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ABSTRACT. In this paper, we consider a certain third-order linear recurrence and then give generating
matrices for the sums of positively and negatively subscripted terms of this recurrence. Further, we use
matrix methods and derive explicit formulas for these sums.
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1 INTRODUCTION

For n ≥ 1, the third-order Jacobsthal sequence is defined by the following relation:

J
(3)

n+2 = J
(3)

n+1 +J
(3)

n +2J
(3)

n−1,

where J
(3)

0 = 0 and J
(3)

1 = J
(3)

2 = 1 (see, e.g. [1, 9]). The third-order Jacobsthal numbers
have many interesting properties [3,7,8,10]. For example, the sums of the third-order Jacobsthal
numbers subscripted from 1 to n can be expressed by a formula including third-order Jacobsthal
numbers. The sums formula is given by

n

∑
s=1

J
(3)

s =
1
3

(
J

(3)
n+2 +2J

(3)
n −1

)
.

On the other hand, matrix methods many times have played an important role stemming from
the number theory [2, 5]. Some applications of this topic can be reviewed in the following liter-
ature [4, 6], and several of the references cited in these works. For instance, let J be an 3× 3
companion matrix as follows

J =

 1 1 2
1 0 0
0 1 0

 .
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2 SUMS OF GENERALIZED THIRD-ORDER JACOBSTHAL NUMBERS BY MATRIX METHODS

Then it is well known that J
(3)
−1 = 0 and

J n =

 J
(3)

n+1 J
(3)

n+2 −J
(3)

n+1 2J
(3)

n

J
(3)

n J
(3)

n+1 −J
(3)

n 2J
(3)

n−1

J
(3)

n−1 J
(3)

n −J
(3)

n−1 2J
(3)

n−2

 (n ≥ 1).

Now, we consider a generalization of the third-order Jacobsthal numbers. Let k be nonzero integer
satisfying k2 −4 ̸= 0. The generalized third-order Jacobsthal sequence {J (3)

k,n } is defined by the
recurrence relation for n ≥ 1:

J
(3)

k,n+2 = (2− k)J (3)
k,n+1 +(2k−1)J (3)

k,n +2J
(3)

k,n−1, (1.1)

where J
(3)

k,0 = 0, J
(3)

k,1 = 1 and J
(3)

k,2 = 2− k.

For later use, note that J
(3)

k,3 = 3− 2k+ k2 and J
(3)

k,4 = 6− 2k + 2k2 − k3. When k = 1, then

J
(3)

k,n = J
(3)

n (n-th third-order Jacobsthal number).

Let ω1 and ω2 be the roots of the equation x2+kx+1= 0, then the Binet formula of the sequence
{J (3)

k,n } has the form

J
(3)

k,n =
1

5+2k

[
2n+1 −

(
α(k)ωn

1 −β (k)ωn
2

ω1 −ω2

)]
,

where α(k) =−1+2ω1 and β (k) =−1+2ω2.

Using the recurrence relation of sequence {J (3)
k,n }, we can obtain the negatively subscripted

terms and these terms satisfy

J
(3)

k,−n =
1

5+2k

[
2−n+1 −

(
α(k)ω−n

1 −β (k)ω−n
2

ω1 −ω2

)]
.

Since ω1 +ω2 =−k and ω1ω2 = 1, then we have

J
(3)

k,−(n+3) =
1
2

[
(1−2k)J (3)

k,−(n+2)+(k−2)J (3)
k,−(n+1)+J

(3)
k,−n

]
. (1.2)

Thus for later use J
(3)

k,−2 =
1
2 , J

(3)
k,−3 =

1
4 (1−2k) and J

(3)
k,−4 =− 1

8 (3+2k−4k2).

Furthermore, by the inductive argument, one can easily verify that the generating matrix for the
sequence {J (3)

k,n } is given by

J n
k =

 2− k 2k−1 2
1 0 0
0 1 0


n

=

 J
(3)

k,n+1 J
(3)

k,n+2 +(k−2)J (3)
k,n+1 2J

(3)
k,n

J
(3)

k,n J
(3)

k,n+1 +(k−2)J (3)
k,n 2J

(3)
k,n−1

J
(3)

k,n−1 J
(3)

k,n +(k−2)J (3)
k,n−1 2J

(3)
k,n−2

 . (1.3)

In this paper, we construct certain matrices, then we compute the n-th powers of these matrices
which are the generating matrices for the sums of the positively and negatively subscripted terms
of the sequence {J (3)

k,n } from 1 to n.

Trends Comput. Appl. Math., 26 (2025), e01817
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G. MORALES 3

2 GENERATING MATRIX FOR THE SUMS OF THE POSITIVELY SUBSCRIPTED
TERMS OF THE SEQUENCE {J (3)

K,N}

In this section, we consider the positively subscripted terms of the sequence {J (3)
k,n } and then

define a 4× 4 matrix G . Further, we compute the n-th power of the matrix G and use matrix
methods for the explicit formula for the sums of terms of the sequence {J (3)

k,n }.

Define the 4×4 matrix G as follows

G =


1 0 0 0
1 2− k 2k−1 2
0 1 0 0
0 0 1 0

 (2.1)

and define the 4×4 matrix Gk(n) as follows

Gk(n) =


1 0 0 0
S

(+)
k,n J

(3)
k,n+1 J

(3)
k,n+2 +(k−2)J (3)

k,n+1 2J
(3)

k,n

S
(+)

k,n−1 J
(3)

k,n J
(3)

k,n+1 +(k−2)J (3)
k,n 2J

(3)
k,n−1

S
(+)

k,n−2 J
(3)

k,n−1 J
(3)

k,n +(k−2)J (3)
k,n−1 2J

(3)
k,n−2

 , (2.2)

where S
(+)

k,n denote the sums of the positively subscripted terms of the sequence {J (3)
k,n } from 1

to n, that is

S
(+)

k,n =
n

∑
s=1

J
(3)

k,s . (2.3)

Then, we have the following result.

Lemma 1. Let G and Gk(n) be matrices of the form (2.1) and (2.2), respectively. Then, for n ≥ 1

Gk(n) = G n. (2.4)

Proof. We will use the induction method for the proof of the lemma. If n = 1, then, by J
(3)

k,−1 =

J
(3)

k,0 = 0, J
(3)

k,1 = 1 and J
(3)

k,2 = 2− k, we obtain

G 1 =


1 0 0 0
1 2− k 2k−1 2
0 1 0 0
0 0 1 0

=


1 0 0 0
S

(+)
k,1 J

(3)
k,2 J

(3)
k,3 +(k−2)J (3)

k,2 2J
(3)

k,1

S
(+)

k,0 J
(3)

k,1 J
(3)

k,2 +(k−2)J (3)
k,1 2J

(3)
k,0

S
(+)

k,−1 J
(3)

k,0 J
(3)

k,1 +(k−2)J (3)
k,0 2J

(3)
k,−1

=Gk(1).

Trends Comput. Appl. Math., 26 (2025), e01817
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4 SUMS OF GENERALIZED THIRD-ORDER JACOBSTHAL NUMBERS BY MATRIX METHODS

Suppose that the claim is true for n. Then, we will show that the equation hold for n+ 1. Thus,
by our assumption, we write

G n+1 = G n ·G 1

= Gk(n) ·G 1

=


1 0 0 0
S

(+)
k,n J

(3)
k,n+1 J

(3)
k,n+2 +(k−2)J (3)

k,n+1 2J
(3)

k,n

S
(+)

k,n−1 J
(3)

k,n J
(3)

k,n+1 +(k−2)J (3)
k,n 2J

(3)
k,n−1

S
(+)

k,n−2 J
(3)

k,n−1 J
(3)

k,n +(k−2)J (3)
k,n−1 2J

(3)
k,n−2




1 0 0 0
1 2− k 2k−1 2
0 1 0 0
0 0 1 0


which, by a matrix multiplication, satisfies

G n+1 =


1 0 0 0
S

(+)
k,n +J

(3)
k,n+1 J

(3)
k,n+2 J

(3)
k,n+3 +(k−2)J (3)

k,n+2 2J
(3)

k,n+1

S
(+)

k,n−1 +J
(3)

k,n J
(3)

k,n+1 J
(3)

k,n+2 +(k−2)J (3)
k,n+1 2J

(3)
k,n

S
(+)

k,n−2 +J
(3)

k,n−1 J
(3)

k,n J
(3)

k,n+1 +(k−2)J (3)
k,n 2J

(3)
k,n−1

 .

By the recurrence relation of the sequence {J (3)
k,n } and since S

(+)
k,n +J

(3)
k,n+1 =S

(+)
k,n+1, we have

the conclusion. □

Consequently, we obtain a generating matrix for the sums of the terms of the generalized third-
order Jacobsthal sequence from 1 to n.

Also we write the Eq. (2.4) as shown

Gk(n+1) = Gk(n)Gk(1) = Gk(1)Gk(n). (2.5)

In other words, the matrix Gk(1) is commutative under matrix multiplication. Then, we have the
next result.

Corollary 2. Let the sum S
(+)

k,n have the form (2.3). Then, the sum S
(+)

k,n satisfies the following
non-homogeneous recurrence relation for n ≥ 1

S
(+)

k,n+3 = (2− k)S (+)
k,n+2 +(2k−1)S (+)

k,n+1 +2S
(+)

k,n +1.

Proof. From Eq. (2.5) and since an element of Gk(n+ 1) is the product of a row Gk(1) and a
column of Gk(n):

S
(+)

k,n+1 = (2− k)S (+)
k,n +(2k−1)S (+)

k,n−1 +2S
(+)

k,n−2 +1,

which is desired. □

Trends Comput. Appl. Math., 26 (2025), e01817
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G. MORALES 5

Now we are going to derive an explicit formula for the sum S
(+)

k,n with the generalized third-order
Jacobsthal numbers. Let KG (λ ) be the characteristic polynomial of the matrix G . Thus, we have

KG (λ ) =

∣∣∣∣∣∣∣∣∣
1−λ 0 0 0
1 (2− k)−λ 2k−1 2
0 1 −λ 0
0 0 1 −λ

∣∣∣∣∣∣∣∣∣= λ
4+(k−3)λ 3+3(1−k)λ 2+(2k−3)λ +2.

Also it is easily seen that the characteristic polynomial of the matrix Jk given by Eq. (1.3) is
λ 3 +(2− k)λ 2 +(2k−1)λ +2. Therefore the eigenvalues of the matrix G are

λ1 = ω1 =
−k+

√
k2 −4

2
, λ2 = ω2 =

−k−
√

k2 −4
2

, λ3 = 2, λ4 = 1.

Since k ̸= 0 and k2 −4 ̸= 0, we have that the eigenvalues of the matrix G are distinct.

Then, we have the following result.

Theorem 3. Let S
(+)

k,n denote the sums of the terms of the sequence {J (3)
k,n }. Then,

S
(+)

k,n =
1

k+2

(
J

(3)
k,n+2 +(k−1)J (3)

k,n+1 +2J
(3)

k,n −1
)
. (2.6)

Proof. Let L be the 4×4 matrix defined as follows:

L =


−k−2 0 0 0
1 4 −ω1k−1 −ω2k−1
1 2 ω1 ω2

1 1 1 1

 , (2.7)

where ω1, ω2 are the eigenvalues of Jk. Note that det(L ) = (k+2)(2ω2−1)(ω1−ω2+2) ̸= 0.
One can easily verify that G L = L D , where G and L are as before, and D is the diagonal
matrix such that D = diag(λ4,λ3,λ1,λ2). Since det(L ) ̸= 0, the matrix L is invertible. So, we
write that D = L −1G L .

Hence, the matrix G is similar to the diagonal matrix D . Thus, we obtain G nL = L Dn. Since
that Gk(n) = G n, we have Gk(n)L = L Dn. Then, the coefficient 1 in the second row and first
column of L Dn corresponds to

[
S

(+)
k,n J

(3)
k,n+1 J

(3)
k,n+2 +(k−2)J (3)

k,n+1 2J
(3)

k,n

]
−k−2

1
1
1

 .

So by a matrix multiplication, we have the conclusion. □

Trends Comput. Appl. Math., 26 (2025), e01817
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6 SUMS OF GENERALIZED THIRD-ORDER JACOBSTHAL NUMBERS BY MATRIX METHODS

For example, if we take k = 1, then the sequence {J (3)
k,n } is reduced to the usual third-order

Jacobsthal numbers and we obtain
n

∑
s=1

J
(3)

s =
1
3

(
J

(3)
n+2 +2J

(3)
n −1

)
which is well-known.

Now, we give a formula for the sum S
(+)

k,n by using a matrix method with the following result.

Corollary 4. Let S
(+)

k,n denote the sums of the terms J
(3)

k,i from 1 to n. Then, for all positive
integers n and r, we have

S
(+)

k,n+r = S
(+)

k,n +J
(3)

k,n+1S
(+)

k,r +
(
J

(3)
k,n+2 +(k−2)J (3)

k,n+1

)
S

(+)
k,r−1 +2J

(3)
k,n S

(+)
k,r−2,

where J
(3)

k,n given by Eq. (1.1).

Proof. From Eq. (2.4) in Lemma 1, we can write, for all positive integers n and r, Gk(n+ r) =
Gk(n)Gk(r). Then, the coefficient S

(+)
k,n+r in the second row and first column of Gk(n + r)

corresponds to

[
S

(+)
k,n J

(3)
k,n+1 J

(3)
k,n+2 +(k−2)J (3)

k,n+1 2J
(3)

k,n

]


1
S

(+)
k,r

S
(+)

k,r−1

S
(+)

k,r−2

 .

By a matrix multiplication, the proof is easily seen. □

Note that taking n = 1 in Corollary 4, we can obtain the result of Corollary 2.

3 GENERATING MATRIX FOR THE SUMS OF THE NEGATIVELY SUBSCRIPTED
TERMS {J (3)

K,−N}

In this section, we consider the negatively subscripted terms of the sequence {J (3)
k,n }. First,

we give a generating matrix for the negatively subscripted terms. Second, we give a generating
matrix for the sums of these terms.

Let the 3×3 matrix Hk be as follows

Hk =

 1
2 (1−2k) 1

2 (k−2) 1
2

1 0 0
0 1 0

 (3.1)

and the 3×3 matrix H (n) be as follows

H (n) =


2J

(3)
k,−(n+2) J

(3)
k,−n +(k−2)J (3)

k,−(n+1) J
(3)

k,−(n+1)

2J
(3)

k,−(n+1) J
(3)

k,−(n−1)+(k−2)J (3)
k,−n J

(3)
k,−n

2J
(3)

k,−n J
(3)

k,−(n−2)+(k−2)J (3)
k,−(n−1) J

(3)
k,−(n−1)

 , (3.2)

Trends Comput. Appl. Math., 26 (2025), e01817
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G. MORALES 7

where J
(3)

k,−n es the n-th negatively subscripted term of the sequence {J (3)
k,n }.

We start with the following result.

Lemma 1. Let Hk and H (n) be matrices of the form (3.1) and (3.2), respectively. Then, for all
n ≥ 1

H (n) = H n
k .

Proof. (Induction on n). If n = 1, then by identity in Eq. (1.2), we have

H 1
k =

 1
2 (1−2k) 1

2 (k−2) 1
2

1 0 0
0 1 0

=

 2J
(3)

k,−3 J
(3)

k,−1 +(k−2)J (3)
k,−2 J

(3)
k,−2

2J
(3)

k,−2 J
(3)

k,0 +(k−2)J (3)
k,−1 J

(3)
k,−1

2J
(3)

k,−1 J
(3)

k,1 +(k−2)J (3)
k,0 J

(3)
k,0

 .

We suppose that the equation hold for n. Then, we will show that the equation holds for n+ 1.
Thus, by our assumption,

H n+1
k = H n

k H 1
k

=


2J

(3)
k,−(n+2) J

(3)
k,−n +(k−2)J (3)

k,−(n+1) J
(3)

k,−(n+1)

2J
(3)

k,−(n+1) J
(3)

k,−(n−1)+(k−2)J (3)
k,−n J

(3)
k,−n

2J
(3)

k,−n J
(3)

k,−(n−2)+(k−2)J (3)
k,−(n−1) J

(3)
k,−(n−1)


×

 1
2 (1−2k) 1

2 (k−2) 1
2

1 0 0
0 1 0

 .

From the negatively subscripted terms of the sequence {J (3)
k,n } satisfy the recurrence relation

J
(3)

k,−(n+3) =
1
2

[
(1−2k)J (3)

k,−(n+2)+(k−2)J (3)
k,−(n+1)+J

(3)
k,−n

]
.

and H (n+1) = H n+1
k . So the proof is completed. □

Let S
(−)

k,n denote the sums of the negatively subscripted terms of the sequence {J (3)
k,n } from 1 to

n, that is

S
(−)

k,n =
n

∑
s=1

J
(3)

k,−s. (3.3)

Now, we give a matrix method to generate the sum S
(−)

k,n . Define the 4×4 matrix R as follows

R =


1 0 0 0
1
2

1
2 (1−2k) 1

2 (k−2) 1
2

0 1 0 0
0 0 1 0

 (3.4)

Trends Comput. Appl. Math., 26 (2025), e01817
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8 SUMS OF GENERALIZED THIRD-ORDER JACOBSTHAL NUMBERS BY MATRIX METHODS

and define the 4×4 matrix Rk(n) as follows

Rk(n) =


1 0 0 0
S

(−)
k,n+1 2J

(3)
k,−(n+2) J

(3)
k,−n +(k−2)J (3)

k,−(n+1) J
(3)

k,−(n+1)

S
(−)

k,n 2J
(3)

k,−(n+1) J
(3)

k,−(n−1)+(k−2)J (3)
k,−n J

(3)
k,−n

S
(−)

k,n−1 2J
(3)

k,−n J
(3)

k,−(n−2)+(k−2)J (3)
k,−(n−1) J

(3)
k,−(n−1)

 . (3.5)

Then, we have the following result.

Theorem 2. Let R and Rk(n) be matrices of the form (3.4) and (3.5), respectively. Then, for all
n ≥ 1, we have

Rn = Rk(n). (3.6)

Proof. (Induction on n) If n = 1, then we know that S
(−)

k,1 = J
(3)

k,−1 = 0, S
(−)

k,n = 0 for n = −1

and J
(3)

k,−2 =
1
2 . Thus we obtain R1 = Rk(1). Suppose that the equation holds for n. Then, we

will show that the equation holds for n+1. Thus, by our assumption, we write

Rn+1 = RnR1

= Rk(n)R1

=


1 0 0 0
S

(−)
k,n+1 2J

(3)
k,−(n+2) J

(3)
k,−n +(k−2)J (3)

k,−(n+1) J
(3)

k,−(n+1)

S
(−)

k,n 2J
(3)

k,−(n+1) J
(3)

k,−(n−1)+(k−2)J (3)
k,−n J

(3)
k,−n

S
(−)

k,n−1 2J
(3)

k,−n J
(3)

k,−(n−2)+(k−2)J (3)
k,−(n−1) J

(3)
k,−(n−1)



×


1 0 0 0
1
2

1
2 (1−2k) 1

2 (k−2) 1
2

0 1 0 0
0 0 1 0

 .

Using S
(−)

k,n = S
(−)

k,n +J
(3)

k,−(n+1) and by Lemma 1, we obtain Rn+1 = Rk(n+1). So the proof
is completed. □

In the following result, we give a non-homogeneous recurrence relation for the sum S
(−)

k,n .

Theorem 3. Let S
(−)

k,n denote the sums of the terms {J (3)
k,−i} for 1 ≤ i ≤ n. Then, for all n ≥ 1,

we have
S

(−)
k,n+2 =

1
2

[
(1−2k)S (−)

k,n+1 +(k−2)S (−)
k,n +S

(−)
k,n−1 +1

]
.

Proof. Considering Eq. (3.6), we write Rk(n+1) =Rk(n)Rk(1) =Rk(1)Rk(n) and say that the
matrix Rk(1) is commutative under matrix multiplication. By a matrix multiplication, the proof
is easy. □

Trends Comput. Appl. Math., 26 (2025), e01817
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Generalizing Rn = Rk(n), for all positive integers n and r, we can write that

Rk(n+ r) = Rk(n)Rk(r) = Rk(r)Rk(n).

Thus, we obtain the following corollary without proof as a generalization of the result of
Theorem 3.

Corollary 4. Let S
(−)

k,n denote the sums of the terms {J (3)
k,−i} for 1 ≤ i ≤ n. Then, for all n,r ≥ 1,

we have

S
(−)

k,n+r+1 =S
(−)

k,n+1+2J
(3)

k,−(n+2)S
(−)

k,r+1+
(
J

(3)
k,−n +(k−2)J (3)

k,−(n+1)

)
S

(−)
k,r +J

(3)
k,−(n+1)S

(−)
k,r−1.

Now, we derive an explicit formula for the sums of the negatively subscripted terms J
(3)

k,−i for
1 ≤ i ≤ n. For this purpose, we give some results. First, we consider the characteristic polynomial
of the matrix R. The characteristic equation of R is

KR(µ) = µ
4 +

1
2
(2k−3)µ3 +

3
2
(1− k)µ2 +

1
2
(k−3)µ +

1
2
.

Thus, the eigenvalues of matrix R are

µ1 = ω1 =
−k+

√
k2 −4

2
, µ2 = ω2 =

−k−
√

k2 −4
2

, µ3 =
1
2
, µ4 = 1.

Note that k ̸= 0 and k2 −4 ̸= 0, the eigenvalues of R are distinct.

Then, we have the following result.

Theorem 5. Let S
(−)

k,n denote the sums of the negatively subscripted terms J
(3)

k,−i for 1 ≤ i ≤ n.
Then, for all n ≥ 1, we have

S
(−)

k,n =− 1
k+2

(
2J

(3)
k,−(n+2)+(2k+1)J (3)

k,−(n+1)+J
(3)

k,−n −1
)
. (3.7)

Proof. Let M be the 4×4 matrix defined as follows:

M =


k+2 0 0 0
1 1

4 −ω1k−1 −ω2k−1
1 1

2 ω1 ω2

1 1 1 1

 , (3.8)

where ω1, ω2 are the eigenvalues of Jk. Note that det(M ) = 1
4 (k+ 2)(2−ω2)(2(ω1 −ω2)+

1) ̸= 0. One can easily verify that RM = MD , where R and M are as before, and D is
the diagonal matrix such that D = diag(µ4,µ3,µ1,µ2). Since det(M ) ̸= 0, the matrix M is
invertible. So, we write that D = M−1RM .

Hence, the matrix R is similar to the diagonal matrix D . Thus, we obtain RnM = MDn. Since
that Rk(n) = Rn, we have

Rk(n)L = L Dn.

So by a matrix multiplication, we have the conclusion. □

Trends Comput. Appl. Math., 26 (2025), e01817
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For example, if take k = 1, then the sequence J
(3)

k,n is reduced to the usual third-order Jacobsthal
sequence and by Theorem 5, we have the sums of the negatively subscripted terms of the third-
order Jacobsthal sequence for n ≥ 1,

S
(−)

k,n =−1
3

(
2J

(3)
k,−(n+2)+3J

(3)
k,−(n+1)+J

(3)
k,−n −1

)
.

4 CONCLUSIONS

In this study, we defined the generalized third-order Jacobsthal numbers, which is an extension of
the third-order Jacobsthal numbers. We provided the Binet formula and the generating matrices
for the sums of positively and negatively subscripted terms of this recurrence. For future research,
additional identities and generalizations of the generalized third-order Jacobsthal numbers can be
studied.
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