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ABSTRACT. The main goal of this paper is to study the model of the sequences of (r, p,k)-generalized
Jacobsthal numbers, by the approach based on the properties of its associated Jacobsthal fundamental Fi-
bonacci system and its fundamental sequence. Some linear and combinatorial properties are established.
Moreover, the related matrix formulation allows us to provide new identities, which are declined in com-
binatorial form. Especially, the linear Jacobsthal Cassini identity and its combinatorial formulation are
furnished. Finally, illustrative special cases and examples are given.

Keywords: Jacobsthal Fundamental Fibonacci System, matrix representation, combinatorial formulas.

1 INTRODUCTION

The well known linear recurrence relation defining the sequence of usual Fibonacci numbers
{Fn}n≥0 is given by Fn+1 = Fn + Fn−1, for n ≥ 1, where F0 = 0 and F1 = 1. Recall that re-
cursive formula of the sequence of usual Fibonacci numbers, established by De Moivre in the
19th century for describing mathematically the famous Fibonacci rabbit problem, represents the
earliest and most prominent example of a recursive sequence and discrete dynamical system.
Furthermore, recent extensive studies on this topic, although of a theoretical nature, have been
motivated by its numerous applications in different mathematical and applied mathematics fields,
as well as in the exact and applied sciences, and art (see, for example, [5] and references therein).

Subsequently, since the Fibonacci numbers were declined under the preceding recursive formula,
several important sequences of numbers have been provided in the literature, which are defined
by an analogous weighted linear recurrence relation, such as the Pell numbers, Padovan-Perrin
numbers, Leonardo numbers and Jacobsthal numbers. Especially, the usual sequence of usual
Jacobsthal numbers {Jn}n≥0 is defined by the linear recurrence relation

Jn+1 = Jn +2Jn−1 for n ≥ 1, (1.1)
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2 (r, p,k)-GENERALIZED JACOBSTHAL NUMBERS

where J0 = 0 and J1 = 1. The sequences of usual Fibonacci and Jacobsthal numbers have been
generalized in the literature under various formulations. For more details, the Jacobsthal numbers
and some generalizations, can be seen in the references [11, 12], and references therein. Among
these generalizations, we can find the two following recursive expressions, based on the order
of recursiveness. The first one, is the sequence {Jn}n≥0 defined by linear recurrence relation of
order r

Jn+1 = Jn +2Jn−1 + Jn−2 + · · ·+Jn−r+2 + Jn−r+1, for n ≥ r, (1.2)

where J0 = α0, · · · ,Jr−1 = αr−1 are the arbitrary initial conditions. The second generalizations
of the sequence of usual Jacobsthal numbers (1.1) is the sequence {Jn}n≥0 defined by the linear
recurrence relation of order r

Jn+1 = Jn + Jn−1 + Jn−2 + · · ·+Jn−r+2 +2Jn−r+1, for n ≥ r, (1.3)

where J0 = α0, · · · ,Jr−1 = αr−1 are the initial conditions.

Let r ≥ 2, k ≥ 1 and p ≥ 1 be a given integers in N. The two sequences of generalized Jacobsthal
numbers defined by the linear recursive relation (1.2)-(1.3), can be extended to family of (r, p,k)-
generalized Jacobsthal numbers {Jn}n≥0 defined as follows

Jn+1 = Jn +2pJn−1 + Jn−2 + · · ·+Jn−r+2 +2kJn−r+1, for n ≥ r, (1.4)

where J0 = α0, · · · ,Jr−1 = αr−1, are the initial conditions. In fact, the two families of generalized
Jacobsthal numbers defined by Expressions (1.2)- (1.3), represent a special class of the model of
the (r, p,k)-generalized Jacobsthal numbers (1.4). Indeed, we can observe that for p= 1 and k = 0
in (1.4)(respectively, p= 0, k = 1), we get the generalized Jacobsthal numbers (1.2) (respectively,
(1.3)) In addition, for p = k = 0 Expression (1.4) is reduced to the well known generalized
Fibonacci numbers of order r, studied in various research papers.

This paper aims to study some properties of the (r, p,k)-generalized Jacobsthal numbers defined
by expression (1.4), and its special cases (1.2)- (1.3). Our approach is based on the so-called
the fundamental Fibonacci system and its related fundamental sequence. This approach permits
us to establish some linear and combinatorial properties of the (r, p,k)-generalized Jacobsthal
numbers. In addition, the matrix formulation of Expression (1.4) allows us to provide some new
identities, especially the Cassini identity and its combinatorial expression. Moreover, similar
properties of the special cases (1.2)- (1.3) are derived.

The content of this study is organized as follows. Section 2 concerns some properties of the
vector space of the sequences of (r, p,k)-generalized Jacobsthal numbers, and its related Jacob-
sthal fundamental Fibonacci system. Especially, the fundamental sequence is introduced and its
main role is presented. In Section 3 properties of the matrix formulation of Expression (1.4) is
studied in terms of its related Jacobsthal fundamental Fibonacci system. In addition, some new
identities associated to the (r, p,k)-generalized Jacobsthal numbers are provided, in terms of the
fundamental sequence. Section 4 is devoted to the combinatorial expression of the sequence of
(r, p,k)-generalized Jacobsthal numbers and its related identities. More precisely, using the com-
binatorial formulation of the fundamental sequence and the results of sections 2 and 3, we obtain

Trends Comput. Appl. Math., 26 (2025), e01835
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MUSTAPHA RACHIDI and FATIH YILMAZ 3

the combinatorial form of the sequence of (r, p,k)-generalized Jacobsthal numbers and its re-
lated identities. In Section 5, we provide some properties of the Cassini Identity associated to the
sequence of (r, p,k)-generalized Jacobsthal numbers. Finally, the special cases (1.2)- (1.3) are
considered and examples are furnished.

2 THE VECTOR SPACE OF (r,p,k)-GENERALIZED JACOBSTHAL NUMBERS AND
ITS FUNDAMENTAL FIBONACCI SYSTEM

2.1 The generalized Jacobsthal vector space and its fundamental Fibonacci system

Let E
(r)
K (2p;2k), where K = R or C, be the set of sequences (r, p,k)-generalized Jacobsthal

numbers of order r defined by the recurrence relation (1.4), with arbitrary initial conditions
(α0,α1, · · · ,αr−1) ∈ Kr. Equipped with the usual addition and a multiplication by a scalar,
we can show that E

(r)
K (2p;2k) is K-vector space. Let {{J(s)n }n≥0; 0 ≤ s ≤ r − 1} be the fam-

ily of sequences defined by (1.4), with mutually different sets of initial values, indexed by s
(0 ≤ s ≤ r−1), defined as follows

J(s)n+1 = J(s)n +2pJ(s)n−1 + J(s)n−2 + · · ·+ J(s)n−r+2 +2kJ(s)n−r+1, for n ≥ r−1, (2.1)

where J(s)n = δs,n (0≤ n≤ r−1) are the initial, here δs,n is the Kronecker symbol, namely, δs,s = 1
and δs,n = 0, for s ̸= n. Let β0, · · · , βr−1 be scalars of K, and suppose that ∑

r−1
s=0 βsJ

(s)
n = 0, for

n≥ 0. Then, for n= 0,1, . . . ,r−1, we have
r−1

∑
s=0

βsJ
(s)
n = βnJ(n)n = βn = 0, because J(s)n = 0 for n ̸= s

and J(n)n = 1. Thus, the set of sequences (2.1) is a linearly independent system of the K-vector
space E

(r)
K (2p;2k). In addition, let {Jn}n≥0 be a sequence in E

(r)
K (2p;2k), with initial conditions

α0, · · · ,αr−1. Then, we can verify that Jn =
r−1

∑
s=0

αsJ
(s)
n , for every n ≥ 0. Indeed, let {wn}n≥0 be

the sequence defined by wn = ∑
r−1
s=0 αsJ

(s)
n , for every n ≥ 0. Then, clearly {wn}n≥0 is an element

of E
(r)
K (2p;2k) and for n = 0,1, . . . ,r − 1 we have wn =

r−1

∑
s=0

αsJ
(s)
n = αnJ(n)n = αn, for every n

(0 ≤ n ≤ r − 1.). Hence, the two sequences {Jn}n≥0 and {wn}n≥0 satisfy Expression (2.1) and
own the same initial conditions. Therefore, we have Jn = wn, for every n ≥ 0, which implies that
the set of sequences (2.1) represents a generator system of the K-vector space E

(r)
K (2p;2k). In

summary, we can formulate the following proposition.

Proposition 1. The set of sequences {J(s)n }n≥0 (0 ≤ s ≤ r−1) represents a basis of the K-vector
space E

(r)
K (2p;2k) (K = R or C), of the sequences of (r, p,k)-generalized Jacobsthal numbers.

Moreover, we have dimK E
(r)
K = r.

The set {{J(s)n }n≥0; 0 ≤ s ≤ r−1} is the called the Jacobsthal Fundamental Fibonacci System.
The Jacobsthal fundamental Fibonacci system will play a central role in the sequel of this study.
In addition, the remarkable sequence {J(r−1)

n }n≥0 will allow us to obtain important results on the
sequences of (r, p,k)-generalized Jacobsthal numbers and their K-vector space E

(r)
K (2p;2k).

Trends Comput. Appl. Math., 26 (2025), e01835
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4 (r, p,k)-GENERALIZED JACOBSTHAL NUMBERS

2.2 The Jacobsthal Fibonacci fundamental sequence

In this subsection, we study the closed relation between the sequence of (r, p,k)-generalized
Jacobsthal numbers {J(r−1)

n }n≥0 and the other elementary sequences of (r, p,k)-generalized Ja-
cobsthal numbers {J(s)n }n≥0, where 0 ≤ s ≤ r− 1. Moreover, we derive the compact formula of
every element of the K-vector space E

(r)
K (2p;2k) in terms of the sequence {J(r−1)

n }n≥0.

To this aim, let first establish the expression of {J(0)n }n≥0 in terms of {J(r−1)
n }n≥0.

Lemma 1. Let {J(0)n }n≥0 and {J(r−1)
n }n≥0 be the (r, p,k)-generalized Jacobsthal numbers

sequences (2.1). Then, for each n ≥ 1, we have,

J(0)n = 2kJ(r−1)
n−1 . (2.2)

Proof. We proceed by induction on n. For n = 1, we have J(0)1 = · · · = J(0)r−1 = 0 and J(0)r−1 = 2k.

On the other hand, J(r−1)
0 = J(r−1)

1 = · · · = J(r−1)
r−2 = 0 and J(r−1)

r−1 = 1. Thus, we have J(0)d = 0 =

2k.0 = 2k.J(r−1)
d−1 , for d = 1, · · · ,r−1 and J(0)r = 2k = 2k.1 = 2kJ(r−1)

r−1 . Therefore, J(0)n = 2kJ(r−1)
n−1

for 1 ≤ n ≤ r−1. Suppose that J(0)n = 2kJ(r−1)
n−1 , for some n ≥ r. Let establish that J(0)n+1 = 2kJ(r−1)

n .

We have J(0)n+1 = J(0)n +2pJ(0)n−1+J(0)n−2+ · · ·+2kJ(0)n−r+1, for n ≥ r−1. Then, using the hypothesis

of induction J(0)n = 2kJ(r−1)
n−1 , we obtain J(0)n+1 = 2kJ(r−1)

n−1 +2k2pJ(r−1)
n−2 +2kJ(r−1)

n−3 + · · ·+2k2kJ(r−1)
n−r

or equivalently 2k(J(r−1)
n−1 +2pJ(r−1)

n−2 +J(r−1)
n−3 + · · ·+2kJ(r−1)

n−r )= 2kJ(r−1)
n . Therefore, we get J(0)n =

2kJ(r−1)
n−1 , for all n ≥ 1. □

Second, let now express the sequence {J(s)n }n≥0, for 1 ≤ s ≤ r − 2 in terms of the sequence
{J(r−1)

n }n≥0.

Lemma 2. Let {J(s)n }n≥0, where 1 ≤ s ≤ r − 2 and {J(r−1)
n }n≥0 be the generalized Jacobsthal

sequences (2.1). Then, for 1 ≤ s ≤ r−3, we have,

J(s)n = J(r−1)
n−1 + J(r−1)

n−2 + · · ·+ J(r−1)
n−s +2kJ(r−1)

n−s−1, (2.3)

for every n ≥ r, and for s = r−2, we have

J(r−2)
n = 2pJ(r−1)

n−1 + J(r−1)
n−2 + · · ·+ J(r−1)

n−r+2 +2kJ(r−1)
n−r+1. (2.4)

Proof. The proof is obtained by mathematical induction. For reason of convenience and sim-
plicity, we set a0 = a2 = · · · = ar−2 = 1, a1 = 2p and ar−1 = 2k. Let {J(s)n }n≥0 (1 ≤ s ≤ r− 2)
be an element of the fundamental Fibonacci system of the K-vector space E

(r)
K (2p;2k), where

J(s)0 = J(s)1 = ...= J(s)s−2 = J(s)s−1 = ...= J(s)r−1 = 0 and J(s)s = 1. Then, by using the recursive formula

(2.1), we remark that J(s)r = ar−s−1J(r−1)
r−1 and J(s)r+1 = ar−s−1J(r−1)

r + ar−s−2J(r−1)
r−1 . Continuing

this process, we obtain J(s)2r−1 = ar−s−1J(r−1)
2r−2 +ar−s−2J(r−1)

2r−1 + ...+ar−1J(r−1)
r−1 . And the recurrence

relation (2.1) (or more generally (1.4)) permits to get,

J(s)n = ar−s−1J(r−1)
n−1 +ar−sJ

(r−1)
n−2 + ...+ar−1J(r−1)

n−s−1. (2.5)

Trends Comput. Appl. Math., 26 (2025), e01835
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Since a0 = a2 = · · ·= ar−2 = 1, a1 = 2p and ar−1 = 2k, we show that for 1≤ s≤ r−3, Expression
(2.5) takes the form, J(s)n = J(r−1)

n−1 + J(r−1)
n−2 + · · ·+ J(r−1)

n−s + 2kJ(r−1)
n−s−1, for every n ≥ r− 1, which

is nothing else but Expression (2.3). Finally, for s = r−2, we derive that Expression (2.5) can be
written under the form,

J(s)n = 2pJ(r−1)
n−1 + J(r−1)

n−2 + · · ·+ J(r−1)
n−s +2kJ(r−1)

n−s−1.

This last expression is none other than Expression (2.4). □

Expressions (2.2), (2.3) and (2.4) show that every element of the K-vector space E
(r)
K (2p;2k) can

be expressed only in terms of the (r, p,k)-generalized Jocobsthal sequence {J(r−1)
n }n≥0. More

precisely, we have the following result.

Proposition 2. Let {Jn}n≥0 be a sequence of the K-vector space E
(r)
K (2p;2k), of initial data

α0, · · · , αr−1. Then, for every n ≥ 0, the general term Jn is given under the form,

Jn =
r−1

∑
j=0

Z jJ
(r−1)
n− j−1, (2.6)

where 
Z0 = α02k +α1 + · · ·+αr−3 +αr−22p +αr−1

Z1 = α12k +α2 + · · ·+αr−2 +αr−12p

Z j = α j2k +α j+1 + · · ·+αr−1, for 2 ≤ j ≤ r−1.

(2.7)

Proof. As in the proof of Lemma 2, for reason of convenience and simplicity, we set a0 =

a2 = · · · = ar−2 = 1, a1 = 2p and ar−1 = 2k. Let {Jn}n≥0 be a sequence of the K-vector
space E

(r)
K (2p;2k), of initial data α0, · · · ,αr−1. Proposition 1, concerning the linear decompo-

sition in the fundamental Fibonacci system of the K-vector space E
(r)
K (2p;2k), implies that

we have Jn =
r−1

∑
s=0

αsJ
(s)
n =

r−2

∑
s=0

αsJ
(s)
n +αr−1J(r−1)

n , for every n ≥ 0. Whence, we substitute J(s)n

(s = 0, ...,s = r−1), as shown in Expressions (2.2), (2.3) and (2.4), in the general terms Jn, we

obtain Jn =
r−1

∑
s=0

αs

s

∑
k=0

ar−s+k−1J(r−1)
n−k−1 =

r−2

∑
s=0

αs

s

∑
k=0

ar−s+k−1J(r−1)
n−k−1+αr−12kJ(r−1)

n . The preceding

equality can be expanded as follows,

For s = 0 : α0J(0)n = α0ar−1J(r−1)
n−1

For s = 1 : α1J(1)n = α1ar−2J(r−1)
n−1 +α1ar−1J(r−1)

n−2
...

For s = r−2 : αr−2J(r−1)
n = αr−2a1J(r−1)

n−1 +αr−2a2J(r−1)
n−2 + ...+αr−2ar−1J(r−1)

n−r+1

For s = r−1 : αr−1J(r−1)
n = αr−1a0J(r−1)

n−1 +αr−1a1J(r−1)
n−2 + ...+αr−1ar−1J(r−1)

n−r .

Trends Comput. Appl. Math., 26 (2025), e01835
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6 (r, p,k)-GENERALIZED JACOBSTHAL NUMBERS

Therefore, we derive that the general terms Jn can be written under the form Jn =
r−1

∑
k=0

ZkJ(r−1)
n−k−1,

where



Z0 = α0ar−1 +α1ar−2 + · · ·+αr−1a0

Z1 = α1ar−1 +α2ar−2 + · · ·+αr−1a1
...

Zr−2 = αr−2ar−1 +αr−1ar−2 and Zr−1 = αr−1ar−1.

So, we get Expressions (2.6)-(2.7). □

It reveals from Lemmas 1, 2 and Propositions 2, that we have the following corollary.

Corollary 1. The family of sequences J = {{J(r−1)
n−s }n≥s; s = 0,1, ...,r − 1}, is a basis of the

K-vector space E
(r)
K (2p;2k).

Proof. Expression (2.6) shows that the set J = {{J(r−1)
n−s }n≥s; s = 0,1, ...,r−1} is a generating

system of the K-vector space E
(r)
K (2p;2k). Since J is of cardinal r and dimK(E

(r)
K (2p;2k) = r,

we derive that set J = {{J(r−1)
n−s }n≥s; s = 0,1, ...,r − 1} is a basis of the K-vector space

E
(r)
K (2p;2k). □

Lemmas 1-2, Propositions 2 and Corollary 1 show that the sequence {J(r−1)
n }n≥0, will play an

important role in the sequel. In analogy with the fundamental solution for ordinary differential
equations of constant coefficients, we can formulate the following definition.

Definition 1. The sequence {J(r−1)
n }n≥0 is called the fundamental sequence of the linear recursive

Expression (1.4), or of the K-vector space E
(r)

K (a0, . . . ,ar−1).

The fundamental Fibonacci system and its related fundamental sequence {J(r−1)
n }n≥0 will play

a central role in additive number theory. For the two special cases k = 0 or p = 0 of Expression
(1.4), we get the following corollary.

Corollary 2. Let {Jn} be a sequence of the K-vector space E
(r)
K (2p;2k), of initial data

α0, · · · , αr−1. Then, for k = 0 the general term Jn is written under the form Jn =
r−1

∑
j=0

Zp, jJ
(r−1)
n− j−1,

where the Zp, j are given by,
Zp,0 = α0 +α1 + · · ·+αr−3 +αr−22p +αr−1

Zp,1 = α1 +α2 + · · ·+αr−2 +αr−12p

Zp, j = α j +α j+1 + · · ·+αr−1, for 2 ≤ j ≤ r−1.

(2.8)

And for p = 0, the general term Jn is given by Jn =
r−1

∑
j=0

Zk, jJ
(r−1)
n− j−1, where the Zk, j are given by,

Zk, j = α j2k +
r−1

∑
d= j+1

αd for 0 ≤ j ≤ r−1. (2.9)

Trends Comput. Appl. Math., 26 (2025), e01835
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Remark 1. For k = 0 and p= 1 or k = 1 and p= 0 (respectively), Corollary 2 allows us to derive
the same properties for the generalized Jacobsthal numbers defined by (1.2)- (1.3), respectively.

3 MATRIX FORMULATION OF THE (r,p,k)-GENERALIZED JACOBSTHAL NUM-
BERS AND SOME IDENTITIES

3.1 Matrix formulation of the sequence of (r,p,k)-generalized Jacobsthal numbers

For reason of clarity, we recall here the general setting of a sequence {vn}n≥0 defined by a linear
recurrence relation vn = ∑

r−1
i=0 aivn−i−1, for n ≥ r, with arbitrary initial conditions v0, . . . , vr−1.

The analogous fundamental Fibonacci system {(v(s)n )n≥0, 0 ≤ s ≤ r−1} is defined as follows,{
v(s)n = ∑

r−1
i=0 aiv

(s)
n−i−1 for n ≥ r,

v(s)n = δs,n for 0 ≤ n ≤ r−1.
(3.1)

Let Yn be the vector column Yn = (vn, . . . , vn−r+1)
t . The sequence {vn}n≥0 can be ex-

pressed under the following equivalent matrix form, Yn+1 = AYn, for n ≥ r − 1, where A is

the companion matrix A =


a0 a1 · · · ar−1

1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0

 , denoted in the sequel under the form

A = A[a0,a1, · · · ,ar−1]. Furthermore, an iterative process allows us to show that the matrix for-
mulation of {vn}n≥0, can be written under the form, Yn+r−1 = AnYr−1, for every n ≥ 0. For the
matrix power An = (a(n)i j )1≤i, j≤r it was established in [3] (see also [2,10]) that the entries a(n)i j can
be expressed in terms of the elements of the fundamental Fibonacci system (3.1). More precisely,
the following powerful theorem is established.

Theorem 1 (see [3]). Under the preceding data, the entries a(n)i j of the powers An =

(a(n)i j )0≤i, j≤r−1 are given by,

a(n)i j = v(r− j−1)
n+r−i−1 (3.2)

where the sequences {v(s)n }n≥0 (0 ≤ s ≤ r − 1) are defined by (3.1). In other words, for every
n ≥ 0, we have,

An =


v(r−1)

n+r−1 · · · v(1)n+r−1 v(0)n+r−1
... · · ·

...
...

v(r−1)
n · · · v(1)n v(0)n

 . (3.3)

It is worth noting that Expressions (3.2)-(3.3) have been established first in [3], and they have
been considered in the general setting in other papers such that [2, 10].

Let {Jn}n≥0 be a given sequence of (r, p,k)-generalized Jacobsthal numbers, with initial condi-
tions α0, . . . , αr−1. We can show that Expression (1.4) can be written under the matrix expression

Trends Comput. Appl. Math., 26 (2025), e01835
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8 (r, p,k)-GENERALIZED JACOBSTHAL NUMBERS

Jn+1 = BJn, for every n ≥ r−1, where Jn is the vector column Jn = (Jn, . . . , Jn−r+1)
t and B is

the companion matrix,

B =



1 2p 1 · · · 1 2k

1 0 · · · 0 0
0 1 0 · · · 0 0
...

. . . . . . . . .
...

...
0 · · · 0 1 0 0
0 · · · 0 0 1 0


. (3.4)

An iterative process allows us to show that the matrix equation Jn+1 = BJn (n ≥ r− 1), can be
written under the form Jn+r−1 = BnJr−1, for every n ≥ 0, where Jr−1 = (αr−1, . . . , α0)

t .

Theorem 2. Under the preceding data, the entries Ji j(n) of the powers Bn = (Ji j(n))0≤i, j≤r−1

are given by,
Ji j(n) = J(r− j−1)

n+r−i−1 (3.5)

where the sequences {J(s)n }n≥0 (0 ≤ s ≤ r − 1) are defined by (2.1). In other words, for every
n ≥ 0, we have,

Bn =


J(r−1)

n+r−1 · · · J(1)n+r−1 J(0)n+r−1
... · · ·

...
...

J(r−1)
n · · · J(1)n J(0)n

 . (3.6)

Result of Theorem 2, namely, Expressions (3.5)-(3.6), will allow us to establish some identities
related to the sequence of (r, p,k)-generalized Jacobsthal numbers.

Remark 2. Note that the companion matrix A and its powers An have been considered for the
matrix formulation of generalized Fibonacci sequences defined by a linear recurrence relation
vn = ∑

r−1
i=0 aivn−i−1, for n ≥ r, with arbitrary initial conditions v0, . . . , vr−1, in different papers

in the literature (see, for instance, [4,6]). In [4] the entries of the powers An have been provided,
using another family of elementary sequences similar to that defined by the expression (3.1).
As shown in Theorem 1 of [3], the explicit formulas of the entries of the powers An have been
established with the aid of the fundamental Fibonacci system (3.1).

3.2 Jacobsthal Matrix formulation and its related identities

Let m, h in N and consider the two matrix powers Bm =(Ji j(m))0≤i, j≤r−1, Bh =(Ji j(h))0≤i, j≤r−1.
Since the product of these powers of matrices is commutative, we have

BmBh = BhBm = Bm+h = (Ji j(m+ s))0≤i, j≤r−1.

On the other side, we recall that for the product of two given square matrices A = (ai, j)1≤i, j≤r

and c = (bi, j)1≤i, j≤r, the entries of the product matrix D = A.C = (di, j)1≤i, j≤r are given by di, j =
r

∑
k=1

ai,kck, j. Therefore, the entries Ji j(m+h) of the matrix Bm+h are given as follows Ji j(m+h) =

Trends Comput. Appl. Math., 26 (2025), e01835
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r−1

∑
k=0

Jik(m)Jk j(h) =
r−1

∑
k=0

Jik(h)Jk j(m). Therefore, taking into account Expression (3.5) of the entries

of the matrices powers Bm and Bs, in terms of the fundamental system of sequences {J(s)n }n≥0

(0 ≤ s ≤ r−1) given by (2.1), we have the following important consequence of Theorem 2.

Proposition 3. Let {J(s)n }n≥0 (0 ≤ s ≤ r − 1) be the Jacobsthal fundamental Fibonacci system
given by (2.1). Then, for every m, h ≥ 0, we have

J(r− j−1)
m+h+r−i−1 =

r−1

∑
k=0

J(r−k−1)
m+r−i−1J(r− j−1)

h+r−k−1 =
r−1

∑
k=0

J(r−k−1)
h+r−i−1J(r− j−1)

m+r−k−1. (3.7)

Let change the indexation in Expression (3.7), by setting d = r − k − 1 ; p = r − i −
1 and q = r− j−1. Then, we obtain the result.

Theorem 3. Let {J(s)n }n≥0 (0 ≤ s ≤ r−1) be the Jacobsthal fundamental system (2.1). Then, any
integers m, h ≥ 0, we have

J(q)m+h+p =
r−1

∑
d=0

J(d)m+pJ(q)h+d =
r−1

∑
d=0

J(d)h+pJ(q)m+d , (3.8)

for every every p, q (0 ≤ p, q ≤ r−1). Expression (3.8) is called (r, p,k)-generalized Jacobsthal
Identity.

In addition, it was established in Lemmas 1, 2, that for every s = 0,1, ...,r−2, the general term
J(s)n can be expressed only in term of J(r−1)

n−p , as shown in Expressions (2.2), (2.3) and (2.4) namely,
for every s = 0,1, ...,r−2, we have the following the compact formula,

J(s)n =
s

∑
j=0

ar−s+ j−1J(r−1)
n− j−1 = ar−s−1J(r−1)

n−1 +ar−sJ
(r−1)
n−2 + ...+ar−1J(r−1)

n−s−1 (3.9)

for every n≥ r, where a0 = a2 = · · ·= ar−2 = 1, a1 = 2p and ar−1 = 2k, for reason of convenience
and simplicity. Expression (3.9) is still valid also for i = r − 1, that is, in this case, we have

J(r−1)
n =

r−1

∑
j=0

ar−(r−1)+ j−1J(r−1)
n− j−1 =

r−1

∑
j=0

a jJ
(r−1)
n− j−1, which is nothing else but the recurrence relation

(2.1), for the sequence {J(r−1)
n }n≥0. Moreover, for s = 0, we show easily that Expression (3.9)

takes the form,
J(0)n = 2kJ(r−1)

n−1 , for every n ≥ r. (3.10)

Now using Expression (3.9), we can establish that the identities (3.8) can be expressed only in
terms of the fundamental sequence {J(r−1)

n }n≥0. That is, let first suppose that q = r−1 in (3.8).
Then, for every m ≥ 0 and h ≥ 0, we have

J(r−1)
m+h+p =

r−1

∑
d=0

J(d)m+pJ(r−1)
h+d =

r−2

∑
d=0

J(d)m+pJ(r−1)
h+d + J(r−1)

m+p J(r−1)
h+r−1. (3.11)

Trends Comput. Appl. Math., 26 (2025), e01835
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10 (r, p,k)-GENERALIZED JACOBSTHAL NUMBERS

Application of the formulas (2.2), (2.3) and (2.4) allows us to obtain J(d)m+p =
d

∑
j=0

ar−d+ j−1J(r−1)
m+p− j−1. Therefore, the substitution of this last expression of J(d)m+p in the for-

mula (3.11), allows us to derive J(r−1)
m+h+p =

r−2

∑
d=0

d

∑
j=0

ar−d+ j−1J(r−1)
m+p− j−1J(r−1)

h+d + J(r−1)
m+p J(r−1)

h+r−1.

Second, suppose that q = 0 in Expression (3.8), then, we have J(0)m+h+p =
r−1

∑
d=0

J(d)m+pJ(0)h+d =

r−2

∑
d=0

J(0)h+d

d

∑
j=0

ar−d+ j−1J(r−1)
m+p− j−1. By considering Expression (3.10), we have J(0)n = 2kJ(r−1)

n−1 ,

for n ≥ r. Hence, we get 2kJ(r−1)
m+h+p−1 =

r−1

∑
d=0

2kJ(r−1)
h+d−1

d

∑
j=0

ar−d+ j−1J(r−1)
m+p− j−1, for n ≥ r. Since

ar−1 = 2k ̸= 0 we derive that J(r−1)
m+h+p−1 =

r−1

∑
d=0

d

∑
j=0

ar−d+ j−1J(r−1)
m+p− j−1J(r−1)

h+d−1, for n ≥ r. Sup-

pose that 1 ≤ q ≤ r−2 in Expression (3.8). Thus, we obtain J(q)m+h+p = J(r−1)
m+p J(q)h+d + J(0)m+pJ(q)h+d +

r−2

∑
d=1

J(d)m+pJ(q)h+d , for n ≥ r. Since J(0)n = 2kJ(r−1)
n−1 , for n ≥ r, the former expression takes the form

J(q)m+h+p = (2k + 1)J(r−1)
m+p J(q)h+d +

r−2

∑
d=1

J(d)m+pJ(q)h+d . Now, let apply the formulas (2.2), (2.3) and (2.4)

on both sides of the preceding expression, namely, J(k)n = ∑
k
j=0 ar−k+ j−1J(r−1)

n− j−1 (0 ≤ k ≤ r−2),
we obtain,

q

∑
j=0

ar−q+ j−1J(r−1)
m+h+p− j−1 = (2k +1)J(r−1)

m+p +
q

∑
j=0

ar−q+ j−1J(r−1)
h+d− j−1 +

r−2

∑
d=1

J(d)m+pJ(q)h+d

= (2k +1)J(r−1)
m+p

q

∑
j=0

ar−q+ j−1J(r−1)
h+d− j−1 +Ω(r,m,h)

for every n ≥ r, where Ω(r,m,h) = ∑
r−2
d=1 ∑

d
k=0 ∑

q
j=0 ar−q+k−1ar−q+ j−1J(r−1)

m+p−k−1J(r−1)
h+d− j−1. In

summary, we can formulate the following result.

Theorem 4. Let {J(r−1)
n }n≥0 be the Jacobsthal fundamental sequence and m, h ≥ 0 two given

integers. Then, using the identity (3.8), we get the following identities,

J(r−1)
m+h+p =

r−2

∑
d=0

d

∑
j=0

ar−d+ j−1J(r−1)
m+p− j−1J(r−1)

h+d + J(r−1)
m+p J(r−1)

h+r−1, for q = r−1, (3.12)

J(r−1)
m+h+p−1 =

r−1

∑
d=0

d

∑
j=0

ar−d+ j−1J(r−1)
m+p− j−1J(r−1)

h+d−1, for q = 0, (3.13)

Trends Comput. Appl. Math., 26 (2025), e01835
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and for 1 ≤ q ≤ r−2 we have

q

∑
j=0

ar−q+ j−1J(r−1)
m+h+p− j−1 = (2k +1)J(r−1)

m+p

q

∑
j=0

ar−q+ j−1J(r−1)
h+d− j−1 + (3.14)

+
r−2

∑
d=1

d

∑
k=0

q

∑
j=0

ar−q+k−1ar−q+ j−1∆(r,m, p,h,d, j,k),

where a0 = a2 = · · · = ar−2 = 1, a1 = 2p and ar−1 = 2k, and ∆(r,m, p,h,d, j,k) =

J(r−1)
m+p−k−1J(r−1)

h+d− j−1.

The identities provided in Theorem 4 concerns the equality of the identity J(q)m+h+p =
r−1

∑
d=0

J(d)m+pJ(q)h+d . However, we can see that for the two members of the equality
r−1

∑
d=0

J(d)m+pJ(q)h+d =

r−1

∑
d=0

J(d)h+pJ(q)m+d , are symmetric by permuting the two integers m and s. Therefore, the permutation

of the two integers m and s in Expressions (3.12), (3.13) and (3.14), will permit to get identical
identities.

The linear identities (3.12), (3.13) and (3.14) have been established recently, for the Fibonacci-
Pell numbers sequences, in the research papers [8, 9].

Remark 3. The three identities (3.12), (3.13) and (3.14) can be formulated for the two special
cases p = 0 and k ≥ 1 or p ≥ 1 and k = 0. That is, for p = 0 and k ≥ 1 we have a0 = a1 = a2 =

· · · = ar−1 = 1 and ar−1 = 2k in Expressions (3.12)- (3.14), and for p ≥ 1 and k = 0 we have
a0 = a2 = · · ·= ar−1 = 1 and a1 = 2p in Expressions (3.12)- (3.14).

4 COMBINATORIAL EXPRESSION OF THE (r,p,k)-GENERALIZED JACOBSTHAL
NUMBERS AND RELATED IDENTITIES

4.1 Combinatorial aspect of (r, p,k)-generalized Jacobsthal numbers

Let {un}n≥0 be the sequence defined by the combinatorial formula,

un = ∑
j0+2 j1+···+r jr−1=n−r+1

( j0 + · · ·+ jr−1)!
j0! j1! . . . jr−1!

a j0
0 a j1

1 . . .a jr−1
r−1 (4.1)

for every n ≥ r, with ur−1 = 1, u j = 0 for j = 0, ...,r − 2,. It was established in [7] that the
sequence {un}n≥0 satisfies a linear recurrence relation of Fibonacci type. For a1 = 2p, a0 = a2 =

· · ·= ar−2 = 1 and ar−1 = 2k, we show that Expression (4.1) takes the following form,

wn = ∑
j0+2 j1+···+r jr−1=n−r+1

( j0 + · · ·+ jr−1)!
j0! j1! . . . jr−1!

2 j1 p2 jr−1k (4.2)

Trends Comput. Appl. Math., 26 (2025), e01835
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where wr−1 = 1, w j = 0 for j = 0, ...,r−2. In addition, the sequence {wn}n≥0 defined by (4.2),
satisfies the generalized Jacobsthal recurrence relation (1.4), with initial conditions wr−1 = 1,
w j = 0 for j = 0, ...,r−2, namely, we have,{

wn+1 = wn +2pwn−1 +wn−2 + · · ·+wn−r+2 +2kwn−r+1

wr−1 = 1, w j = 0 for j = 0, ...,r−2.

Comparing the sequence {wn}n≥0 defined by (4.2) with the generalized Jacobsthal fundamental
sequence {J(r−1)

n }n≥0, we show that these two sequences satisfy the linear recursive relation
(1.4) and own the same initial conditions, namely, J(r−1)

r−1 = wr−1 = 1, J(r−1)
n = wn = 0 for n =

0, ...,r−2. Therefore, we get the following result.

Theorem 5. Under the preceding data, the combinatorial expression of the Jacobsthal funda-
mental sequence {J(r−1)

n }n≥0, of the sequence of the (r, p,k)-generalized Jacobsthal numbers
(1.4) is given by,

J(r−1)
n = ∑

j0+2 j1+···+r jr−1=n−r+1

( j0 + · · ·+ jr−1)!
j0! j1! . . . jr−1!

2 j1 p2 jr−1k (4.3)

for every n ≥ r, where J(r−1)
r−1 = 1, J(r−1)

n = 0 for n = 0, ...,r−2.

For reason of convenience, we utilise the following usual combinatorial notation,

J(r−1)
n = ρ(n+1,r) = ∑

j0+2 j1+···+r jr−1=n−r+1

( j0 + · · ·+ jr−1)!
j0! j1! . . . jr−1!

2 j1 p2 jr−1k (4.4)

for every n ≥ r, with ρ(r,r) = 1 and ρ(n,r) = 0 for 0 ≤ n ≤ r−1.

In the framework of the proof of Theorem 5, for establishing the combinatorial formula, we had
used the procedure based on the equality of the Jacobsthal fundamental sequence {J(r−1)

n }n≥0

and the sequence {wn}n≥0 defined by Expression (4.2). However, generally in the literature to
establish the combinatorial formula of the sequences defined by linear recurrence relations, one
uses the associated generating function.

For the two special cases p ≥ 1 and k = 0 or p = 0 and k ≥ 1 of Expression (1.4), the combina-
torial expression of Jacobsthal fundamental sequence {J(r−1)

n }n≥0 is formulated in the following
corollary.

Corollary 3. For p = 0 the combinatorial expression of Jacobsthal fundamental sequence
{J(r−1)

n }n≥0, namely (4.4), is given by

J(r−1)
n = ∑

j0+2 j1+···+r jr−1=n−r+1

( j0 + · · ·+ jr−1)!
j0! j1! . . . jr−1!

2 jr−1k and for k = 0 it takes the form J(r−1)
n =

∑
j0+2 j1+···+r jr−1=n−r+1

( j0 + · · ·+ jr−1)!
j0! j1! . . . jr−1!

2 j1 p, for every n ≥ r, where J(r−1)
r−1 = 1, J(r−1)

n = 0 for n =

0, ...,r−2.

Trends Comput. Appl. Math., 26 (2025), e01835
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A substitution process combining Proposition 2 and Theorem 5 allows us to derive the following
result.

Proposition 4. Let {Jn}n≥0 be a sequence of the K-vector space E
(r)
K (2p;2k), of initial data

α0, · · · , αr−1. Then, for every n ≥ 0, the combinatorial expression of the general term Jn is given

under the form Jn =
r−1

∑
j=0

Z jρ(n− j,r), where ρ(n,r) (4.4) and the Z j (0 ≤ j ≤ r−1) are given by

(2.7), namely, 
Z0 = α02k +α1 + · · ·+αr−3 +αr−22p +αr−1

Z1 = α12k +α2 + · · ·+αr−2 +αr−12p

Z j = α j2k +α j+1 + · · ·+αr−1, for 2 ≤ j ≤ r−1.

Theorem 5 and Proposition 4, show that the combinatorial formula of the Jacobsthal fundamental
sequence {J(r−1)

n }n≥0 and of every sequence of the (r, p,k)-generalized Jacobsthal numbers (1.4)
are obtained without the use of their related generating functions.

The combinatorial expression of the (r, p,k)-generalized Jacobsthal fundamental sequence (1.4)
for the two special cases k = 0 and p = 0, is formulated in the following corollary.

Corollary 4. Under the data of Proposition 4, for k = 0 the combinatorial expression of the

general term Jn is given under the form Jn =
r−1

∑
j=0

Zk, jρ(n− j,r), where the Zk, j are given by (2.8),

namely, 
Zp,0 = α0 +α1 + · · ·+αr−3 +αr−22p +αr−1

Zp,1 = α1 +α2 + · · ·+αr−2 +αr−12p

Zp, j = α j +α j+1 + · · ·+αr−1, for 2 ≤ j ≤ r−1.

And for p = 0 we have Jn =
r−1

∑
j=0

Zk, jρ(n− j,r), where the Zk, j are given by (2.9), namely, Zk, j =

α j2k +
r−1

∑
d= j+1

αd for 0 ≤ j ≤ r−1.

Remark 4. When p = 1 and k = 0 and p = 0 and k = 1 (respectively) Corollaries 3 and 4 permit
us to obtain the same properties for Expressions (1.2)- (1.3).

4.2 Combinatorial identities related to (r,p,k)-generalized Jacobsthal numbers

In Subsection 3.2, we have established some identities related to the (r, p,k)-generalized Jacob-
sthal numbers (1.4), which are expressed in terms of the elements of the Jacobsthal fundamen-
tal Fibonacci system (2.1) and its related fundamental sequence. Especially, in Theorem 4 the
identities (3.12), (3.13) and (3.14), are expressed in terms of Jacobsthal fundamental sequence
{J(r−1)

n }n≥0. Then, combining results of Theorem 4 and Theorem 5, we can derive the analogous

Trends Comput. Appl. Math., 26 (2025), e01835
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combinatorial identities. More precisely, substitution of the combinatorial Expression (4.4) in
Expressions (3.12), (3.13) and (3.14) allows us to get the following result.

Theorem 6. Let {J(r−1)
n }n≥0 be the Jacobsthal fundamental sequence and m, h ≥ 0 are two given

integers. Then, we have the following identities,

ρ(m+ p+h+1,r) =
r−2

∑
d=0

d

∑
j=0

ar−d+ j−1ρ(m+ p− j,r)ρ(h+d +1,r)+ρ(m+ p+1,r)ρ(h+ r,r) (4.5)

for q = r−1, and for q = 0 we have

ρ(m+h+ p+1,r) =
r−1

∑
d=0

d

∑
j=0

ar−d+ j−1ρ(m+ p− j,r)ρ(h+d,r) (4.6)

finally, for 1 ≤ q ≤ r−2 we get
q

∑
j=0

ar−q+ j−1ρ(m+h+ p− j,r) = (2k +1)ρ(m+ p,r)
q

∑
j=0

ar−q+ j−1ρ(h+d − j,r) (4.7)

+
r−2

∑
d=1

d

∑
k=0

q

∑
j=0

ar−q+k−1ar−q+ j−1∆(r,m, p,h,d, j,k),

where a0 = a2 = · · · = ar−2 = 1, a1 = 2p and ar−1 = 2k, and ∆(r,m, p,h,d, j,k) = ρ(m+ p−
k,r)ρ(h+d − j,r).

Remark 5. Similarly to Remark 3, the three combinatorial identities (4.5), (4.6) and (4.7) can
be formulated for the special cases p = 0, k ≥ 1 and p ≥ 1, k = 0.

Generally, in various articles of the literature the Chen-Louck’s Theorem ( [1, Theorem 3.1]) is
used to express the combinatorial form of the entries of the powers of the companion matrix A =

A[a0,a1, · · · ,ar−1]. However, it was established in [7] that an explicit combinatorial formula a lin-
ear recurrence relation vn =∑

r−1
i=0 aivn−i−1, for n≥ r, with arbitrary initial conditions v0, . . . , vr−1

is given in terms of un = ρ(n,r) the the combinatorial formula 4.1. And with the aid of a direct

computation using the identity
(k0 + · · ·+ kr−1 −1)!

k0! . . .(kp −1)! . . .kr−1!
=

kp

k0 + · · ·+ kr−1
× (k0 + · · ·+ kr−1)!

k0! . . .kr−1!
and Expressions (3.2), (4.1) it has been established in [10], that the Chen-Louck Theorem
[1, Theorem 3.1] can be recovered by a direct calculation, as shown in [10, Proposition 3.1
(Chen–Louck’s Theorem)].

5 CASSINI IDENTITY OF THE (r,p,k)-GENERALIZED JACOBSTHAL NUMBERS

In most works of literature, several identities like the Cassini identity, for some families of se-
quences of classical numbers and their generalization such that Fibonacci-Pell numbers or gener-
alized Fibonacci-Pell numbers, are expressed in terms of the fundamental sequence (see [2,8,9]).
Indeed, for the sequence of usual Fibonacci numbers and the sequence of usual Pell numbers,
namely, {

Fn+1 = Fn +Fn−1 for n ≥ 1

F0 = α0,F1 = α1

{
Pn+1 = 2Pn +Pn−1 for n ≥ 1

P0 = α0,P1 = α1

Trends Comput. Appl. Math., 26 (2025), e01835
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the Cassini identities are expressed in terms of their associated fundamental sequences, character-
ized by their initial conditions F0 = 0, F1 = 1 and P0 = 0, P1 = 1 (respectively). After expressing
these Cassini identities of Fibonacci-Pell numbers under the determinant of the Casoratian ma-
trix, associated to their fundamental Fibonacci systems, this approach has been extended to the
generalized Fibonacci-Pell numbers in [2,8,9]. Let recall the well known formula of the determi-
nant of a square matrix M = (ai j)1≤i, j≤r, defined by det(M) = ∑

σ∈Sr

sgn(σ)aσ(1),1aσ(2),2...aσ(r),r,

where Sr is the group of permutations σ of the r elements {1,2, · · · ,r} and sgn(σ) is the sig-
nature of the permutation σ . For the Jacobsthal matrix (3.4), its powers Bn = (J(n)i j )0≤i, j≤r−1 are
given by Expression (3.6). More precisely, the entries Ji j(n) are expressed as in Expression (3.5),
namely, Ji j(n) = J(r− j−1)

n+r−i−1, where the sequences {J(s)n }n≥0 (0 ≤ s ≤ r−1) defined by (2.1), repre-
sent the Jacobsthal fundamental Fibonacci system. Therefore, we show that for the generalized
Cassini identity for powers Bn = (J(n)i j )0≤i, j≤r−1 takes the subsequent form,

C(n) = ∑
σ∈Sr

sgn(σ)Jσ(0),0(n)Jσ(1),1(n) · · ·Jσ(r−1),r−1(n) = (−1)(r−1)n2kn, (5.1)

where Sr is the group of permutations σ of the r elements {0,1, · · · ,r − 1}. However, for the
matrix powers Bn = (J(n)i j )0≤i, j≤r−1, the entries J(n)i j (0 ≤ i, j ≤ r − 1) are given by Expression
(3.5). Therefore, using Expression (5.1), we come to have the result below.

Theorem 7. Expression (5.1) of the generalized Cassini identity, related to the Jacobsthal
fundamental Fibonacci system (2.1), is given under the following form,

C(n) = ∑
σ∈Sr

sgn(σ)J(r−1)
n+r−σ(0)−1 . . .J

(r−i−1)
n+r−σ(i)−1 . . .J

(0)
n+r−σ(r−1)−1 = (−1)(r−1)n2kn, (5.2)

where Sr is the group of permutations of the set {0,1, · · · ,r−1}.

For the special case k = 0 of Expression (1.4) the Cassini is formulated as follows.

Corollary 5. Under the data Theorem 7, for k = 0, the Cassini identity (5.2) takes the form
C(n) = ∑

σ∈Sr

sgn(σ)J(r−1)
n+r−σ(0)−1 . . .J

(r−i−1)
n+r−σ(i)−1 . . .J

(0)
n+r−σ(r−1)−1 = (−1)(r−1)n, where Sr is the

group of permutations σ of the set {0,1, · · · ,r−1}.

For illustrate purpose of the preceding process, we consider below the special case r = 3.

Corollary 6. For r = 3 is valid the generalized Cassini identity below,

C(n) = ∑
σ∈S3

sgn(σ)J(2)n+2−σ(0)J
(1)
n+2−σ(1)J

(0)
n+2−σ(2) = (−1)2n2kn = 2kn,

where S3 is the group of permutations of the set {0,1,3}.

Trends Comput. Appl. Math., 26 (2025), e01835
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On the other side, by setting s = r− i−1 and taking into account Expressions (2.3) and (2.4), we
show that we have,

C(n) = ∑
σ∈Sr

sgn(σ)J(r−1)
n+r−σ(0)−1J(r−2)

n+r−σ(1)−1 . . .J
(r−i−1)
n+r−σ(i)−1 . . .J

(0)
n+r−σ(r−1)−1

= ∑
σ∈Sr

sgn(σ)J(r−1)
n+r−σ(0)−1J(0)n+r−σ(r−1)−1

[
r−3

∏
s=2

J(s)n+r−σ(r−s−1)−1 + J(r−2)
n+r−σ(1)−1

]
,

since
r−2

∏
i=1

J(r−i−1)
n+r−σ(i)−1 =

r−2

∏
s=1

J(s)n+r−σ(r−s−1)−1 =
r−3

∏
s=2

J(s)n+r−σ(r−s−1)−1+J(r−2)
n+r−σ(1)−1. Result of Lem-

mas 1 and 2, namely, Expressions (2.2), (2.3) and (2.4) shows that the Casoratian of the Jacob-
sthal fundamental Fibonacci system (2.1), can be also formulated in terms of the fundamental
sequence {J(r−1)

n }n≥0. That is, we have

J(0)n+r−σ(r−1)−1 = 2kJ(r−1)
n+r−σ(r−1)−2,

J(s)n+r−σ(r−s−1)−1 = J(r−1)
n+r−σ(r−s−1)−2 + J(r−1)

n+r−σ(r−s−1)−3 + · · ·+ J(r−1)
n+r−σ(r−s−1)−s−1

+2kJ(r−1)
n+r−σ(r−s−1)−s−2,

J(r−2)
n+r−σ(1)−1 = 2pJ(r−1)

n+r−σ(1)−2 + J(r−1)
n+r−σ(1)−3 + · · ·+ J(r−1)

+r−σ(1)−s−1 +2kJ(r−1)
+r−σ(1)−s−2.

Therefore, the substitution of the last expressions in Expression (5.2) allows us to obtain the
Jacobsthal generalized Cassini in terms of the fundamental sequence, as shown in the next
theorem.

Theorem 8. Expression (5.2) of the generalized Jacobsthal Cassini identity, related to the
Jacobsthal fundamental Fibonacci system (2.1), is stated under the form,

C(n) = ∑
σ∈Sr

sgn(σ)2k
Π1,σ (n)Π2,σ (n)

r−3

∏
s=1

Πs,d,σ (n) = (−1)(r−1)n2kn, (5.3)

where 
Π1,σ (n) = J(r−1)

n+r−σ(0)−1J(r−1)
n+r−σ(r−1)−2,

Π2,σ (n) = 2pJ(r−1)
n+r−σ(1)−2 +∑

r−2
d=2 J(r−1)

n+r−σ(1)−d−1 +2kJ(r−1)
n−σ(1)−2,

Πs,d,σ (n) = ∑
s
d=1 J(r−1)

n+r−σ(r−s−1)−d−1 +2kJ(r−1)
n+r−σ(r−s−1)−s−2.

(5.4)

For the special cases k = 0 and p = 0 we have the following corollary, concerning the Cassini
identity of the (r, p,k)-generalized Jacobsthal numbers (1.4).

Corollary 7. Under the data of Theorem 8, for k = 0 the Cassini identity (5.3) takes the form,

C(n) = ∑
σ∈Sr

sgn(σ)2k
Π1,σ (n)Π2,p,σ (n)

r−3

∏
s=1

Πs,d,σ (n) = (−1)(r−1)n,

Trends Comput. Appl. Math., 26 (2025), e01835
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where 
Π1,σ (n) = J(r−1)

n+r−σ(0)−1J(r−1)
n+r−σ(r−1)−2,

Π2,p,σ (n) = 2pJ(r−1)
n+r−σ(1)−2 +∑

r−2
d=2 J(r−1)

n+r−σ(1)−d−1 + J(r−1)
n−σ(1)−2,

Πs,d,σ (n) = ∑
s
d=1 J(r−1)

n+r−σ(r−s−1)−d−1 +2kJ(r−1)
n+r−σ(r−s−1)−s−2,

and for p = 0 we have C(n) = ∑
σ∈Sr

sgn(σ)2k
Π1,σ (n)Π2,k,σ (n)

r−3

∏
s=1

Πs,d,k,σ (n) = (−1)(r−1)n2kn,

where 
Π1,σ (n) = J(r−1)

n+r−σ(0)−1J(r−1)
n+r−σ(r−1)−2,

Π2,k,σ (n) = J(r−1)
n+r−σ(1)−2 +∑

r−2
d=2 J(r−1)

n+r−σ(1)−d−1 +2kJ(r−1)
n−σ(1)−2,

Πs,d,k,σ (n) = ∑
s
d=1 J(r−1)

n+r−σ(r−s−1)−d−1 +2kJ(r−1)
n+r−σ(r−s−1)−s−2.

Following results of Theorem 5, namely, Expression (4.3), and Expressions (5.3)-(5.4), we
can derive the combinatorial expression of the Casoratian of the Jacobstal fundamental Fi-
bonacci system. That is, with the aid o Expression (4.4), namely, J(r−1)

n = ρ(n + 1,r) =

∑
j0+2 j1+···+r jr−1=n−r+1

( j0 + · · ·+ jr−1)!
j0! j1! . . . jr−1!

2 j1 p2 jr−1k, we derive that, for every s, d (0≤ s, d ≤ r−1),

we have

J(r−1)
n+r−σ(r−s−1)−d−1 = ρ(n+ r−σ(r− s−1)−d,r) = ∑∧

(n,σ ,s)

( j0 + · · ·+ jr−1)!
j0! j1! . . . jr−1!

2 j1 p2 jr−1k,

where
∧
(n,σ ,s) = {( j0, j1, · · · , jr−1); j0 + 2 j1 + · · ·+ r jr−1 = n + r − σ(r − s − 1)− d − r}.

Hence, by considering the two formulas (5.3)-(5.4) we have,
J(r−1)

n+r−σ(0)−1 = ρ(n+ r−σ(0),r),

J(r−1)
n+r−σ(r−s−1)−d−1 = ρ(n+ r−σ(r− s−1)−d,r),

J(r−1)
n+r−σ(r−s−1)−s−2 = ρ(n+ r−σ(r− s−1)− s−1,r).

Therefore, we can formulate the Jacobsthal combinatorial Cassini identity as follows.

Theorem 9. Expression (5.2) of the (r, p,k)-generalized Jacobsthal Cassini identity, related to
the Jacobsthal fundamental Fibonacci system (2.1), is stated under the form,

C(n) = ∑
σ∈Sr

sgn(σ)2k
Φ1,σ (n)Φ2,σ (n)

r−3

∏
s=1

Φs,d,σ (n) = (−1)(r−1)n2kn (5.5)

where Φ1,σ (n), Φ2,σ (n) and Φs,d,σ are the following combinatorial expressions,
Φ1,σ (n) = ρ(n+ r−σ(0),r)ρ(n+ r−σ(r−1)−1,r),

Φ2,σ (n) = 2pρ(n+ r−σ(1)−1,r)+∑
r−2
d=2 ρ(n+ r−σ(1)−d,r)+2kρ(n−σ(1)−1,r),

Φs,d,σ (n) = ∑
s
d=1 ρ(n+ r−σ(r− s−1)−d,r)+2kρ(n+ r−σ(r− s−1)− s−1,r).

(5.6)

Trends Comput. Appl. Math., 26 (2025), e01835
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Using Expressions (5.5)-(5.6), we get for the special cases k = 0 and p = 0 the following re-
sult concerning the combinatorial formula of the Cassini identity of the (r, p,k)-generalized
Jacobsthal numbers (1.4).

Corollary 8. Under the data of Theorem 9, for k = 0 the Cassini identity (5.5) is given by C(n) =

∑
σ∈Sr

sgn(σ)Φ1,p,σ (n)Φ2,σ (n)
r−3

∏
s=1

Φs,d,σ (n) = (−1)(r−1)n, where


Φ1,σ (n) = ρ(n+ r−σ(0),r)ρ(n+ r−σ(r−1)−1,r),

Φ2,p,σ (n) = 2pρ(n+ r−σ(1)−1,r)+∑
r−2
d=2 ρ(n+ r−σ(1)−d,r)+ρ(n−σ(1)−1,r),

Φs,d,σ (n) = ∑
s
d=1 ρ(n+ r−σ(r− s−1)−d,r)+ρ(n+ r−σ(r− s−1)− s−1,r).

And for p = 0, we have

C(n) = ∑
σ∈Sr

sgn(σ)2k
Φ1,k,σ (n)Φ2,k,σ (n)

r−3

∏
s=1

Φs,d,k,σ (n) = (−1)(r−1)n2kn,

where
Φ1,σ (n) = ρ(n+ r−σ(0),r)ρ(n+ r−σ(r−1)−1,r),

Φ2,k,σ (n) = ρ(n+ r−σ(1)−1,r)+∑
r−2
d=2 ρ(n+ r−σ(1)−d,r)+2kρ(n−σ(1)−1,r),

Φs,d,k,σ (n) = ∑
s
d=1 ρ(n+ r−σ(r− s−1)−d,r)+2kρ(n+ r−σ(r− s−1)− s−1,r).

It seems for us that the results of this section concerning the Cassini identities and its formulation
in terms of the Jacobsthal fundamental sequence (5.3)-(5.4) and its related combinatorial identity
(5.5)-(5.6) are not current in the literature.

Remark 6. When k = 0 and p = 1 or k = 1 and p = 0 (respectively), Corollaries 5, 7 and 8
permit us to obtain the analogous properties for usual generalized Jacobsthal numbers (1.2)-
(1.3).

6 CONCLUDING REMARKS AND PERSPECTIVE

In this study we have presented new results regarding the model of (r, p,k)-generalized Jacobsthal
numbers. Especially, we have based our construction on the Jacobsthal fundamental Fibonacci
system and its related fundamental sequence. Therefore, the combinatorial expression of the
(r, p,k)-generalized Jacobsthal numbers, as well as some related new identities are established.
In addition the Cassini identities of the (r, p,k)-generalized Jacobsthal numbers are provided.
Finally, some special cases are studied.

In the best of our knowledge our results are not current in the literature. Moreover our ap-
proaches can be applied for studying the analytical aspect of some classes of (r, p,k)-generalized
Jacobsthal numbers defined by (1.4).
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