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ABSTRACT. Throughout human history, epidemics have been a constant presence. Understanding their
dynamics is essential to predict scenarios and make substantiated decisions. Mathematical models are pow-
erful tools to describe an epidemic behavior. Among the most used, the compartmental ones stand out,
dividing the population into classes with well-defined characteristics. One of the most known is the SIR
model, based on a set of differential equations describing the rates of change of three categories over time.
These equations consider parameters such as the disease transmission rate and the recovery rate, which
both change over time. However, typically models use constant parameters and can not describe the behav-
ior of a disease over long periods. In this work, it is proposed a method to estimate the parameters of a SIR
model with a time-varying transmission rate, based on an optimization problem that minimizes the sum of
the squares of the errors between the model and historical data. Additionally, based on the infection rates
determined by the algorithm, the model’s ability to predict disease activity in future scenarios was also in-
vestigated. Epidemic data released by the government of the State of Rio Grande do Sul in Brazil was used
to evaluate the models. The models showed a very good forecasting ability, resulting in errors for predicting
the total number of accumulated infected persons of 0.13% for 7 days ahead and 0.6% for 14 days ahead.

Keywords: COVID-19, simulation, identification, prediction.

1 INTRODUCTION

Humanity has coexisted with infectious diseases since the beginning of the history. Some of
these infirmities can simultaneously reach a large number of individuals in the same area. When
these outbreaks of contamination occur, that place is facing an epidemic. The prevalence and
effects of an epidemic can diversify a lot. In less developed countries, even low-risk diseases
may have serious consequences. Economic development defines, in general, the quality of health
care and the efficiency of watching and containing an infectious disease. Because of that, wor-
rying rates of mortality are still registered for malaria, typhus, cholera, and other easily treatable
infirmities [5]. Furthermore, an epidemic situation can affect the economy of some regions. In

*Corresponding author: W. M. Haselein – E-mail: wmhaselein@gmail.com
1Federal University of Rio Grande do Sul, Department of Pure And Applied Mathematics, Av. Bento Gonçaves, 9500,
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2 IDENTIFICATION OF A TIME-VARYING SIR MODEL FOR COVID-19

some cases, control measures change people’s circulation and the operation of commercial es-
tablishments, generating a negative economic impact during the application of these measures.
Therefore, understanding the phenomenon is crucial to determine actions to fight against this
problem.

Mathematical modeling is an extremely useful tool to describe different events [3]. It can simulate
the activity of a system that reproduces, for example, the dynamics of an infectious disease. Then,
it’s possible to analyze and interpret the results, looking for ways to control epidemics [16]. An
accurate model enables political and sanitary authorities to adopt based decisions.

In literature, several epidemic models are currently used. Among them, compartmental ones
stand out, dividing the population into classes with common characteristics and establishing their
relations [18]. One of them is the SIR model, which divides the population into three classes
and proposes a set of differential equations that define the rate of change of each compartment
over time [4]. This change is directly linked to the parameters that make up the equations, as
they represent rates that describe the dynamics of disease spread in the population. Typically,
the differential equations of the SIR model use these constants to describe how the number of
individuals in each compartment (susceptible, infected, and removed) varies over time. However,
for long periods, assigning a single value to these parameters may not be effective. Changes in
population behavior, government measures, and even the nature of the disease can alter during
this period. Thus, the model’s ability to reproduce the disease dynamics is compromised.

In [19], a discussion is presented on the difficulty of obtaining effective COVID-19 predictions
using epidemiological models. The authors analyzed the reasons behind the wide variability in
results, concluding that this is due to the failure to identify the necessary parameter calibrations
for the system. They then evaluated the use of two compartmental models, SIR and SEIR, to rep-
resent the information contained in confirmed case data. They demonstrated that the SIR model
performs better and that simpler models can be more reliable than more complex ones. To il-
lustrate this, they modeled the impacts of quarantine in Wuhan, China, and a potential second
outbreak after its conclusion.

The article [17] presents a review of various publications involving mathematical modeling and
the use of artificial intelligence to understand COVID-19 dynamics. A total of 61 journal ar-
ticles were studied, revealing the widespread use of compartmental models, particularly SIR
and SEIR. Regarding AI implementations, neural networks stood out. The authors concluded
that both mathematical modeling and artificial intelligence have proven to be reliable tools for
understanding the pandemic.

In the 2022 study [10], the reasons behind the failure of some COVID-19 predictions were in-
vestigated. The authors concluded that incorrect modeling, lack of transparency, erroneous data,
and the absence of evidence on the effects of interventions are among the main causes. They
emphasize that careful modeling, which respects the disease’s unique characteristics, and model
validation are crucial to avoiding errors. Additionally, they advocate for major decisions to be
based on global evidence rather than specific cases.

Trends Comput. Appl. Math., 26 (2025), e01818
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W. M. HASELEIN and D. ECKHARD 3

In [11], a discrete SIR model was used to estimate the prevalence of the COVID-19 virus, com-
bining different available data sources, such as deaths, confirmed cases, and positive tests. Using
a Bayesian framework, the model was calibrated to project the number of new infections in the
states of Ohio and Indiana, in the United States. As a result, the authors found that the number of
infections was underestimated, particularly at the beginning of the pandemic.

Models with time-varying parameters have been proposed to describe infectious diseases, to
deal with this problem [13, 15]. The article [14] proposes a time-varying model that assumes
a decaying infecting rate, which is only valid for short periods. The article [20] proposes an
MCMC algorithm that is highly computationally intensive, and is capable of computing a value
for each week, but incapable of computing daily estimates. On the other hand, article [7] presents
a method to estimate the infection rate directly from data, that is only capable of obtaining daily
estimates. In this article, we propose a new method for identifying a time-varying SIR model that
is computationally efficient and capable of estimating the infection rate of the disease for any
time interval, whether they are daily, weekly or monthly.

We have used data from the first 770 days of the COVID-19 pandemic in the state of Rio Grande
do Sul in Brazil to evaluate the proposed algorithm. An optimization algorithm was then ap-
plied to minimize the squared difference between the total infected reported by the data and that
simulated by the model. However, it was found that the large number of elements in the vector
posed difficulties in this identification. Therefore, a strategy was devised to gradually increase
the number of entries in the vector, allowing the algorithm to converge to the desired solution.
Based on the obtained results, the real behavior of the pandemic in the state of Rio Grande do
Sul was compared with that simulated by the identified model.

After identifying the model and its ability to describe the pandemic’s behavior over a long period,
its validity in predicting disease activity in future periods was also assessed. For this purpose, the
effectiveness of the model in predicting disease behavior in scenarios 7, 14, 30, 60, and 180 days
ahead was evaluated. To achieve this, the percentage error between the accumulated number
of infected individuals in the period and the simulated value from the model identification was
calculated.

This article is disposed as follows: In the next section, a simplified SIR compartmental model
is presented, defining its configuration in a differential equations system and explaining its dy-
namics. The simulation of this model is also displayed. Then, in Section 3, the identification of
this model based on data provided by the state government will be shown. After, in Section 4,
the validity of the model to predict the pandemic behavior in future scenarios will be verified.
Finally, in Section 5, discussions about the results are made, with the appropriate conclusions.

2 SIR MODEL

Mathematical models are important tools to describe and control infectious diseases. In literature,
the most used are the compartmental ones, that separate populations into classes [16]. These

Trends Comput. Appl. Math., 26 (2025), e01818
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4 IDENTIFICATION OF A TIME-VARYING SIR MODEL FOR COVID-19

compartments represent the individuals involved in the process and the state in which they find
themselves.

The choice of the model should take into account disease properties, such as how it spreads
in the population [16]. A model with lots of compartments could potentially describe better a
disease, but usually results in poor predictions due to the complexity of the model and difficulty
in correctly estimating the large number of parameters [8]. Usually, reduced order models with
two to four compartments, and few parameters, result in better predictions and are preferred to
describe infectious diseases.

The SIR model was developed by Kermack and McKendrick [13] and proposes a simple but
efficient configuration to represent diseases with community transmission, those whose origin of
infection is undetermined because the transmitting agent circulates throughout the population.
The model suggests to express the system behavior by three groups:

• Susceptible (S): Population that can be infected if they have any contact with the disease;

• Infected (I): Individuals who are sick and are capable of infecting susceptible;

• Removed (R): People who are no longer infected and can’t infect any individual anymore.
This group is composed of recovered or dead.

In that perspective, total population N is considered constant and given by the sum S(t)+ I(t)+
R(t) = N. The dynamics imply that susceptible people are subject to infection when they have
contact with an individual from the infected class. Then, they become part of the infected group
for a while, when finally don’t carry the disease anymore (cure or death) and become part of the
removed group. This process can be schematized as follows:

S−→ I −→ R

A configuration for a SIR model is expressed by a set of ordinary differential equations:

dS(t)
dt

=−β I(t)S(t)
N

dI(t)
dt

=
β I(t)S(t)

N
− γI(t)

dR(t)
dt

= γI(t)

(2.1)

Notice that in the first equation, which denotes the variation rate of susceptible, contamination of
individuals is given by the interaction between S and I classes. It is assumed that each individual
in the susceptible group has, on average, e encounters with other people every day and that the
probability of a person being in the infected group is I(t)

N . It is also assumed that each encounter
between a person from the susceptible group and another person from the infected group has

Trends Comput. Appl. Math., 26 (2025), e01818
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W. M. HASELEIN and D. ECKHARD 5

a probability p of infecting the susceptible person. The parameter β = e · p encompasses both
the average number of encounters e and the probability p and varies with the development of
the epidemic, because people change their behavior towards the disease and the disease changes
over time. At the same rate that the susceptible population leaves the S class, it enters the I
class. Similarly, a portion of the infected population leaves this class, after a mean period 1

γ
, and

becomes part of the removed group R.

2.1 Analytical Solution

One of the goals of using mathematical models for epidemic situations is to determine how the
disease is spreading. For this purpose, it is interesting to observe the system’s behavior over time,
motivating oneself to check when the spread will begin to decline.

The SIR model does not have an analytical solution, but one can attempt to understand the evo-
lution of an epidemic through this model when the disease propagation is in its early stages. If,
at the beginning of the process (t = 0), the number of susceptible individuals is almost the entire
population (S≈ N), and taking I(0) = I0 > 0, then in the second equation:

dI(t)
dt

= β I(t)− γI(t) = I(t)(β − γ), (2.2)

whose solution can be easily found using the method of separation of variables, resulting in:

I(t) = I0e(β−γ)t = I0eγt( β

γ
−1) (2.3)

Given that R0 =
β

γ
, it follows that:

• Se R0 > 1, I(t)→ ∞, that is, epidemic continues to grow;

• Se R0 < 1, I(t)→ 0, that is, the infection tends to end over time.

The constant R0 is called the infection reproduction rate.

2.2 Time-varying infection rate SIR model

The infection rate of the conventional SIR model represents both: the probability of a susceptible
person contracting the disease when coming into contact with an infected individual and the
mean number of encounters a susceptible person has with other people every day. This rate is
crucial for understanding how a disease spreads over time. However, assigning a fixed value to
this parameter for an extended period can lead to inaccuracies when attempting to simulate the
behavior of a disease. This can occur because the model depends on the interaction between
susceptible and infected classes. Such interaction may change if a long period is considered.
Individuals may alter their behavior as the disease spreads, changing the chance of infection.
There’s also the possibility that authorities may take containment measures, preventing greater
contact between individuals in these two classes. Not to mention, the disease itself may mutate,

Trends Comput. Appl. Math., 26 (2025), e01818
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6 IDENTIFICATION OF A TIME-VARYING SIR MODEL FOR COVID-19

becoming more or less contagious, thereby increasing or decreasing the likelihood of someone
contracting it.

From this, an alternative SIR model can be used, with a time-varying infection rate [15]. This
allows defining how the disease is spreading on a daily, weekly, or monthly basis. To achieve
this, the parameter β is modified so that instead of receiving a fixed value, it is function over
time. Thus, the model is configured as follows:

dS(t)
dt

=−β (t)I(t)S(t)
N

dI(t)
dt

=
β (t)I(t)S(t)

N
− γI(t)

dR(t)
dt

= γI(t),

(2.4)

where β (t) is the time-varying infection rate at time t.

The cumulative number of infected individuals is defined by:

Ŷ (t,β (t)) =
∫ t

0

β (τ)I(τ)S(τ)
N

dτ = N−S(t) (2.5)

where we have explicitly defined Ŷ as a function of time t and the time-varying infection rate
β (t).

2.3 Simulation of the Model

Since the model does not have an analytical solution, a computational method can be used to
obtain the numerical solution of the system of differential equations that characterizes the model
SIR. The one chosen in this work was the fourth-order Runge-Kutta [12], which solves a problem
of the type y′(t) = f (t,x). The sampling period used was fixed, simulating the system’s behavior
daily to align with the way the data is usually collected. Additionally, since the average infection
period is given by 1/γ , as seen earlier, this constant can be fixed, knowing that, on average, this
period is 10 days [2]. Thus, it was assumed that γ = 0.1, and, consequently, the simulated SIR
model is given by: 

dS(t)
dt

=−β (t)I(t)S(t)
N

dI(t)
dt

=
β (t)I(t)S(t)

N
−0.1I(t)

dR(t)
dt

= 0.1I(t).

(2.6)

To illustrate the simulated model, the algorithm was executed in a hypothetical case for a pop-
ulation of N = 500 over 1 month, with randomly varying daily rates, which were drawn from a
uniform distribution between 0 and 1. The result can be observed in Figure 1.

Trends Comput. Appl. Math., 26 (2025), e01818
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Figure 1: Simulation of the time-varying SIR model.

3 IDENTIFICATION OF TIME-VARYING PARAMETER β (T )

The main result of this work is a mathematical method for the identification of the time-varying
parameter β (t). Parameter identification involves, based on collected data about the studied phe-
nomenon, estimating the values of parameters, in order to approximate the model’s behavior to
the studied system [6]. To achieve this, an optimization algorithm is proposed here.

The proposed method aims to estimate the parameters that minimize the sums of a squared func-
tion [21]. This function represents the error between the solution computed by the model and the
data that represents the reality. Thus, let Y (t) be the total accumulated infected at the day t and
Ŷ (t) be the simulated output of the model at the day t, the function to be optimized is defined as:

J(β (t)) =
M

∑
t=1

(Y (t)− Ŷ (t,β (t)))2 (3.1)

where M is the number of days of the collected data. In order to compute Ŷ (t,β (t)) a 4th order
Runge-Kutta method is used with the following initial conditions: S(0)

I(0)
R(0)

 =

 N−1
1
0

 , (3.2)

which describes the disease from the day the first person is infected on a region.

We propose the following optimization problem

β̂ (t) = arg min
β (t)

J(β (t)). (3.3)

It is very difficult to find the solution of this optimization problem since β (t) is continuous and
J(β (t)) is in general nonconvex. In this work, we propose to parametrize the function β (t) with
a finite number of parameters and we also propose a clever optimization procedure to improve
the convergence to the global minimum of the optimization criterion J(β (t)).

Trends Comput. Appl. Math., 26 (2025), e01818
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8 IDENTIFICATION OF A TIME-VARYING SIR MODEL FOR COVID-19

3.1 Finite Parametrization of β (t)

The function β (t) is parametrized as a piecewise constant function such that it varies periodically,
but it is constant during one period:

β (t) =



β1, 0≤ t < t1

β2, t1 ≤ t < t2

β3, t2 ≤ t < t3
...

βm, tm−1 ≤ t ≤ tm

and
t j = j ·T, for j = 1,2, . . . ,m.

and T is the period that the infection rate is kept constant. The constant T is typically set as one
day, one week or one month.

In order to simplify the notation, we have grouped all the parameters as a vector

B = [β1 β2 · · · βm−1 βm] (3.4)

such that the optimization problem (3.3) becomes finite:

B̂ = arg min
B

J(B) (3.5)

Despite the optimization problem (3.5) being finite, it is still very difficult to find the optimal
solution since the objective function is nonconvex. Attempts to solve directly this problem using
commercial solvers usually fail, resulting in convergence to local minima of the problem, which
results in solutions that do not resemble the actual data. In the next section, we describe an
iterative algorithm to solve this problem.

3.2 Optimization Algorithm

The objective of this section is to describe an iterative algorithm to solve the optimization
problem (3.5).

The algorithm assumes that initially, the vector B had only one element, meaning the algorithm
would calculate only one value to approximate the model’s behavior to reality as if it were a
single rate for the entire period. Thus, β is constant and the optimization algorithm was executed.
Obviously, the error in this first iteration is large. So, the second step consists of duplicating the
number of parameters and assigning to them initially the values found by the algorithm in the
first optimization. In this way, the resulting error is still significant, but the result shows a better
fit compared to the previous one. Thus, with each simulation, the number of elements in the
vector is doubled, and it was found that the precision improves at each iteration. In fact, at some

Trends Comput. Appl. Math., 26 (2025), e01818
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W. M. HASELEIN and D. ECKHARD 9

iterations, the number of parameters does not need to be exactly doubled, and some parameters
may be discarded. We will describe the algorithm in detail in the sequence.

In order to compute the number of iterations, we need to find the smallest integer n such that:

T ·2n−1 > M.

The solution of this inequality is:

n = ceil

(
log( 2M

T )

log(2)

)

For instance, if T = 7 (one week) and M = 770 days then n = 8 and therefore the algorithm will
run 8 iterations.

On every iteration, we set i as the iteration number and define the period of this iteration as

Ti = T ·2n−i.

Then we can compute the number of sub-functions that will compose our piecewise constant
function, computing the smallest integer mi that respects:

mi · Ti > M.

The solution of this inequality is:
mi = ceil

(
M
Ti

)
We then define β (t) = βi(t) as piecewise constant function with mi sub-functions:

βi(t) =



β i
1, 0≤ t < t1

β i
2, t1 ≤ t < t2

β i
3, t2 ≤ t < t3

...
β i

mi
, tmi−1 ≤ t ≤ tmi

and
t j = j ·Ti, for j = 1,2, . . . ,mi.

For instance, consider that T = 7 (one week) and M = 770 days such that the number of iterations
is n = 8.

At every iteration the optimization problem (3.5) is solved with

B =
[
β

i
1 β

i
1 · · ·β i

mi

]
.

At the first iteration the algorithm has to find only one parameter, and it’s initial value is chosen
as 1

B = [1] .

At every other iteration, the optimization algorithm is initialized with the solution of the previous
optimization problem, such that

β
i
(2s−1) = β

i
(2s) = β

i−1
s , m = 1,2, . . . ,mi−1.

Trends Comput. Appl. Math., 26 (2025), e01818
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10 IDENTIFICATION OF A TIME-VARYING SIR MODEL FOR COVID-19

Table 1: Iterative strategy to solve the optimization problem.

Iteration Period Number of parameters
i = 1 T1 = 896 days m1 = 1
i = 2 T2 = 448 days m2 = 2
i = 3 T3 = 224 days m3 = 4
i = 4 T4 = 112 days m4 = 7
i = 5 T5 = 56 days m5 = 14
i = 6 T6 = 28 days m6 = 28
i = 7 T7 = 14 days m7 = 55
i = 8 T8 = 7 days m8 = 110

The complete algorithm may be summarized on the pseudo-code described below. The subpro-
cedure MINSQUARES(Bi−1) solves the optimization problem (3.5) with initial values given
by vector Bi−1. This procedure returns Bi which is a vector composed of the β values. We have
used the MATLAB software to solve this optimization problem with the function fmincon.

Algorithm 1 Optimize

1: Procedure OPTIMIZE(T , M)

2: n← ceil
(

log( 2M
T )

log(2)

)
3: for i← 1 to n do
4: Ti← T ·2n−i

5: mi← ceil
(

M
Ti

)
6: if i = 1 then
7: β 1

1 ← 1
8: else
9: for s← 1 to mi−1 do

10: β i
(2s−1)← β i−1

s

11: β i
(2s)← β i−1

s

12: end for
13: end if
14: Bi−1←

[
β i

1 β i
2 · · · β i

mi

]
15: Bi←MINSQUARES(Bi−1)

16: end for
17: return Bn

18: End Procedure

Trends Comput. Appl. Math., 26 (2025), e01818
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3.3 Data

To perform the identification of the model parameters, data provided by the Health Department
of the State of Rio Grande do Sul were used, obtained through its website [1]. These data are cat-
egorized for each infected person, providing the case registration date and additional information
such as gender, age, etc. The considered period spanned 770 days (or 110 weeks), starting from
the first registered case.

Based on these records, the software MATLAB was utilized to create graphs illustrating the num-
ber of detected cases each day, as well as the cumulative number of infected individuals over
this period. This allowed the observation of the pandemic’s progression in the state, analyzing
critical periods, growth, and decline in the number of cases, among other considerations. Such
behaviors can be observed in the Figures 2 e 3. From there, it is possible to perform the model
identification, as seen earlier, and the results are displayed in the next subsection.
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Figure 2: Number of daily cases in RS state.
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Figure 3: Accumulated number of cases in RS state.
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12 IDENTIFICATION OF A TIME-VARYING SIR MODEL FOR COVID-19

3.4 Identification of a model from data

The optimization algorithm proposed in section 3.2 runs with data from section 3.3. We choose
T = 1 day and set M = 770 days, in order to obtain a daily time-varying model. As a result,
the model achieved the intended accuracy, as seen in Figure 4, where the graphs are compared.
Simulating the model based on the identified rates, the system’s behavior is observed in Figure 5.
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Figure 4: Real Behavior x Simulated.
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Figure 5: Simulation with identified infection rates.

4 PREDICTION OF A SIR MODEL

With the use of the data, it was possible to determine the infection rates for each day of the
pandemic, allowing the behavior and evolution of infections to be observed with good precision.

Trends Comput. Appl. Math., 26 (2025), e01818
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However, this technique reveals what happened in the past. Is it possible to understand how this
behavior will unfold in the future? Motivated by this question, an investigation was carried out
to assess how effectively this model is to predict the disease activity in the days following the
known data.

In this work, the aim is to determine how accurate the prediction of the SIR model can be based
on the identification of its infection rates. Thus, given the behavior of the cumulative infected
individuals in the previous section, the accuracy of the model in forecasting its activity over
different time intervals was assessed.

4.1 Results

The process for evaluating the model at future time intervals was carried out as follows: it was
assumed that the pandemic was already on its 100th day and that the infection rate for each 100
day of the pandemic was estimated. In order to estimate the following days of the pandemic,
it was assumed that from that day on, the value β (t) would be constant, for t > 100. Since it
was known that the infection rate would change in the future, it was certain the model would be
accurate in the following days but it would diverge in the future. The goal is then to determine
the accuracy of the model in predicting the cumulative behavior of the pandemic over the next 7,
14, 30, 60, and 180 days. The percentage of error was computed as follows

eT (t) =
Y (t +T )− Ŷ (t +T )

Y (t +T )

where T = {7,14,30,60,180}, such that five metrics were evaluated.

Subsequently, the same procedure was repeated starting from the 101st day, analyzing the sim-
ulation for the same subsequent periods (7, 14, 30, 60, and 180 days). This process was then
repeated starting from the 102nd day and continued successively. The analysis was conducted
by examining the percentage error between the prediction attempt and the previously identified
behavior, as given by: For each time interval, the average percentage error and standard deviation
were also computed.

4.1.1 Prediction for T = 7 days

As reported earlier, the percentage error was examined between the identified model’s cumula-
tive number of infected individuals and the data, 7 days ahead. These errors were tallied and dis-
tributed in a histogram. Additionally, the average percentage error of all simulations, along with
its standard deviation, was calculated to subsequently compare the histogram with the Gaussian
curve.

As can be seen, the prediction of infection rates 7 days ahead exhibited a behavior close to that
of the Gaussian curve, with a calculated mean of the percentage errors at 0.13% and a standard
deviation of 1.08%. As noted, the majority of cases are within one standard deviation of the

Trends Comput. Appl. Math., 26 (2025), e01818
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Percentage error
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Figure 6: Percentage error 7 days in future.

mean, indicating the model’s good accuracy in forecasting the pandemic’s behavior one week
into the future.

4.1.2 Prediction for 14 days

After verifying the effectiveness of the model in predicting the evolution of the pandemic one
week ahead, we sought to analyze its performance two weeks into the future. The graph in Figure
7 illustrates the percentage errors of the simulations.
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Figure 7: Percentage error 14 days in future.

Knowing that the mean of the percentage errors was 0.6% and the standard deviation was 3.13%,
it is possible to observe that, once again, the histogram’s behavior resembled a Gaussian curve.
However, a higher number of simulations with errors exceeding one standard deviation from

Trends Comput. Appl. Math., 26 (2025), e01818
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the mean were noticed, indicating that the model’s accuracy was not as good as in the previous
situation.

4.1.3 Prediction for 30 days

Here, the percentage error produced by the model in attempting to simulate the pandemic activity
one month into the future was examined. This resulted in an average percentage error of 3.95%,
with a standard deviation of 12.48%. Thus, it can be observed that, despite the average not being
high, there were many cases far from the mean, and the distribution of cases did not resemble
that of the Gaussian curve, as can be seen in Figure 8.
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Figure 8: Percentage error 30 days in future.

Thus, it is understood that the model did not exhibit fidelity to the actual behavior of the pandemic
when attempting to predict it 30 days ahead.

4.1.4 Prediction for 60 days

In this subsection, the results of the model simulation in attempting to predict the evolution of
the cumulative number of infected individuals in the 60 days following the already known period
are presented. It was determined that the average percentage error of the simulated behavior, in
comparison to the actual data, was approximately 22.97%, indicating a low level of precision.
Additionally, the standard deviation found was 53.32%.

When comparing the number of cases distributed in the histogram with its Gaussian curve, it is
observed that there is no proximity between the graphs, as illustrated in Figure 9 Therefore, it
is evident that the model is not reliable in predicting how the pandemic will unfold two months
into the future.
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Figure 9: Percentage error 60 days in future.

4.1.5 Prediction for 180 days

After realizing that the model did not exhibit accuracy in simulating the behavior of the pandemic
for 1 or 2 months into the future, a new test was conducted to assess its activity 6 months ahead.
As expected, it was observed that the percentage error was significantly high in practically all
cases, as can be seen in Figure 10, depicting the distribution of cases in this scenario alongside
the corresponding Gaussian curve.
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Figure 10: Percentage error 180 days in future.

For this case, the average percentage error was 123%, with a standard deviation of 242%, con-
firming the impracticality of using the model to predict the disease’s behavior during this time
period.
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5 CONCLUSIONS

Epidemics are phenomena that frequently arise in populations. Understanding the dynamics of
diseases that manifest collectively is crucial for implementing prevention and combat measures
[9]. In this regard, mathematical models emerge as useful tools for this purpose.

In this study, the use of a simplified compartmental model SIR was proposed to describe the be-
havior of the coronavirus pandemic. However, the conventional system of differential equations
in this model suggests constants with fixed values to represent the infection rate, which can lead
to inaccuracies in simulating long periods. Because of this, a time-varying infection rate was
adopted to reflect the daily activity of the disease. Thus, for each day, a value for this constant
was identified.

In this identification, data on the population infected by SARS-CoV-2 over a period of 770 days
in the state of Rio Grande do Sul were used. An optimization algorithm, based on the method
of least squares, was executed to determine the infection rates on each day of analysis. Since the
daily simulation required a vector with many parameters and the optimization problem was non-
convex, it was necessary to develop an iterative algorithm that doubled the number of elements
in the vector to be identified after each iteration.

This approach allowed for adjusting the model to the data and obtaining good accuracy in rep-
resenting the accumulated number of infected individuals, as observed in the graphs comparing
the simulation with the real behavior generated by the data. The identified model has very good
accuracy and represents very well the development of the pandemic, which means that it is com-
plex enough to represent the evolution of the disease and that models with more compartments
are not necessary.

A study was also conducted on the model’s validity in predicting the disease’s activity in future
scenarios. Thus, assuming that the pandemic’s behavior in RS was unknown from a certain day
onwards, the model was used to simulate its development for 7, 14, 30, 60, and 180 days into the
future. It was also found that the model can reasonably accurately describe pandemic scenarios
one or two weeks into the future. To do this, the percentage error between the cumulative number
of infected individuals in the period and the estimate by the model was calculated. By simulating
the disease activity 7 days ahead, an error of less than 0.13% was obtained, indicating good
predictive capability. For 14 days, the generated percentage error was less than 0.6%, signaling
that the model can also effectively predict the behavior of the pandemic in this period. However,
for time intervals greater than 14 days, the use of the prediction model is not recommended, as
the generated percentage errors were large.

The main source of error in predicting the future was the choice of constant value for all days
ahead. It was observed in the identification process that the infection rate varies a lot from day to
day. A future research topic is to choose other types of functions for the upcoming days.
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