − ρ2)

1 − 2ρ cos(φ− ϕ) − ρ2

{
g(φ, 0)
gt′(φ, t

′) .

6. Proof of the Equality of Both Solutions

It is natural to ask if the solution of the exemplifying problem given by (5.6) can be
shown to be equal to that given by (5.9). In this section, we answer this affirmatively,
but in a more general sense. Instead of restricting the proof to the specific problem
of Section 5, we demonstrate below that both expressions (3.9) and (4.7) of the
solution of the general heat problem given by (2.1) can be shown to be equal. [The
same procedure described below is valid to demonstrate that the solution expressions
(3.10) and (4.9), referring to the wave problem given by (2.2), can be show to be
equal.]

By comparing (3.9) and (4.7), we see that, in each of these two expressions, the
terms due to the source and the initial condition are equal. Therefore, we only need
to show the equality of the terms due to the boundary condition, that is,

∑

λ

ψλ(~ρ )e−λt
t∫

t0

dt′eλt
′

Bλ(t
′)=U(~ρ |t)−

∑

λ

ψλ(~ρ )e−λt
{

Uλ(t0)e
λt0 +

t∫

t0

dt′eλt
′

U̇λ(t
′)

}

.

Replacing the U(~ρ | t) above by its generalized Fourier series
∑

λ

Uλ(t)ψλ(~ρ ) and

equating the coefficients of ψλ(~ρ ), we obtain
∫ t

t0

dt′ eλt
′

Bλ(t
′) = eλt Uλ(t) − eλt0Uλ(t0) −

∫ t

t0

dt′ eλt
′

U̇λ(t
′) .

Since the right-hand side of the equation above is equal to
∫ t

t0
dt′ eλt

′

λUλ(t
′), which

can be seen by performing an integration by parts, the equality of (3.9) and (4.7)
will be demonstrated if we prove that

Uλ(t) = (1/λ)Bλ(t) . (6.1)
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[In a similar manner, it can be shown that the equality of the wave problem solutions
(3.10) and (4.9) follows from the same equation above.]

To prove (6.1), we make use of the well known integral representation

U(~ρ | t) =

∮

∂A

ds′
[ ∂Γ

∂n′
(~ρ | ~ρ ′)U(~ρ ′ | t) − Γ(~ρ | ~ρ ′)

∂U

∂n′
(~ρ ′ | t)

]

(6.2)

(Reference [3, Sec.1.10]) of the solution of (4.1) in terms of Green’s function Γ(~ρ |~ρ ′).
We also make use of the following well known formula (Reference [3, Sec. 3.12]),
which furnishes Γ(~ρ | ~ρ ′) expanded in the eigenfunctions of the problem in (2.5):

Γ(~ρ | ~ρ ′) = −
∑

λ′

λ′−1 ψ∗
λ′(~ρ ′)ψλ′(~ρ ) . (6.3)

Then, using (4.8) to calculate Uλ(t), with U(~ρ | t) given by (6.2) and (6.3), we
obtain

Uλ(t) =

∫

A

dAψ∗
λ(~ρ )

∑

λ′

1

λ′
ψλ′(~ρ )

∮

∂A

ds′
[

ψ∗
λ′(~ρ ′)

∂U

∂n′
(~ρ ′ | t) − ∂ψ∗

λ′

∂n′
(~ρ ′)U(~ρ ′ | t)

]

,

or, rearranging and using (2.6),

Uλ(t) =
∑

λ′

1

λ′
Sλ′(t)

∫

A

dAψ∗
λ(~ρ )ψλ′(~ρ )

︸ ︷︷ ︸

δ
λ′λ

=
1

λ
Sλ(t) , (6.4)

where (with the primes on s′ and ~ρ ′ dropped)

Sλ(t) ≡
∮

∂A

ds
[

ψ∗
λ(~ρ )

∂U

∂n
(~ρ | t) − ∂ψ∗

λ

∂n
(~ρ )U(~ρ | t)

]

. (6.5)

Therefore, in view of (6.4), we prove (6.1) by proving that Sλ(t) = Bλ(t). To
show that this equation is true, let us subtract (3.5) from (6.5):

Sλ(t)−Bλ(t) =

∮

∂A

ds

{

ψ∗
λ(~ρ )

[ ∂U

∂n
(~ρ | t) − ∂T

∂n
(~ρ, t)

]

− ∂ψ∗
λ

∂n
(~ρ )

[

U(~ρ | t) − T (~ρ, t)
]}

.

Notice that all we need to do to complete the proof is verify the vanishing of the
right-hand side of the above equation. We do it by using the boundary conditions for
T , U and ψλ, given in (2.1), (2.5) and (4.1), respectively, taking (2.3) into account.
The verification is immediate in the case of Dirichlet or Neumann conditions. For
boundary conditions of the third type, since both p(~ρ ) and q(~ρ ) differ from zero,
we first deduce that

B̂ψ∗
λ(~ρ ) = p(~ρ )ψ∗

λ(~ρ ) + q(~ρ )
∂ψ∗

λ

∂n
(~ρ ) = 0 ⇒ −∂ψ

∗
λ

∂n
(~ρ ) =

p(~ρ )

q(~ρ )
ψ∗
λ(~ρ ) [~ρ ∈ ∂A]

and then substitute it into the previous equation to obtain:

Sλ(t) −Bλ(t) =

∮

∂A

ds
ψ∗
λ(~ρ )

q(~ρ )

[

B̂U(~ρ | t)
︸ ︷︷ ︸

g(~ρ,t)

− B̂T (~ρ, t)
︸ ︷︷ ︸

g(~ρ,t)

]

= 0 . QED.



72 Toscano Couto

7. Final Comments

With respect to the second method, the first one has the advantage that it does
not presume the differentiability of the boundary data g(~ρ, t). However, it has the
disadvantage that the series solution which it produces converges less rapidly. In
fact, the poorer rate of convergence of (3.9) and (3.10) in A is a consequence of the
fact that each term of these series satisfies the homogeneous boundary condition in
(2.5), what renders such series incapable of satisfying the non-homogeneous one in
(2.1), unless g(~ρ, t) ≡ 0.

Resumo. Dois métodos de se resolver uma classe ampla de problemas de calor

e onda são descritos. Os problemas são bidimensionais e apresentam tanto não-

homogeneidade da equação diferencial e das condições iniciais e de fronteira quanto

dependência temporal das fontes e dos dados iniciais e de fronteira. A igualdade

das duas soluções correspondentes é estabelecida, e uma ilustração dos métodos é

fornecida por meio de uma aplicação deles a um problema espećıfico, resolvido em

coordenadas polares.
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